Groundwater Amphipods in Iceland: Population Structure and Phylogenetics

Total Page:16

File Type:pdf, Size:1020Kb

Groundwater Amphipods in Iceland: Population Structure and Phylogenetics Groundwater amphipods in Iceland: Population structure and phylogenetics Etienne Kornobis Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Advisor: Dr. Snæbjörn Pálsson PhD Committee: Pr. Bjarni K. Kristjánsson Pr. Jörundur Svavarsson Opponents: Pr. Christophe Douady Dr. Guðmundur Guðmundsson Faculty of Science School of Engineering and Natural Sciences University of Iceland Reykjavik, october 2011 Groundwater amphipods in Iceland: Population structure and phylogenetics Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Copyright c 2011 Etienne Kornobis All rights reserved Faculty of Science School of Engineering and Natural Sciences University of Iceland Sæmundargötu 2 101 Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Etienne Kornobis, 2011, Groundwater amphipods in Iceland: Population struct- ure and phylogenetics, PhD dissertation, Faculty of Science, University of Ice- land, 166 pp. ISBN 978-9935-9064-1-0 Printing: Háskólaprent Reykjavik, Iceland, October 2011 Abstract Crymostygius thingvallensis and Crangonyx islandicus are two endemic species of groundwater amphipods which were recently discovered in Iceland. C. thing- vallensis is uncommon, but represents a new monotypic family Crymostygidae. C. islandicus is widespread in the geologically youngest parts of the island and belongs to a genus which is widely distributed in North America and Eurasia. Both species belong to the superfamily Crangonyctoidea, exclusively composed of freshwater species. Iceland is geographically isolated and was fully covered by an ice sheet during the last glacial maximum, 21 000 years ago, hence the Icelandic biota is characterized by extremely low endemism and low species diversity. Thus, the discovery of these two endemic freshwater species, on an island isolated in the midst of the Atlantic ocean raised questions about their colonization and their survival during the glacial periods of the Ice age. Sub- glacial refugia have been hypothesized to explain the occurrence of these two amphipods in Iceland which might have colonized the country via an ancient land bridge, now submerged, connecting Iceland and Greenland. In this thes- is, molecular and morphological markers were used to test this hypothesis. In addition, cryptic diversity, common in groundwater species, was assessed with mitochondrial and nuclear markers. Finally, the variation in secondary structure of the nuclear ITS regions has been characterized and its influence on the phylogeny reconstruction evaluated. The mitochondrial markers (COI and 16S) support that C. islandicus populations diverged within the island for up to five million years and consequently they survived repeated glaciati- ons in Iceland in subglacial refugia. The nuclear marker ITS1 is supporting, though weakly, the phylogeographic pattern observed with the mitochondrial markers. Though the populations of C. islandicus showed high genetic di- vergence, different species delimitation methods led to different conclusions about the potential species complex status of C. islandicus. The taxonomic status of both Icelandic species is supported by phylogenies based on nuclear markers (18S, 28S, 5.8S, ITS1 and ITS2). These phylogenies show high di- vergence between Crangonyx species from Eurasia and from North America. C. islandicus is more closely related genetically to Crangonyx species from i North America, supporting the hypothesis of a colonization via Greenland. Morphological data led to a different pattern, C. islandicus clustering with species both from North America and Europe which might be due to conver- gent evolution in morphological traits. In addition, nuclear phylogenies show that Crangonyx, Synurella and Stygobromus genera are polyphyletic and might need taxonomic revision to restore their monophyly. The secondary structures of the ITS2 for Crangonyctoidea species are highly divergent from the common structure described for Metazoans and appeared to have little impact on the phylogenetic reconstruction. ii Útdráttur Crymostygius thingvallensis og Crangonyx islandicus eru tvær einlendar teg- undir grunnvatnsmarflóa sem fundust nýlega á Íslandi. C. thingvallensis er sjaldgæf og myndar hún nýja ætt marflóa. C. islandicus er útbreidd á gos- belti Íslands, og tilheyrir ættkvísl sem er útbreidd í N-Ameríku, Evrópu og Asíu. Báðar tegundirnar tilheyra yfirættinni Crangonyctoidea sem finnst ein- göngu í ferskvatni. Lífríki Íslands einkennist af lítilli tegundafjölbreytni og fáum einlendum tegundum. Hefur það verið rakið til landfræðilegrar einangr- unar Íslands og þess að landið var hulið jökli fyrir um 21000 árum. Fundur tveggja einlendra grunnvatnsmarflóa vakti því athygli og spurningar vöknuðu um hvernig þær höfðu borist til landsins. Tilgáta hefur verið sett fram um að þær hafi lifað af á Íslandi á ísöld og að þær hafi í raun fylgt Íslandi allt frá myndun þess eða mögulega numið land um landbrú milli Grænlands og Íslands. Í ritgerðinni er þessi tilgáta prófuð með aðferðum sem byggja á greiningu DNA sameinda. Annað meginviðfangsefni ritgerðarinnar er að greina flokkun teg- undanna út frá DNA sameindum og útlitseiginleikum marflónna. Auk þess var athugað hvort dulinn breytileiki greindist í hvatbera og kjarna DNA, en slíkt er algengt meðal grunnvatnstegunda. Breytileiki í annars stigs byggingu svokallaðra ITS DNA raða var einnig lýst og áhrif þess á flokkunartré tegund- anna athuguð. Breytileiki í hvatberagenunum COI og 16S RNA styðja að C. islandicus lifði af endurtekin kuldaskeið ísaldar undir jökli. Athugun á ITS1 innröðum í kjarna DNA gefur stuðning við þessa ályktun en sýnir mun minni aðgreiningu milli svæða en hvarberagenin. Erfðafræðileg aðgreining milli stofna C. islandicus gefur vísbendingu um ólíkar tegundir sé að ræða innan Íslands. Flokkunarleg staða beggja tegundanna byggð á RNA genum í kjarna DNA (18S, 28S, 5.8S, ITS1 og ITS2) styður fyrri flokkun byggða á útlitseinkennum. Flokkunartréið sýnir hinsvegar skýra aðgreiningu milli Crangnyx tegunda milli Evrasíu og N-Ameríku. C. islandicus er skyldari Crangonyx tegundum í Amer- íku, það styður landnám frá Grænlandi. Flokkunartré byggt á útlitseinkennum var þó öðruvísi, C. islandicus flokkaðist samkvæmt því bæði með tegundum frá N-Ameríku og Evrópu. Slíkt frávik gæti mögulega stafað af samhliða þróunar meðal útlitseiginleikanna. Flokkunartré byggð á kjarna DNA sýndi einnig að iii ættkvíslirnar Crangonyx, Synurella og Stygobromus eru fjölstofna og að þörf sé að athuga frekar flokkun þeirra byggða á útlitseiginleikum. Annars stigs bygg- ing ITS2 meðal Crangonyctoidea tegunda víkur frá hinni almennu byggingu sem hefur verið lýst fyrir vefdýr (metazoa) og hafði hún lítil áhrif á byggingu ættartrésins. iv List of Papers The present thesis is based on three accepted papers and two currently under review. The papers will be referred in the text by their respective numbers as following: • Paper 1: Kornobis E, Pálsson S, Kristjánsson BK, Svavarsson J (2010). Molecular evidence of the survival of subterranean amphipods (Arthro- poda) during Ice Age underneath glaciers in Iceland. Molecular Ecology 19: 2516-2530. • Paper 2: Kornobis E, Pálsson S (2011). Discordance in variation of the ITS region and the mitochondrial COI gene in the subterranean amphi- pod Crangonyx islandicus. Journal of Molecular Evolution (in press), DOI: 10.1007/s00239-011-9455-2. • Paper 3: Kornobis E, Pálsson S, Sidorov DA, Holsinger JR, Kristjáns- son BK (2011). Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thing- vallensis, endemic to Iceland. Molecular Phylogenetics and Evolution 58: 527-539. • Paper 4: Kornobis E, Pálsson S. (under review). Phylogenies of Cran- gonyctoidea species based on the ITS regions (ITS1 and ITS2). • Paper 5: Kornobis E, Pálsson S, Svavarsson J. (under review). Classi- fication of Crangonyx islandicus based on morphological characters and comparison with molecular phylogenies. v Acknowledgments It is my great pleasure to acknowledge all the persons which played a role, directly or indirectly, in the realization of this thesis. I had the opportunity during these four years to work in an outstanding environment and especially to be advised by a remarkable doctoral committee. I would like to greatly thank my advisor, Snæbjörn Pálsson, for his constant care, his bonhomie and his contagious interest in Science. I have been truly lucky to be supervised by such mentor and I wish to be able to keep on working with him. Thanks a lot also to Bjarni K. Kristjánsson for the awesome sampling trips, always pertinent suggestions and for creating the highest latitude beer club that I know. I have been delighted as well to work with Jörundur Svavarsson and I thank him for guiding me through the mysteries of Crustacean morphology. Thanks to Christophe Douady and Guðmundur Guðmundson for accepting to be my opponents for this thesis. I am grateful to the University of Iceland Research Fund and the Icelandic Research Council (Rannís) for their financial support. I am indebted to all the contributors of free softwares (GNU/Linux, Emacs, R, LATEX, Python, Inkscape, Gimp, Phylip ...) which were of great use during the realization of this thesis. Thanks also to all my lab mates which made this stay so cheerful. I would particularly like to thank Ubaldo, Eduardo, Dileepa, Sindri, Hlynur, Ehsan, Laurène, Baldur and many more. Thanks to Oli Patrick to have revived the cake club. I still feel sorry to have missed one of his french speeches.
Recommended publications
  • Zootaxa: Crangonyx Islandicus Sp. Nov., a Subterranean Freshwater
    Zootaxa 1365: 1–17 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1365 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland JÖ R U N D U R S VAVA R S SO N 1 & BJARNI K. KRISTJÁNSSON2 1Institute of Biology, University of Iceland, Askja-Natural Science Building, Sturlugata 7, 101 Reykjavík, Ice- land. E-mail: [email protected] 2Holar University College, 551 Skagafjörður, Iceland. E-mail: [email protected] Abstract Crangonyx islandicus sp. nov. (Crustacea, Amphipoda, Crangonyctidae) is described from Iceland. This is the second species of freshwater, subterranean, gammaridean amphipods found in Iceland and the first species of the family Crangonyctidae. Crangonyx islandicus sp. nov. can be distinguished from other species of the genus Crangonyx by combination of the following characters: the number of spines on the outer and inner lobes of the maxillipedal palp, the presence of a spine at the base of the unguis of the dactylus of gnathopods 1 and 2, stout and short uropod 3, and by a short and wide telson. The species was recorded in South, Southwest, West and Northeast Iceland from numerous springs emerging from relatively young (<10 000 years), porous lavas. The species has apparently survived Pliocene and Pleistocene glaciations in groundwater of porous lava fields and may have persisted in Iceland for several million years. Key words: Amphipoda, Crangonyx, Crangonyctidae, Crangonyctoidea, Iceland, glaciations, subterranean, groundwater, subarctic Introduction Subterranean waters hold a variety of organisms of most animal phyla (see Botosaneanu 1986).
    [Show full text]
  • Oaklands School Geography Department - Iceland Trip 2019
    Oaklands School Geography Department - Iceland Trip 2019 Skogafoss Waterfall Name: __________________________________ Tutor Group: _____________________________ 1 Part A: Where is Iceland? Iceland is an island formerly belonging to Denmark. It has been a Republic since 1944 and is found in the middle of the North Atlantic Ocean. We will fly to Keflavik and stay near Hvolsvollur in the SW of the island. The map above is an enlargement of the box drawn on the map of Iceland below left. Map area on next Clearly, we are only visiting a small section of page the island, but in this small area you will be blown away by what you will see. Perhaps your visit to the island will prompt you to come back to explore further in the future? 2 Part B: History of Iceland Iceland is only about 20 million years old! It was formed by a series of volcanic eruptions at the Mid- Atlantic ridge. In fact the plume of magma called the Iceland ‘Hot Spot’ is responsible for its continued existence and almost continuous volcanic activity. Exact dates for first human occupancy is uncertain, but the accepted date is 874 for the first permanent settlers from Scandinavia. They settled near Reykjavik (which means ‘smokey cove’ – due to the Geothermal heat). Settlers continued to come from Norway, Scotland and Ireland. The first parliament was held at Thingvellir (pictured right), where chieftains met and agreed laws and rules for the country. The country converted to Christianity in the 11th Century, but pagan worship was tolerated if it was in secret. Civil war followed and the end result was that Iceland accepted Norwegian sovereignty and were ruled by the Norwegian kings.
    [Show full text]
  • COURSE NOTES V0
    Sheep in the Land of Fire and Ice Sauðfé í landi elds og ísa COURSE NOTES v0 Sheep in the land of Fire and Ice COURSE NOTES v0 Contents PART 1. COURSE INTRODUCTION SECTION 1.1 SHEEP IN THE LAND OF FIRE AND ICE About this course Meet the experts Navigating the course PART 2. SHEEP GRAZING IN THE NORTH SECTION 2.1 SHEEP GRAZING IN THE NORTH Grazing in Nordic regions Studying herbivory in the North – the need for coordinated research efforts SECTION 2.2 SHEEP GRAZING IN ICELAND Environmental conditions in Iceland How do these conditions influence the impacts of grazing? SECTION 2.3 SHEEP GRAZING CAN LEAD TO SOIL EROSION PART 3. HISTORICAL PERSPECTIVE OF SHEEP GRAZING IN ICELAND SECTION 3.1 ICELAND BEFORE SHEEP What Iceland could have looked like before human settlement SECTION 3.2 MODELLING THE ECOSYSTEM State and transition models SECTION 3.3 THEN, SHEEP ARRIVED Sheep over time: from landnám to our days SECTION 3.4 EFFORTS TO MITIGATE ENVIRONMENTAL DEGRADATION PART 4. THE PRESENT AND THE FUTURE OF SHEEP GRAZING IN ICELAND SECTION 4.1 SHEEP IN ICELAND TODAY Current grazing systems in Iceland SECTION 4.2 CURRENT EFFORTS IN ECOLOGICAL RESEARCH Grazing research SECTION 4.3 SUSTAINABLE SHEEP GRAZING? The future of sheep grazing PART 5. SUMMARY AND CONCLUSIONS SECTION 5.1 SUMMARY AND CONCLUSIONS USEFUL LINKS REFERENCES 2 Sheep in the land of Fire and Ice COURSE NOTES v0 Part 1. Course introduction Section 1.1 Sheep in the Land of Fire and Ice About this course Sheep in the Land of Fire and Ice is a short Massive Open Online Course (MOOC) about sheep grazing in Iceland.
    [Show full text]
  • A New Species of the Genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea
    A peer-reviewed open-access journal ZooKeys 735: 27–44 (2018) New Pseudocrangonyx from Korea 27 doi: 10.3897/zookeys.735.21697 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of the genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea Chi-Woo Lee1,*, Ko Tomikawa2,*, Takafumi Nakano2,3, Gi-Sik Min1 1 Department of Biological Sciences, Inha University, Incheon 22212, South Korea 2 Department of Science Edu- cation, Graduate School of Education, Hiroshima University, Higashihiroshima 739-8524, Japan 3 Present ad- dress: Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Corresponding author: Gi-Sik Min ([email protected]) Academic editor: A. Myers | Received 17 October 2017 | Accepted 22 January 2018 | Published 6 February 2018 http://zoobank.org/502338A6-6CF7-4D4E-9B54-8B3615053149 Citation: Lee C-W, Tomikawa K, Nakano T, Min G-S (2018) A new species of the genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea. ZooKeys 735: 27–44. https://doi.org/10.3897/zookeys.735.21697 Abstract A new subterranean species of pseudocrangonyctid amphipod, Pseudocrangonyx daejeonensis sp. n. is de- scribed from the interstitial waters in Daejeon, Korea. Pseudocrangonyx daejeonensis sp. n. is distinguished from three morphologically similar congeners, P. coreanus Uéno, 1966, P. febras Sidorov, 2009, and P. gudariensis Tomikawa & Sato, 2016, by the characteristics of antenna 1, antenna 2, mandible, gnathopod 2, pleopods, uropods 1–2, and telson. Molecular phylogenetic analyses based on nuclear 28S rRNA and histone H3, and mitochondrial cytochrome c oxidase subunit I and 16S rRNA genes revealed that P. dae- jeonensis is a sister species of the unnamed Pseudocrangonyx sp.
    [Show full text]
  • The 2010 Eyjafjallajökull Summit Eruption: Nature of the Explosive Activity in the Initial Phase
    The 2010 Eyjafjallajökull summit eruption: Nature of the explosive activity in the initial phase Elísabet Pálmadóttir Faculty of Earth science University of Iceland 2016 The 2010 Eyjafjallajökull summit eruption: Nature of the explosive activity in the initial phase Elísabet Pálmadóttir 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Geology Advisor Professor Þorvaldur Þórðarson External Examiner Lucia Gurioli M.Sc. committee Professor Þorvaldur Þórðarson Professor Bruce F. Houghton Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Reykjavík, 29 May 2016 The 2010 Eyjafjallajökull summit eruption: Nature of explosive activity in the initial phase Explosive activity in Eyjafjallajökull 2010 event 60 ECTS thesis submitted in partial fulfilment of a Magister Scientiarum degree in Geology Copyright © 2016 Elísabet Pálmadóttir All rights reserved Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Sturlugata 7. Askja 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Elísabet Pálmadóttir, 2016, The 2010 Eyjafjallajökull summit eruption: Nature of explosive activity in the initial phase, Master’s thesis, Faculty of Earth Sciences, University of Iceland. ISBN Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík Reykjavík, Iceland, 6th month 2016 Abstract On 14 April 2010 the summit of Eyjafjallajökull started to erupt, following an effusive eruption at the volcanoes flank. This was a hybrid eruption that featured pulsating explosive activity along with lava effusion. On 17 April 2010, which is the focus of this study, the magma discharge rate was estimated around 6.0 x 105 kg s-1 with a plume reaching over 9 km. Plume monitoring covering seven hours of the afternoon on the 17th, revealed eight distinct pulsating periods of dark explosive plume pulses, following periods of little or no activity.
    [Show full text]
  • Updates to the Sporadic Knowledge On
    A peer-reviewed open-access journal SubterraneanUpdates Biology to 33:the 71–85 sporadic (2020) knowledge on microsporidian infections in groundwater amphipods 71 doi: 10.3897/subtbiol.33.48633 RESEARCH ARTICLE Subterranean Published by http://subtbiol.pensoft.net The International Society Biology for Subterranean Biology Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae) Daniel Grabner1, Dieter Weber2, Alexander M. Weigand3 1 University of Duisburg-Essen, Aquatic Ecology and Centre for Water and Environmental Research, Univer- sitätsstr. 5, 45141 Essen, Germany 2 Université Libre de Bruxelles, Evolutionary Biology & Ecology group, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium 3 Musée National d'Histoire Naturelle Luxembourg, 25 Rue Munster, 2160 Luxembourg, Luxembourg Corresponding author: Alexander M. Weigand ([email protected]) Academic editor: O. T. Moldovan | Received 20 November 2019 | Accepted 20 January 2020 | Published 13 February 2020 http://zoobank.org/78CFBE17-0918-455A-8813-C92324DBFCFE Citation: Grabner D, Weber D, Weigand AM (2020) Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae). Subterranean Biology 33: 71–85. https://doi. org/10.3897/subtbiol.33.48633 Abstract A set of 69 specimens from 19 groundwater species of the genera Niphargus, Niphargellus, Microniphargus and Crangonyx was genetically screened for microsporidian infections. Samples mostly originated from groundwater-dependent spring environments (71%), natural caves (9%) and artificial caverns/tunnels (13%). Amphipod hosts were identified by morphology and/or molecular data, whereas microsporidian parasites were characterised by a genetic screening assay targeting a section of the small subunit rRNA gene. Five microsporidian species (Dictyocoela duebenum; Nosema sp.; Hyperspora aquatica and two unde- scribed Microsporidium spp.) were revealed from 13 host specimens (Niphargus schellenbergi; N.
    [Show full text]
  • Crustacea: Amphipoda: Pseudocrangonyctidae)
    The complete mitochondrial genome of Pseudocrangonyx Title daejeonensis (Crustacea: Amphipoda: Pseudocrangonyctidae) Lee, Chi-Woo; Nakano, Takafumi; Tomikawa, Ko; Min, Gi- Author(s) Sik Citation Mitochondrial DNA Part B (2018), 3(2): 823-824 Issue Date 2018-7-31 URL http://hdl.handle.net/2433/233039 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.; This is an Open Access article distributed under the terms of the Creative Commons Right Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University MITOCHONDRIAL DNA PART B 2018, VOL. 3, NO. 2, 823–824 https://doi.org/10.1080/23802359.2018.1495116 MITOGENOME ANNOUNCEMENT The complete mitochondrial genome of Pseudocrangonyx daejeonensis (Crustacea: Amphipoda: Pseudocrangonyctidae) Chi-Woo Leea , Takafumi Nakanob , Ko Tomikawac and Gi-Sik Mina aDepartment of Biological Sciences, Inha University, Incheon, Korea; bDepartment of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan; cDepartment of Science Education, Graduate School of Education, Hiroshima University, Higashihiroshima, Japan ABSTRACT ARTICLE HISTORY The complete mitogenome sequence of a subterranean pseudocrangonyctid amphipod, Received 16 May 2018 Pseudocrangonyx daejeonensis, was determined. The complete mitogenome of P. daejeonensis was Accepted 18 June 2018 15,069 bp in length with the typical 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 riboso- KEYWORDS mal RNAs (rRNAs), and a control region (CR). This is the first complete mitogenome sequence in the Complete mitogenome; family Pseudocrangonyctidae. Interestingly, gene arrangements of most amphipod species were almost Amphipoda; identical to the typical pan-crustacean ground pattern, whereas two PCGs, both of rRNAs and CR were Pseudocrangonyx daejeonen- translocated in P.
    [Show full text]
  • Amphipoda: Crangonyctidae)
    bs_bs_banner Zoological Journal of the Linnean Society, 2013, 167, 227–242. With 8 figures Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae) JOSHUA Z. ETHRIDGE1*, J. RANDY GIBSON2 and CHRIS C. NICE1 1Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA 2San Marcos US Fish and Wildlife Service, San Marcos, TX, USA Received 3 May 2012; revised 14 September 2012; accepted for publication 24 September 2012 Multiple species of troglomorphic, spring-associated Stygobromus amphipods, including the endangered, narrow- range endemic Stygobromus pecki, occupy sites in the Edwards Plateau region of North America. Given the prevalence of cryptic diversity observed in disparate subterranean, animal taxa, we evaluated geographical genetic variation and tested whether Stygobromus contained undetected biodiversity. Nominal Stygobromus taxa were treated as hypotheses and tested with mitochondrial sequence cytochrome oxidase C subunit 1, nuclear sequence (internal transcribed spacer region 1), and AFLP data. Stygobromus pecki population structure and diversity was characterized and compared with congeners. For several Stygobromus species, the nominal taxonomy conflicted with molecular genetic data and there was strong evidence of significant cryptic diversity. Whereas S. pecki genetic diversity was similar to that of congeners, mitochondrial data identified two significantly diverged but sympatric clades. AFLP data for S. pecki indicated relatively recent and ongoing gene flow in the nuclear genome. These data for S. pecki suggest either a substantial history of isolation followed by current sympatry and ongoing admixture, or a protracted period of extremely large effective population size. This study demonstrates that Edwards Plateau Stygobromus are a complex, genetically diverse group with substantially more diversity than currently recognized.
    [Show full text]
  • University Microfilms International 300 N
    VOLCANO-ICE INTERACTIONS ON THE EARTH AND MARS Item Type text; Dissertation-Reproduction (electronic) Authors Allen, Carlton Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 05:22:59 Link to Item http://hdl.handle.net/10150/298515 INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
    [Show full text]
  • Iceland - Land of Fire and Ice Wagner Days in Reykjavik
    Iceland - Land of Fire and Ice Wagner Days in Reykjavik Day 1: Keflavik SERVICES: Individual flight to Keflavik and accomodation in the booked. Hotel. Dinner in a typical restaurant. Day 2: Day trip Golden Circle • 5xaccommodation/breakfast A day trip leads to the well-known attractions along the "Golden Circle". -buffet in 4-star hotel The first stop is in the Thingvellir National Park, a UNESCO World "Reykjavik Downtown" or in Heritage Site and a geologically unique place on Earth. We continue to the 3-star hotel "Fosshotel the geyser geothermal area, where the active spring source Strokkur Baron" hurls a column of steam and water into the sky. Not far away, the • Excursions and visits "golden waterfall" Gullfoss plunges impressively over two steps into a according to the program deep canyon. Through the fertile landscape of Southern Iceland we go • 1 first cat. ticket for back to Reykjavik. In the evening you will experience a piano concerto "The Valkyrie" • organized by the Richard Wagner Association Island. Participation in the Wagner Symposium Day 3: Wagner Lectures - City Tour • Piano Recital In the morning, he participated in the Richard Wagner Symposium • Concert in the church of organized by Wagner Verband Island. In the afternoon we start our city Reykholt tour in Reykjavik. Highlights include the new concert hall "Harpa", the • 2 dinners according to the old town, parliament, town hall, the port, the university and the two program landmarks of Reykjavik: the glass dome Perlan "the pearl" and the • English speaking local tour church Hallgrimskirkja.At 6.30 p.m. Visit to the semi-concert guide performance of Wagner's "Die Walküre" at the Harpa Concerthall.
    [Show full text]
  • Arctic Biodiversity Assessment
    566 Arctic Biodiversity Assessment The lesser snow goose Chen c. caerulescens shows an approximate east-west cline in their Nearctic breeding distribution in frequency of pale or dark morphs, with blue morphs most common in the east. Although studies of fitness components failed to uncover any adaptive advantage associated with either morph, geese show strong mating preference based on the color of their parents, leading to assortative mating. Queen Maud Gulf Bird Sanctuary, Nunavut, Canada. Photo: Gustaf Samelius. 567 Chapter 17 Genetics Lead Author Joseph A. Cook Contributing Authors Christian Brochmann, Sandra L. Talbot, Vadim B. Fedorov, Eric B. Taylor, Risto Väinölä, Eric P. Hoberg, Marina Kholodova, Kristinn P. Magnusson and Tero Mustonen Contents Summary ..............................................................568 17.5. Recommendations and conservation measures ������������������582 17.1. Introduction .....................................................568 17.5.1. Call for immediate development of freely available, specimen-based archives ...................................582 17.2. Systematics, phylogenetics and phylogeography ................569 17.5.1.1. Build European, Asian and North American 17.2.1. Systematics ................................................569 tissue archives .....................................582 17.2.1.1. Phylogenetics and taxonomy �����������������������569 17.5.2. Expand biodiversity informatics ............................582 17.2.1.2. Systematics and phylogenetics in Arctic species ....569 17.5.2.1. Connect GenBank, EMBL and DDJB to Archives .....582 17.2.2. Phylogeography – setting the stage for interpreting 17.5.2.2. Connect GenBank (Genomics) to GIS applications ..583 changing environmental conditions ........................571 17.5.2.3. Stimulate emerging pathogen investigations 17.2.2.1. Influence of dynamic climates on structuring through integrated inventories ���������������������583 Arctic diversity .....................................571 17.5.2.4. Develop educational interfaces and portals for 17.2.2.2.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]