Progressive Myoclonic Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Progressive Myoclonic Epilepsy www.neurologyindia.com Indian Perspective Progressive myoclonic epilepsy P. Satishchandra, S. Sinha Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India Abstract Progressive myoclonic epilepsy (PME) is a disease complex and is characterized by the development of relentlessly progressive myoclonus, cognitive impairment, ataxia, and other neurologic deficits. It encompasses different diagnostic entities and the common causes include Lafora body disease, neuronal ceroid lipofuscinoses, Unverricht–Lundborg disease, myoclonic epilepsy with ragged-red fiber (MERRF) syndrome, sialidoses, dentato-rubro-pallidal atrophy, storage diseases, and some of the inborn errors of metabolism, among others. Recent advances in this area have clarified molecular genetic basis, biological basis, and natural history, and also provided Address for correspondence: a rational approach to the diagnosis. Most of the large studies related to PME are from Dr. P. Satishchandra, south India from a single center, National Institute of Mental Health and Neurological National Institute of Mental Health Sciences (NIMHANS), Bangalore. However, there are a few case reports and small series & Neurosciences (NIMHANS), Hosur Road, Bangalore - 560 029, about Lafora body disease, neuronal ceroid lipofuscinoses and MERRF from India. We India. review the clinical and research experience of a cohort of PME patients evaluated at E-mail: drpsatishchandra@yahoo. NIMHANS over the last two decades, especially the phenotypic, electrophysiologic, com pathologic, and genetic aspects. Key words: Lafora body disease, myoclonic epilepsy with ragged-red fiber, PMID: *** neuronal ceroid lipofuscinoses, progressive myoclonic epilepsy, Unverricht–Lundborg DOI: 10.4103/0028-3886.68660 disease Introduction There are a few case reports and case series on various PMEs from India.[10-15] However, most of the larger Progressive myoclonic epilepsy (PME) is a syndrome studies are from a single center, National Institute of complex characterized by progressive myoclonus, Mental Health and Neurological Sciences (NIMHANS), [5-7,16] cognitive impairment, ataxia, and other neurologic Bangalore, in south India. The research interest in deficits.[1] It encompasses several diagnostic entities and one of the PMEs, LBD has started in early 1990s and the often causes diagnostic problems leading to nosological genetic analyses of patients with LBD have been carried [9,17] confusion. Over the last two decades, considerable out in collaboration with IIT, Kanpur. developments have occurred in the field of PMEs and A total of 147 patients with PME have been evaluated at they have been recognized as a group of syndromes NIMHANS, Bangalore, India, till date, they include: LBD: with specific etiologies.[2-4] Genetic tests had further 54; NCL: 65; ULD: 08; MERRF: 10; and Tay–Sachs disease enhanced the understanding of the disease process. (TSD): 10 [Table 1]. We have earlier described a cohort The most important causes of PME include:Unverricht– 97 histopathologically confirmed patients with PME Lundborg disease (ULD), myoclonic epilepsy with [Table 2]. This cohort included 63 males and 34 females; ragged-red fiber (MERRF) syndrome, Lafora body mean age at onset of illness 10.7 ± 8.2 years (median: disease (LBD), neuronal ceroid lipofuscinoses (NCL), 11 years, range: 6 months to 48 years); and duration and sialidoses.[2] Further, recent advances have clarified of illness at presentation 2.5 ± 2.2 years. History of the clinical features and facilitated a rational diagnostic consanguineous parentage was evident in 60 patients approach. [1- 3,5-9] Understanding of the molecular genetics (61.8%). Most of the patients presented with the classical may help in determining the biological basis and also the triad: myoclonus, cognitive decline, and neurologic natural history of these disorders. deficits. 514 Neurology India | Jul-Aug 2010 | Vol 58 | Issue 4 Satishchandra and Sinha: PME in India Lafora Body Disease and retinal degeneration has been documented but normal retina is usually noted. Ataxia is often missed The characteristics of LBD include: generalized tonic– because of severe myoclonus. The characteristic EEG clonic seizures (GTCS), resting and action myoclonus, pattern is slowing of background activity with recurrent ataxia, dementia, polyspike and wave discharges in the epileptiform discharges: spikes/polyspikes, with or [20] electroencephalogram (EEG) basophilic cytoplasmic without slow waves. LBD is caused by mutation in the inclusion bodies in portions of brain, liver, and skin, as PME 2 gene (EPM2A) on chromosome 6q and EPM2B [5] well as the duct cells of the sweat glands. The disease gene. has autosomal recessive inheritance with the age of onset between 5 and 20 years. Most often patients with LBD NIMHANS cohort Clinical characteristics present at 13 or 14 years of age with few exceptions.[18] Death usually occurs within 10 years of onset. Seizures, In our cohort, there was a slight male dominance (M:F:: myoclonus, or learning disability may be the first 24:14). History of consanguineous parentage was note in 73.7% of patients. The mean age at onset of illness was symptom in the majority.[5,7,19] Myoclonus is said to be 14.4 ± 3.9 years (range: 10–35 years, median: 14 years) and more often fragmentary, asymmetric, arrhythmic, and the mean duration of illness was 2.8 ± 2.1 years. GTCS was progressively disabling.[5-7,20] Presence of optic atrophy the presenting symptom in 71% of patients. Myoclonus with or without generalized seizures and progressive Table 1: PME cohort from NIMHANS, Bangalore cognitive decline were universally present in all the Type of PME No. of cases Mode of Number patients. Seizures are often refractory to antiepileptic n (%) diagnosis n=147 medications. Occipital seizures with visualization of LBD 54 (36.7) Brain 02 Muscle 02 flashes of light (ictal phenomena) were reported in a Skin 50 third of the patients, while behavioral changes were NCL 65 (44.2) Brain 11 evident in almost one-fourth of the patients. In our Skin and 05 cohort, progression from a presymptomatic stage to muscle 49 only electrophysiologic abnormalities (EEG changes or Skin giant somatosensory-evoked potential [SSEP] potential), ULD 08 (5.4) Exclusion 08 diagnosis and finally to a clinically obvious stage have been [5] Normal skin documented. and muscle biopsy Electrophysiology MERRF 10 (6.8) Muscle 10 Scalp EEG was done in 37 patients and the findings TSD 10 (6.8) Biochemical 10 included varying degrees of slowing of background assay activity in 97.4% of patients [Figure 1a]. Generalized PME - Progressive myoclonic epilepsy; MERRF - Myoclonic epilepsy with ragged-red fiber; NCL - Neuronal ceroid lipofuscinosis; ULD - Unverricht– epileptiform discharges in 84.2% of patients, while Lundborg disease; LBD - Lafora body disease; TSD - Tay–Sachs disease focal discharges were present in ten patients. One Table 2: Clinical and electrophysiologic profile of 97 patients of PME, cohort from NIMHANS, Bangalore[7] Parameters NCL (n=40) LBD (n=38) MERRF (n=10) ULD (n=9) Age at onset (years) 5.9 ± 9.1 14.4 ± 3.9 14.6 ± 5.8 13.8 ± 9.5 Duration of illness (years) 2.5 ± 1.4 14.4 ± 3.9 2.1 ± 5.2 4.1 ± 4.05 M:F 28:12 24:14 6:4 5:4 Positive family history (%) 12.5 7.9 10 Nil Consanguineous parentage (%) 62.5 73.7 30 44.4 Common manifestations Regression of milestones, Myoclonus, generalized Myoclonus, generalized Myoclonus and ataxia seizure, myoclonus, chorea, seizure, occipital seizures, seizures, cognitive visual loss, and ataxia and cognitive decline decline, and ataxia EEG: n=37: n=37: n=7: n=9: Slowing of BGA 94.6% 97.4% 71.4% 55.5% Epileptiform discharges 81.1% 84.2% 71.4% 88.8% SSEP: n=25: n=31: n=6: n=7: giant potentials (>10 μV) 28% 77.4% 16.6% 57.1% VEP n=2: absent - 2, n=31: absent- 8, n=6: absent- 1 n=7: Prolonged P100- 7 Prolonged P100- 4 Normal Nerve conduction studies n=19: axonal neuropathy- 3 n=21: axonal n=10: myopathy- 1; n=9: neuropathy- 1 neurogenic- 1 Normal EEG - Electroencephalogram; BGA - Background activity; LBD - Lafora body disease; MERRF - Myoclonic epilepsy with ragged-red fiber; NCL - Neuronal ceroid lipofuscinosis; PME - Progressive myoclonic epilepsy; ULD - Unverricht–Lundborg disease; SSEP - Somatosensory-evoked potential; VEP - Visual-evoked potential Neurology India | Jul-Aug 2010 | Vol 58 | Issue 4 515 Satishchandra and Sinha: PME in India of the patient had multifocal epileptiform activity. b Photosensitivity with fast frequency stimulus was observed in 25% of patients, significantly less as compared to the western series..[20] Presymptomatic EEG abnormalities were detected in 3 families.[5] Progressive worsening in the background activity was observed in 4 patients. Interestingly, even presymptomatic individuals were found to have EEG changes, first time documented b from our center.[6] a Giant SSEP (14–175 μV) was demonstrated in 24 of the 31 patients studied [Figure 1b], while visual-evoked potential (VEP) studies revealed a prolonged P100 in four of the 31 patients studied and absent waveform in eight. Giant VEP potentials have also been documented for the first time from our center[5,6] [Figure 1b]. Brainstem c d auditory-evoked potential studies did not reveal any Figure 1: Laboratory parameters showing characteristic features of LBD: abnormality. Electrophysiologic features of neuropathy (a) scalp EEG with diffuse slowing of BGA with frequent spike/polyspike [7] and waves from both the hemispheres; (b) SSEP: giant potential (35.6 were present
Recommended publications
  • Mitochondrial Trnaleu(Uur) May Cause an MERRF Syndrome
    J7ournal ofNeurology, Neurosurgery, and Psychiatry 1996;61:47-51 47 The A to G transition at nt 3243 of the J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.61.1.47 on 1 July 1996. Downloaded from mitochondrial tRNALeu(uuR) may cause an MERRF syndrome Gian Maria Fabrizi, Elena Cardaioli, Gaetano Salvatore Grieco, Tiziana Cavallaro, Alessandro Malandrini, Letizia Manneschi, Maria Teresa Dotti, Antonio Federico, Giancarlo Guazzi Abstract Two distinct maternally inherited encephalo- Objective-To verify the phenotype to myopathies with ragged red fibres have been genotype correlations of mitochondrial recognised on clinical grounds: MERRF, DNA (mtDNA) related disorders in an which is characterised by myoclonic epilepsy, atypical maternally inherited encephalo- skeletal myopathy, neural deafness, and optic myopathy. atrophy,' and MELAS, which is defined by Methods-Neuroradiological, morpholog- stroke-like episodes in young age, episodic ical, biochemical, and molecular genetic headache and vomiting, seizures, dementia, analyses were performed on the affected lactic acidosis, skeletal myopathy, and short members of a pedigree harbouring the stature.2 Molecular genetic studies later con- heteroplasmic A to G transition at firmed the nosological distinction between the nucleotide 3243 of the mitochondrial two disorders, showing that MERRF is strictly tRNAI-u(UR), which is usually associated associated with two mutations of the mito- with the syndrome of mitochondrial chondrial tRNALYs at nucleotides 83443 and encephalomyopathy, lactic
    [Show full text]
  • Myoclonus Epilepsy Associated with Ragged-Red Fibers
    DOI: 10.1590/0004-282X20140124 VIEWS AND REVIEWS When should MERRF (myoclonus epilepsy associated with ragged-red fibers) be the diagnosis? Quando o diagnóstico deveria ser MERRF (epilepsia mioclônica associada com fibras vermelhas rasgadas)? Paulo José Lorenzoni, Rosana Herminia Scola, Cláudia Suemi Kamoi Kay, Carlos Eduardo S. Silvado, Lineu Cesar Werneck ABSTRACT Myoclonic epilepsy associated with ragged red fibers (MERRF) is a rare mitochondrial disorder. Diagnostic criteria for MERRF include typical manifestations of the disease: myoclonus, generalized epilepsy, cerebellar ataxia and ragged red fibers (RRF) on muscle biopsy. Clinical features of MERRF are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. It is estimated that point mutations in the tRNALys gene of the DNAmt, mainly A8344G, are responsible for almost 90% of MERRF cases. Morphological changes seen upon muscle biopsy in MERRF include a substantive proportion of RRF, muscle fibers showing a deficient activity of cytochrome c oxidase (COX) and the presence of vessels with a strong reaction for succinate dehydrogenase and COX deficiency. In this review, we discuss mainly clinical and laboratory manifestations, brain images, electrophysiological patterns, histology and molecular findings as well as some differential diagnoses and treatments. Keywords: MERRF, mitochondrial, epilepsy, myoclonus, myopathy. RESUMO Epilepsia mioclônica associada com fibras vermelhas rasgadas (MERRF) é uma rara doença mitocondrial. O critério diagnóstico para MERRF inclui as manifestações típicas da doença: mioclonia, epilepsia generalizada, ataxia cerebelar e fibras vermelhas rasgadas (RRF) na biópsia de músculo. Na fase inicial da doença, as manifestações clínicas podem não ser uniformes, e correlação entre as manifestações clínicas e fisiopatologia não estão completamente elucidadas.
    [Show full text]
  • Wo 2009/039966 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 2 April 2009 (02.04.2009) WO 2009/039966 A2 (51) International Patent Classification: (74) Agent: ARTH, Hans-Lothar; ABK Patent Attorneys, Jas- A61K 38/17 (2006.01) A61P 11/00 (2006.01) minweg 9, 14052 Berlin (DE). A61K 38/08 (2006.01) A61P 25/28 (2006.01) A61P 31/20 (2006.01) A61P 31/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A61P 3/00 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61P 9/00 (2006.01) A61P 37/00 (2006.01) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (21) International Application Number: EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, PCT/EP2008/007500 IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: MX, MY,MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, 9 September 2008 (09.09.2008) RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 07017754.8 11 September 2007 (11.09.2007) EP ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (71) Applicant (for all designated States except US): MONDO- FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, BIOTECH LABORATORIES AG [LLLI]; Herrengasse NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, 21, FL-9490 Vaduz (LI).
    [Show full text]
  • Non-Commercial Use Only
    Neurology International 2018; volume 10:7473 Cognitive impairment in neuromuscular diseases: Introduction Correspondence: Francisco Victor Costa Marinho, Federal University of Piauí, Brazil. A systematic review Neuromuscular diseases present a wide Brain Mapping and Plasticity Laboratory- Av. variety of clinical manifestations, but their São Sebastião nº2819 – Nossa Sra. de Fátima effects on the cognitive function spectrum Marco Orsini,1,2 Ana Carolina – Parnaíba, PI, CEP: 64202-020, Brazil. are still poorly understood.1 In contrast to the Tel.: +55.86.994178117. Andorinho de F. Ferreira,3 studies on how altered executive functions in E-mail: [email protected] 3,4 Anna Carolina Damm de Assis, mental disorders such as anxiety, depression 3 2 Thais Magalhães, Silmar Teixeira, and bipolar disorder can affect motor perfor- Key words: Cognitive Impairment; Victor Hugo Bastos,2 Victor Marinho,2 mance,2-4 the mechanisms by which essen- Neuromuscular Diseases; Motor Neuron Thomaz Oliveira,2 Rossano Fiorelli,1 tially motor dysfunctions can affect cogni- Diseases; Dystrophinopathies; Mitochondrial Acary Bulle Oliveira,4 tive performance still remain poorly under- Disorders. 5 stood and studied.5-8 Although it is known Marcos R.G. de Freitas Contributions: the authors contributed equally. that neuromuscular diseases mainly affect 1Master’s Program in Health Applied the motor functioning of the patient, the cog- Sciences, Severino Sombra University, Conflict of interest: the authors declare no nitive effects of these conditions can be sig- Vasssouras, Rio de Janeiro; 2Brain potential conflict of interest. nificant.5 This can occur from molecular Mapping and Plasticity Laboratory, defects that significantly affect neuromotor Funding: none. Federal University of Piauí, Parnaíba; functioning but also participate in the func- 3Department of Neurology, Federal tioning of neural networks involved in cogni- Received for publication: 31 October 2017.
    [Show full text]
  • Breakthrough Brings Hope of Treatments for Muscle Diseases
    February 2018 Breakthrough brings hope of treatments for muscle diseases Recently, NeuroVive was able to report a breakthrough in the company’s research on mitochondrial myopathy. In experimental studies conducted by NeuroVive’s partner Karolinska Institutet under the leader ship of Professor Håkan Westerblad, NeuroVive’s model substance showed positive effects that could counteract the disease progression in mitochondrial myopathy and potentially other muscle diseases. Mitochondrial myopathy cramps. The most common mitochondrial myopathies Mitochondrial myopathy is a group of genetic muscular are KSS (Kearns­Sayre Syndrome), CPEO (Chronic Pro­ diseases caused by congenital injuries to the cells’ gressive External Ophthalmoplegia), MERRF syndrome power plants, the mitochondria. Mitochondrial myo­ (Myoclonic Epilepsy with Ragged Red Fibers) and MELAS pathy is manifested by muscle weakness, fatigue and (Mitochondrial myopathy, Encephalopathy, Lactic Aci­ exercise intolerance, and is often associated with other dosis and Stroke­like episodes). The disease usually symptoms of genetic mitochondrial disease, such as develops from general progressive muscle weakness heart failure and rhythm disturbances, dementia, agi­ to death, which, combined with few or no treatment tation and periods of stroke, deafness, blindness, hang­ options creates a significant medical need. ing eyelids, restricted eye movement, vomiting and NeuroVive Pharmaceutical AB (publ) [email protected] Medicon Village • SE 223 81 Lund, Sweden +46 46 275 62 20 NeuroVive – Newsletter February 2018 NeuroVives research in genetic mitochondrial including suppressing the immune system. Thus, the diseases researchers at Karolinska Institutet have instead stud­ NeuroVive’s NVP025 project is developed primarily ied NeuroVive’s new cyclophilin inhibitor, which is con­ for mitochondrial myopathy, which together with the sidered to have higher specificity and tolerability than KL1333 and NVP015 projects constitute the company’s ciclosporin.
    [Show full text]
  • Clinical Approach to Genetic Cardiomyopathy in Children Marcy L
    (Circulation. 1996;94:2021-2038.) © 1996 American Heart Association, Inc. Articles Clinical Approach to Genetic Cardiomyopathy in Children Marcy L. Schwartz, MD; Gerald F. Cox, MD, PhD; Angela E. Lin, MD; Mark S. Korson, MD; Antonio Perez-Atayde, MD; Ronald V. Lacro, MD; Steven E. Lipshultz, MD the Department of Cardiology (M.L.S., R.V.L., S.E.L.), Division of Genetics, Inborn Errors of Metabolism Service, Department of Medicine (G.F.C., M.S.K.), and Department of Pathology (A.P.-A.), Children's Hospital, Boston, Mass; and Department of Pediatrics (M.L.S., G.F.C., M.S.K., R.V.L., S.E.L.) and Department of Pathology (A.P.-A.), Harvard Medical School, Boston, Mass. Correspondence to Steven E. Lipshultz, MD, Department of Cardiology, Children's Hospital, 300 Longwood Ave, Boston, MA 02115. E-mail [email protected]. Abstract Background Cardiomyopathy (CM) remains one of the leading cardiac causes of death in children, although in the majority of cases, the cause is unknown. To have an impact on morbidity and mortality, attention must shift to etiology-specific treatments. The diagnostic evaluation of children with CM of genetic origin is complicated by the large number of rare genetic causes, the broad range of clinical presentations, and the array of specialized diagnostic tests and biochemical assays. Methods and Results We present a multidisciplinary diagnostic approach to pediatric CM of genetic etiology. We specify criteria for abnormal left ventricular systolic performance and structure that suggest CM based on established normal echocardiographic measurements and list other indications to consider an evaluation for CM.
    [Show full text]
  • Merrf Syndrome and Refractory Status Epilepticus
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 Merrf Syndrome and Refractory Status Epilepticus Ilirjana Bakalli1, Vahe Mokini2 1PICU - University Hospital Center ―MotherTheresa‖, Tirana – Albania 2Department of Genetics- University Hospital Center ―MotherTheresa‖, Tirana – Albania Abstract: MERRF syndrome (or Myoclonic Epilepsy with Ragged Red Fibers) is a mitochondrial disease maternally-inherited. In this progressive disorder, status epilepticus is common and highly resistant to treatment including generalized anesthesia. We report two cases with Merrf syndrome (sister and brother), presented with status epilepticus refractory even to Thiopental, Propofol and Midazolam. In the same family is and another girl, diagnosed with Merrf syndrome. Given that it wasn’t possible to stop the refractory status in these cases, we suggest Ketamine as an alternative to general anesthesia as for blocking seizure activity, as for the potential neuroprotective effect. Keywords: Merrf syndrome, status epilepticus, ketamine. 1. Introduction about the treatment with Levetiracetam or another antiepileptic which is of choice in such cases. MERRF syndrome (or Myoclonic Epilepsy with Ragged Red Fibers) is a mitochondrial disease, caused by a Two years after the girl, her 13 years old brother has been maternally-inherited mutation at position 8344 in the admitted at our PICU with myoclonic status epilepticus, mitochondrial genome. This point mutation disrupts the refractory even him to midazolam, phenytoine, thiopental mitochondrial gene for tRNA-Lys and so disrupts synthesis and propofol. Asking carefully the children's relatives, we of proteins essential for oxidative phosphorylation.(1) The learn that an uncle of the children has died young, and the characteristic symptom of MERRF syndrome are myoclonic genetic tree of the child's mother had other cases of new age seizures that are usually sudden, brief, jerking, spasms that deaths, without a clear cause.
    [Show full text]
  • (MERRF) Syndrome Nils-Goran Larsson,* Mar H
    Am. J. Hum. Genet. 51:1201-1212, 1992 Segregation and Manifestations of the mtDNA tRNA'YS A--'GO8344 Mutation of Myoclonus Epilepsy and Ragged-Red Fibers (MERRF) Syndrome Nils-Goran Larsson,* Mar H. TuliniusT Elisabeth Holme,* Anders Oldfors,1 Oluf Andersen,§ Jan Wahistrom, 11 and Jan Aasly# Departments of *Clinical Chemistry, tPediatrics, $Pathology, §Neurology, and IlClinical Genetics, University of Gothenburg, Gothenburg, Sweden; and #Department of Neurology, University of Trondheim, Trondheim, Norway Summary We have studied the segregation and manifestations of the tRNALYS A-)'G(8344) mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNALYS mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, and mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrome had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemi- cal evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases.
    [Show full text]
  • Myoclonic Epilepsy and Ragged Red Fibers (MERRF) Syndrome
    The Journal of Neuroscience, October 15, 1997, 17(20):7746–7753 Myoclonic Epilepsy and Ragged Red Fibers (MERRF) Syndrome: Selective Vulnerability of CNS Neurons Does Not Correlate with the Level of Mitochondrial tRNAlys Mutation in Individual Neuronal Isolates Li Zhou,1 Anne Chomyn,2 Giuseppe Attardi,2 and Carol A. Miller1 1Departments of Pathology and Neurology, University of Southern California School of Medicine, Los Angeles, California 90033, and 2Division of Biology, California Institute of Technology, Pasadena, California 91125 Selective vulnerability of subpopulations of neurons is a striking that were analyzed exhibited high proportions of mutant feature of neurodegeneration. Mitochondrially transmitted dis- mtDNA, ranging from 97.6 6 0.7% in Purkinje cells to 80.6 6 eases are no exception. In this study CNS tissues from a patient 2.8% in the anterior horn cells. Within each neuronal group that with myoclonus epilepsy and ragged red fibers (MERRF) syn- was analyzed, neuronal soma values were similar to those in the drome, which results from an A to G transition of nucleotide (nt) surrounding neuropil and glia or in the regional tissue homog- 8344 in the mitochondrial tRNA Lys gene, were examined for the enate. Surprisingly, as compared with controls, neuronal loss proportion of mutant mtDNA. Either individual neuronal somas ranged from 7% of the Purkinje cells to 46% of the neurons of or the adjacent neuropil and glia were microdissected from the dentate nucleus in MERRF cerebellum. Thus, factors other cryostat tissue sections of histologically severely affected brain than the high proportion of mutant mtDNA, in particular nuclear- regions, including dentate nuclei, Purkinje cells, and inferior controlled neuronal differences among various regions of the olivary nuclei, and from a presumably less affected neuronal CNS, seem to contribute to the mitochondrial dysfunction and subpopulation, the anterior horn cells of the spinal cord.
    [Show full text]
  • Heteroplasmy in Chronic External Ophthalmoplegia: Clinical and Molecular Observations
    003 1-3998/90/2 805-0542$02.00/0 PEDI ATRI C RESEARCH Vol. 28, No. 5, 1990 Copyright © 1990 International Pediatric Research Fou ndation, Inc. Printed in U.S.A. Heteroplasmy in Chronic External Ophthalmoplegia: Clinical and Molecular Observations O REST HURKO, DO NALD R. JOHNS, S. LANE RUTLEDGE, O. CO LIN STI NE , PATTI L. PETERSON, NE IL R. MILLER, MARGARET E. MARTENS, DANIEL B. DR ACHMAN, ROBERT H. BROWN, AN D C. P. LEE The Johns Hopkins University School ofM edicine, Baltimore, Maryland 21205 [O.H., D.R.J., SL R., O.CS., N.R.M., D.B.D.]. The University Health Center, Wayne State University, Detroit, Michigan 42801 [PLP., MElv!., C P.L.j, and Massachusetts General Hospital East. Charlestown, Massachusetts 02129 [R.H.B.j ABSTRACf. Chronic progressive external ophthalmople­ Although this term has proven useful, definition of a specific gia (CPEO) describes a recognizable clinical syndrome disease state on the basis of a single clinical sign is fraught with frequently associated with variable dysfunction in other hazard . Frequent but variable involvement of nonocular tissues organ systems. Histochemical and biochemical studies sug­ has added to the complexity of a strictly clinical diagnosis of gested primary dysfunction of oxidative phosphorylation, CPEO . Kiloh and Nevin (I ) considered CPEO to be a distinctive This has recently been confirmed by demonstration of myopath ic syndrome, with relatively isolated myopathy of the partially deleted as well as normal mitochondrial DNA­ extraocular muscles, and only occasional mild weakness in the heteroplasmy-in some of these patients, most of them extremities.
    [Show full text]
  • EFNS Guidelines on the Molecular Diagnosis of Mitochondrial Disorders
    European Journal of Neurology 2009, 16: 1255–1264 doi:10.1111/j.1468-1331.2009.02811.x EFNS GUIDELINES/CME ARTICLE EFNS guidelines on the molecular diagnosis of mitochondrial disorders J. Finsterera, H. F. Harbob, J. Baetsc,d,e, C. Van Broeckhovend,e, S. Di Donatof, B. Fontaineg, P. De Jonghec,d,e, A. Lossosh, T. Lynchi, C. Mariottij, L. Scho¨lsk, A. Spinazzolal, Z. Szolnokim, S. J. Tabrizin, C. M. E. Tallakseno, M. Zevianil, J.-M. Burgunderp and T. Gasserq aKrankenanstalt Rudolfstiftung, Vienna, Danube University Krems, Krems, Austria; bDepartment of Neurology, Ulleva˚l, Oslo University Hospital, and Faculty Division Ulleva˚l, University of Oslo, Oslo, Norway; cDepartment of Neurology, University Hospital Antwerp, Antwerpen; dDepartment of Molecular Genetics, VIB, Antwerpen; eLaboratory of Neurogenetics, Institute Born-Bunge; University of Antwerp, Antwerpen, Belgium; fFondazione-IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy; gAssistance Publique-Hoˆpitaux de Paris, Centre de Re´fe´rence des Canalopathies Musculaires, Groupe Hospitalier Pitie´-Salpeˆtrie`re, Paris, France; hDepartment of Neurology, Hadassah University Hospital, Jerusalem, Israel; iThe Dublin Neurological Institute, Mater Misericordiae University, Beaumont & Mater Private Hospitals, Dublin, Ireland; jUnit of Biochemistry and Genetic of Neurogenetic and Metabolic Diseases, IRCCS Foundation, Neurological Institute Carlo Besta, Milan, Italy; kClinical Neurogenetics, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tu¨bingen, Tu¨bingen,
    [Show full text]
  • Overview on Visceral Manifestations of Mitochondrial Disorders
    r E v i E w overview on visceral manifestations of mitochondrial disorders J. Finsterer Neurological Department, Krankenanstalt Rudolfstiftung, Vienna, Austria, tel.: +43 (0)1-71165-92085, fax: +43 (0)1-478 17 11, e-mail: [email protected] A b s T r act Mitochondriopathies (MCPs) that reach adult age not Since MCPs may cause any symptom, in any organ, at any only manifest in the central and peripheral nervous age, the clinical presentation is quite heterogeneous. In systems, eyes, ears, and dermis, but also in visceral rare cases only a single organ is affected, but multisystem organs, such as endocrine organs, heart, liver, guts, involvement may develop with progression of the disease. kidneys and blood. visceral manifestations occur as part Possible manifestations of visceral organs are summarised of a multisystem involvement or rarely as single organ in table 1. Various combinations of organ involvement led to affection. Endocrinological abnormalities are found the definition of mitochondrial syndromes, of which some in the MElAs, MERRF, KSS, MIDD and DIDMoAd are well known for their acronyms. The majority of MCPs, syndromes. Cardiac involvement occurs in the MElAs, however, do not fit into one of these disease categories. MERRF, KSS, CPEo, LHON, NArP, and leigh syndromes. Mitochondrial syndromes with visceral manifestations are gastrointestinal manifestations are common in the listed in tables 2 and 3. MERRF, MNGIE, DIDMoAd, and leigh syndromes. Mitochondrial syndromes with renal manifestations are the KSS, Pearson, DIDMoAd, and leigh syndromes. The A et i o l o g y haematopoetic system is affected in the KSS, MERRF, and leigh syndromes.
    [Show full text]