Planctomycetes – a Phylum of Emerging Interest for Microbial Evolution and Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae Family
sustainability Article Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae Family Anastasia A. Ivanova *, Kirill K. Miroshnikov and Igor Y. Oshkin Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 119071 Moscow, Russia; [email protected] (K.K.M.); [email protected] (I.Y.O.) * Correspondence: [email protected] Abstract: The family Gemmataceae accomodates aerobic, chemoorganotrophic planctomycetes with large genome sizes, is mostly distributed in freshwater and terrestrial environments. However, these bacteria have recently also been found in locations relevant to human health. Since the antimi- crobial resistance genes (AMR) from environmental resistome have the potential to be transferred to pathogens, it is essential to explore the resistant capabilities of environmental bacteria. In this study, the reconstruction of in silico resistome was performed for all nine available gemmata genomes. Furthermore, the genome of the newly isolated yet-undescribed strain G18 was sequenced and added to all analyses steps. Selected genomes were screened for the presence of mobile genetic elements. The flanking location of mobilizable genomic milieu around the AMR genes was of particular in- terest since such colocalization may appear to promote the horizontal gene transfer (HGT) events. Moreover the antibiotic susceptibility profile of six phylogenetically distinct strains of Gemmataceae planctomycetes was determined. Citation: Ivanova, A.A.; Keywords: planctomycetes; Gemmataceae; antibiotic resistance profile; resistome; mobilome Miroshnikov, K.K.; Oshkin, I.Y. Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae 1. Introduction Family. Sustainability 2021, 13, 5031. Several decades ago humanity faced the global issue of growing antibiotic resistance https://doi.org/10.3390/su13095031 of bacterial pathogens in clinic [1–5]. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa. -
3. Anammox Process
3. Anammox Process 1 Outline of Anammox Process Anammox (anaerobic ammonium oxidation) is a novel anaerobically autotrophic nitrogen transformation pathway. + - - + 1 NH4 + 1.32 NO2 + 0.066 HCO3 + 0.13 H - → 1.02 N2 + 0.26 NO3 + 0.066 CH2O0.5N0.15 + 2.03 H2O The advantages of anammox process compared with conventional BNR process N2 Organic Energy saving: Reduction anammox matter of O2 requirement denitrification Cost saving: Organic - - NH3 NO2 NO3 matter (methanol) for nitrification denitrification is not necessary O2 Copyright (c) 2012 Japan Sewage Works Agency All rights reserved. 2 Application of Anammox Process to Municipal Wastewater Target of application to municipal wastewater Treatment of filtrate from a dewatering process of anaerobically digested sludge Characteristically high levels ammonia, relatively little organic matter High water temperature (optimum growth temperature of anammox bacteria: 30-40C˚) Two different processes are required; Converting ammonia to nitrite (nitritation) Converting ammonia and nitrite into nitrogen gas (anammox) 3 Basic Flow of Anammox Process Two-stage type process Pretreatment Nitritation Anammox + + NH4 -N NH4 -N Influent ? + Effluent - - NO2 -N NO2 -N (Bypass) N2 Single-stage type process Nitritation + Pretreatment Anammox + NH4 -N Influent + Effluent - NO2 -N 4 N2 Outline of Anammox Processes Evaluated in JS Technology Evaluation Process A Process B Process C Flow equalization Flow equalization Flow equalization Pretreatment (BOD removal) (BOD removal) (Coagulation) Screen (Coagulation) -
Microbial Life Under Ice: Metagenome Diversity and in Situ Activity Of
bioRxiv preprint doi: https://doi.org/10.1101/324970; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Microbial life under ice: metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes Patricia Tran1,2, Arthi Ramachandran1, Ola Khawasik1, Beatrix E. Beisner2,3, Milla Rautio2,4, Yannick Huot,2,5, David A. Walsh1,2 1 Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada 2 Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Montréal, Québec, Canada 3 Département des sciences biologiques, Université du Québec à Montréal, Québec, Canada. 4 Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada 5 Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada Corresponding author: David Walsh, Department of Biology, Concordia University, 7141 Sherbrooke St. West Montreal, QC H4B 1R6 Canada 514-848-2424 ext 3477 [email protected] Running title: Sub-ice Verrucomicrobia genomes in Quebec lakes bioRxiv preprint doi: https://doi.org/10.1101/324970; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Summary 2 Northern lakes are ice-covered for a large part of the year, yet our understanding 3 of microbial diversity and activity during winter lags behind that of the ice-free period. In 4 this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in 5 seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 6 16S rRNA sequencing, metagenomics and metatranscriptomics. -
Anammox) Process to Treat Sidestream and Mainstream Wastewaters: Lab-Scale and Full-Scale Studies
Application and Characterization of Anaerobic Ammonium Oxidation (Anammox) Process to Treat Sidestream and Mainstream Wastewaters: Lab-scale and Full-scale Studies Zheqin Li Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2018 I © 2018 Zheqin Li All rights reserved Abstract Application and Characterization of Anaerobic Ammonium Oxidation (Anammox) Process to Treat Sidestream and Mainstream Wastewaters: Lab-scale and Full-scale Studies Zheqin Li Compared to conventional nitrification and denitrification, anaerobic ammonium oxidation (anammox) is a more energy saving and cost effective process for biological nitrogen removal (BNR). To date, the anammox process has been applied widely and designed mainly to treat sidestream wastewaters. However, only 15%-20% of the influent domestic sewage nitrogen loading is present in the sidestream, while the bulk of it still needs to be removed from the mainstream. Research efforts thus have shifted from sidestream to mainstream applications of anammox, including the application of anammox bioreactors at low temperature, low influent ammonium strength, and under the presence of organic carbon (characteristic of municipal mainstream wastewaters). In this dissertation research, the applicability of anammox process in lab-scale and full-scale mainstream systems have been studied. The overall goals of this dissertation research were (1) to develop an effective strategy to enrich an anammox moving bed -
Anaerobic Ammonium-Oxidising Bacteria: a Biological Source of the Bacteriohopanetetrol Stereoisomer in Marine Sediments
This is a repository copy of Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/82685/ Version: Accepted Version Article: Rush, D, Sinninghe Damsté, JS, Poulton, SW et al. (6 more authors) (2014) Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochimica et Cosmochimica Acta, 140. 50 - 64. ISSN 0016-7037 https://doi.org/10.1016/j.gca.2014.05.014 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments Darci Rush1,2*, Jaap S. Sinninghe Damsté2, Simon W. Poulton1,3, Bo Thamdrup4, A. -
Nitrogen Removal from Wastewater Through Partial Nitrification / Anammox Process
NITROGEN REMOVAL FROM WASTEWATER THROUGH PARTIAL NITRIFICATION / ANAMMOX PROCESS by Fatemeh Kosari B.Sc. Iran University of Science and Technology 2005 A THESIS SUBMITED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate Studies (Civil Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2011 © Fatemeh Kosari,2011 Abstract Nitrogen removal from wastewater through partial nitrification/Anammox was investigated. The objectives of the research were divided to three distinctive and related areas: Partial Nitrification (PN) process, Anammox reaction and green house gases emission from partial nitrification and Anammox reactor. In the PN process, research objectives were to determine: 1) the effect Dissolved Oxygen concentration, alkalinity on the PN reaction 2) evaluation of continuous moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR) for partial nitrification process. The main goals of the Anammox process study was to investigate: 1) parameters, which affect the Anammox process 2) evaluation of continuous moving bed biofilm reactor, hybrid reactor and up-flow fixed-bed reactor for the Anammox process. In the last stage, N2O and NO emissions from both partial nitrification and Anammox reactor under various operating conditions were determined. Partial nitrification in the sequencing batch reactor was more efficient, compared to continuous moving bed biofilm reactor. Alkalinity was investigated as a limiting factor for oxidizing more ammonium to nitrite in the PN reactor. The effluent of the MBBR contained 59.7% ammonium, 31.7 % nitrite and 8.5 % nitrate and gaseous products, such as nitrous oxide and nitrogen as initial nitrogen load. Whereas, the SBR could convert more than 45% of the ammonium to nitrite; in fact, the effluent of the SBR reactor contained 45.1% ammonium, 45.1% nitrite and 1.9% nitrate, as initial nitrogen load. -
Ecophysiology of Anammox Bacterium 'Candidatus Scalindua Japonica'
2014 Abstract of Master Thesis Ecophysiology of anammox bacterium ‘Candidatus Scalindua japonica’ Keisuke MIZUTO Candidate for the Degree of Master Supervisor: Satoshi OKABE Division of Environmental Engineering 1. Introduction primer walking and Sangar method. Gene prediction Anaerobic ammonium oxidation (anammox) is analysis is conducted by following method (CDS microbially mediated process that produces nitrogen gas prediction : MetaGeneAnnotator(ver1.0), tRNA + - (N2) using NH4 as electron donor and NO2 as electron prediction : tRNAScan-SE(ver1.23), rRNA prediction : acceptor [1]. The first anammox bacterial cultures were blastn(ver2.2.18)、RNAmmer(ver1.2)). enriched from wastewater treatment plant [2]. Therefore Confirmation of NO and N2O productions: To the initial focus of anammox research was on the confirm that ‘Ca. S. japonica’ use NO as anammox application of these bacteria. However, it soon became intermediate, and produce N2O from NO, activity test clear that anammox bacteria are responsible for a using crude extract of ‘Ca. S. japonica’ was performed. significant portion of nitrogen loss from oxygen The cell suspensions were treated with French press, and minimum zomes (OMZs) where up to half of global crude cell extract was obtained. Cell crude was marine nitrogen loss take place [3]. transferred to 5 ml serum bottles, resuspended in To date, at least six genera of anammox bacteria have phosphate buffer. The vials were made anoxic by 15 - been enriched and described. Among these, the deepest alternately applying under-pressure and He. NO2 (2.5 branching anammox genus, ‘Candidatus Scalindua’, is mM), and PTIO (1 mM) are added and incubated. During 31 46 the only representative found in all marine environments incubation, NO and N2O concentration in head space investigated worldwide. -
Sustained Nitrogen Loss in a Symbiotic Association of Comammox Nitrospira And
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.336248; this version posted October 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria Ekaterina Y. Gottshall1*, Sam J. Bryson1, Kathryn I. Cogert1, Matthieu Landreau1, Christopher J. Sedlacek2, David A. Stahl1, Holger Daims2,3, and Mari Winkler1* 1 University of Washington, Civil and Environmental Engineering 2 University of Vienna, Centre for Microbiology and Environmental Systems Science 3 University of Vienna, The Comammox Research Platform *Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.336248; this version posted October 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT The discovery of complete aerobic and anaerobic ammonia-oxidizing bacteria (Comammox and Anammox) significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 » 63nM) and oxygen place the first described isolate, Comammox Nitrospira inopinata in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 » 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. -
Yu-Chen Ling and John W. Moreau
Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig. -
Heliorhodopsins Are Absent in Diderm (Gram-Negative) Bacteria
bioRxiv preprint doi: https://doi.org/10.1101/356287; this version posted June 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Heliorhodopsins are absent in diderm (Gram-negative) bacteria: Some thoughts and possible implications for activity José Flores-Uribe*1, Gur Hevroni*1, Rohit Ghai2, Alina Pushkarev1, Keiichi 5 Inoue3-6, Hideki Kandori3,4 and Oded Béjà†1 1Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel; 2Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic; 3Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, 10 Showa-ku, Aichi 466-8555, Japan; 4OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; 5The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277- 8581, Japan; 6PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. 15 † Corresponding author. Email: [email protected] (O.B.) * Equal contribution bioRxiv preprint doi: https://doi.org/10.1101/356287; this version posted June 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.