Jumping Sundogs, Cat's Eye and Ferrofluids

Total Page:16

File Type:pdf, Size:1020Kb

Jumping Sundogs, Cat's Eye and Ferrofluids Article Jumping Sundogs, Cat’s Eye and Ferrofluids Alberto Tufaile 1,* , Michael Snyder 2 , Timm A. Vanderelli 3 and Adriana Pedrosa Biscaia Tufaile 1 1 Soft Matter Lab, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; [email protected] 2 Technical Space Science Center, 235 Martindale Drive, Morehead State University, Morehead, KY 40531, USA; [email protected] 3 Ferrocell USA, 739 Route 259, Ligonier, PA 15658, USA; [email protected] * Correspondence: [email protected] Received: 20 April 2020; Accepted: 2 July 2020; Published: 8 July 2020 Abstract: We have explored some features of the complex fluids present in Earth’s atmosphere by the observation of some optical phenomena and compared them to the optical phenomena observed in gems and magnetic materials. The main feature of a complex fluid is that it contains polyatomic structures such as polymer molecules or colloidal grains. This paper includes some setups using tabletop experiments, which are intended to show concretely the principles discussed, giving a sense of how well the idealizations treated apply to the atmospheric systems. We have explored sundogs, light pillars, and the halo formation, which involve the existence of a certain structure in the atmospheric medium, resembling the structures observed in some types of gems and ferrofluids. Keywords: sundogs; crown flash; ferrofluids; complex fluids; polarization; cat’s eye effect 1. Introduction The observation of atmospheric optical phenomena has caused a sense of wonder in many people throughout history, such as the sundogs, crown flashes, parhelic circles, light pillars, or the miracle of the sun. All of these phenomena are rare, and we can hardly predict their occurrence. However, the technological development that allows for the availability of cameras and camcorders, associated with the dissemination of the recordings of these phenomena on social networks, allows us to try to give a plausible explanation for these rare events. For example, the crown flash in Figure1 in meteorology is an atmospheric optical phenomenon that consists of a luminous column that moves near dense clouds during the day [1,2]. These images of this atypical event were obtained from a YouTube user’s video (QuadM13) observed at Greenwood, Indiana, USA [3], on the same day that another YouTube user’s video from Shelbyville, Indiana, USA (Chris Mercer) captured another video of this jumping sundog on June 12, 2015 at 6:39 pm CDT [4], with a distance of almost 30 km between the two. Clouds can be an example of a complex fluid [5] that changes constantly due to atmospheric conditions, in which a gas phase contains structures such as tiny ice crystals in motion. The existence of such structure for this kind of system distinguishes a cloud from a simple fluid, with properties which allow self-organization in the presence of an electric field or air flow. In the case of a crown flash or jumping sundogs, one possible explanation for this phenomenon to occur is that sun light is interacting through ice crystals above the clouds in the presence of an oscillating electrical field, while in the case of light pillars, the spatial distribution of particles inside this complex fluid creates the observable light pattern. Condens. Matter 2020, 5, 45; doi:10.3390/condmat5030045 www.mdpi.com/journal/condensedmatter Condens. Matter 2020, 5, 45 2 of 12 Condens. Matter 2020, 5, x FOR PEER REVIEW 3 of 12 Figure 1.1.The The solar solar halo halo is shown is shown in (a) andin (a the) and laser the halo laser obtained halo using obtained ferrofluid using subjected ferroflu toid a subjectedmagnetic field to a is magnetic shown in (fieldb). The is shown jumping in sundog (b). The phenomenon jumping sundog is shown phenomenon in this sequence is ofshown three picturesin this sequence in (c) in states of three 1, 2 and pictures 3, and thein ( dic)ff erentin states values 1, of2 and the magnetic 3, and t fieldhe different can create values a sequence of the of magneticlight patterns, field as can in (d create). For di aff sequenceerent configurations of light patterns of the magnetic, as in (d fields). For 1, different 2 and 3 of configurations these patterns in (ofd), the we canmagnetic emulate field somes 1, patterns 2 and observed 3 of the inse thepatterns crown flash.in (d), we can emulate some patterns observed in the crown flash. Thus, these properties in such a natural environment, which cause so much astonishment in people,Thus, are these the resultproperties of the in emergence such a natural of light environment patterns in, which a complex cause system so much on astonishment a scale of huge in proportions.people, are the This result feeling of ofthe wonder emergence can leadof light to a sensepatterns of transcendence,in a complex system inducing on in a many scale peopleof huge a proportions.deep feeling ofThis connection feeling of withwonder nature, can butlead sometimes to a sense of leads transcendence, to classification inducing of these in many phenomena people as a deepmiracles, feeling omens, of connection conspiracy with theories nature, or but even sometimes an extraterrestrial leads to classif manifestation,ication of these as we phenomena can see in the as miracles,comments omens, made byconspiracy several users theories on the or videoseven a mentionedn extraterrestrial above. manifestation In this way, it, isas interesting we can see to in carry the commentsout relatively made simple by andseveral accessible users on experiments the videos to mentioned demonstrate above some. In of this the mainway, conceptsit is interesting present to in carrythese phenomena.out relatively simple and accessible experiments to demonstrate some of the main concepts presentThe in use these of analogous phenomena. systems can facilitate the presentation and interpretation of these phenomena. See, forThe example, use of theanalogous formation systems of the solarcan halofacilitate in Figure the 1presentationa and the formation and interpretation of the laser halo of usingthese phenomena.ferrofluids in See Figure, for 1example,b. Even consideringthe formation that of the solar first casehalois in mainly Figure related1a and tothe geometric formation optics, of the whilelaser halo the second using caseferrofluids is associated in Figure with 1b. light Even diffraction, considering both systemsthat the show first howcase lightis mainly can be related projected to geometricaround the op lighttics, sourcewhile the due second to its interactioncase is associated with particles with light suspended diffraction in, both a fluid. systems Another show case how is lightthe oscillating can be projected light flash around in Figure the 1lightc, which source can due beassociated to its interaction with di withfferent particles states of suspend the staticed lightin a patternsfluid. Another in Figure case1d, is ifthe we oscillating consider thatlight a flash characteristic in Figure light 1c, which pattern can can be respond associated to changes with different in the statesstate of of some the static type oflight field patterns that controls in Figure the movement1d, if we consider of particles that that a characteristic are interacting light with pattern light, as can in respondthe case ofto Figurechanges1d, in showing the state some of some of these type possibleof field that field controls states for the the movement same light of sourceparticle placeds that are in interactingdifferent positions, with light, simultaneously. as in the case of An Figure important 1d, showing result that some can of be these obtained possible with field all states of this for is the same light source placed in different positions, simultaneously. An important result that can be obtained with all of this is the existence of conditions that allow the emergence of a self-organization that manifests itself through the observation of an optical phenomenon on an atmospheric scale. Condens. Matter 2020, 5, 45 3 of 12 existenceCondens. Matter of conditions 2020, 5, x FOR that PEER allow REVIEW the emergence of a self-organization that manifests itself through3 of the 12 observation of an optical phenomenon on an atmospheric scale. InIn thisthis way, way, this this work work presents presents some some plausible plausible explanations explanations for some for ofsome these of events these and events connects and themconnect to others them interesting to other interesting systems that systems are based that in are the based same in concepts the same but concepts in different but scales,in different using scales, some principlesusing some of principle physicss and of physics material and science. material In thescience. next In section, the next we section present, we our present method; our after method that,; weafter explore that, we the explore phenomenon the phenomenon of light pillars of light and pillars compared and compared them with them the with light the patterns light patterns in gems. in Ingems. Section In 4S,ection we investigate 4, we investigate the polarization the polarization patterns patterns of ferrofluid of ferrofluid and related and patterns related inpatterns crystals. in Finally,crystals. we Finally, present we our present conclusions our conclusion in Sections in5. Section 5. 2.2. Materials and Methods InIn orderorder toto simulatesimulate somesome opticaloptical phenomena,phenomena, wewe havehave usedused materialsmaterials withwith magneto-opticalmagneto-optical properties.properties. We havehave usedused aa thinthin filmfilm of ferrofluidferrofluid subjected to an external magnetic field field (Ferrolens) (Ferrolens).. WhenWhen lightlight interactsinteracts withwith thisthis thinthin filmfilm ofof ferrofluid,ferrofluid, itit undergoesundergoes didifferentfferent eeffects,ffects, andand wewe cancan observeobserve somesome analogies analogies between between the atmosphericthe atmospheric phenomena phenomena and the and magneto-optical the magneto light-optical patterns, light whichpatterns, intend which to show intend some to principlesshow some involved, principles giving involved, a sense of giving how well a sense the idealizations of how well treated the applyidealizations to the atmospheric treated apply systems to the atmospheric [1,6,7].
Recommended publications
  • Pezzottaite from Ambatovita, Madagascar: a New Gem Mineral
    PEZZOTTAITE FROM AMBATOVITA, MADAGASCAR: A NEW GEM MINERAL Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adi Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty Pezzottaite, ideally Cs(Be2Li)Al2Si6O18, is a new gem mineral that is the Cs,Li–rich member of the beryl group. It was discovered in November 2002 in a granitic pegmatite near Ambatovita in cen- tral Madagascar. Only a few dozen kilograms of gem rough were mined, and the deposit appears nearly exhausted. The limited number of transparent faceted stones and cat’s-eye cabochons that have been cut usually show a deep purplish pink color. Pezzottaite is distinguished from beryl by its higher refractive indices (typically no=1.615–1.619 and ne=1.607–1.610) and specific gravity values (typically 3.09–3.11). In addition, the new mineral’s infrared and Raman spectra, as well as its X-ray diffraction pattern, are distinctive, while the visible spectrum recorded with the spec- trophotometer is similar to that of morganite. The color is probably caused by radiation-induced color centers involving Mn3+. eginning with the 2003 Tucson gem shows, (Be3Sc2Si6O18; Armbruster et al., 1995), and stoppaniite cesium-rich “beryl” from Ambatovita, (Be3Fe2Si6O18; Ferraris et al., 1998; Della Ventura et Madagascar, created excitement among gem al., 2000). Pezzottaite, which is rhombohedral, is Bcollectors and connoisseurs due to its deep purplish not a Cs-rich beryl but rather a new mineral species pink color (figure 1) and the attractive chatoyancy that is closely related to beryl.
    [Show full text]
  • Enhanced Total Internal Reflection Using Low-Index Nanolattice Materials
    Letter Vol. 42, No. 20 / October 15 2017 / Optics Letters 4123 Enhanced total internal reflection using low-index nanolattice materials XU A. ZHANG,YI-AN CHEN,ABHIJEET BAGAL, AND CHIH-HAO CHANG* Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA *Corresponding author: [email protected] Received 4 August 2017; revised 14 September 2017; accepted 16 September 2017; posted 19 September 2017 (Doc. ID 303972); published 9 October 2017 Low-index materials are key components in integrated Although naturally occurring materials with low refractive photonics and can enhance index contrast and improve per- indices are limited, there are significant research efforts to formance. Such materials can be constructed from porous artificially create low-index materials close to the index of materials, which generally lack mechanical strength and air. These new materials consist of porous structures through are difficult to integrate. Here we demonstrate enhanced to- various conventional fabrication techniques, such as oblique tal internal reflection (TIR) induced by integrating robust deposition [5–9], the sol-gel process [10], and chemical vapor nanolattice materials with periodic architectures between deposition [11]. Due to the air voids, the fabricated porous high-index media. The transmission measurement from structures can have effective refractive indices lower than the the multilayer stack illustrates a cutoff at about a 60° inci- solid material components. However, such materials typically dence angle, indicating an enhanced light trapping effect lack mechanical stability and can induce optical scattering be- through TIR. Light propagation in the nanolattice material cause of the random architectures of the structures.
    [Show full text]
  • Phenomenal Gemstones Possess Striking Optical Effects, Making Them Truly a Sight for Sore Eyes
    THE PHENOMENAL PROPERTIES OF GEMS Phenomenal gemstones possess striking optical effects, making them truly a sight for sore eyes. Here is GIA’s guide to understanding what makes each phenomenon so uniquely brilliant. ASTERISM CROSSING BANDS OF REFLECTED LIGHT CREATE A SIX-RAYED STAR-LIKE APPEARANCE. ASTERISM OCCURS IN THE DOME OF A CABOCHON, AND CAN BE SEEN IN GEMS LIKE RUBIES AND SAPPHIRES. ADULARESCENCE THE SAME SCATTERING OF LIGHT THAT MAKES THE SKY BLUE CREATES A MILKY, BLUISH-WHITE GLOW, LIKE MOONLIGHT SHINING THROUGH A VEIL OF CLOUDS. MOONSTONE IS THE ONLY GEM THAT DISPLAYS IT. AVENTURESCENCE FOUND IN NATURAL GEMS LIKE SUNSTONE FELDSPAR AND AVENTURINE QUARTZ, IT DISPLAYS A GLITTERY EFFECT CAUSED BY LIGHT REFLECTING FROM SMALL, FLAT INCLUSIONS. CHATOYANCY OTHERWISE KNOWN AS THE “CAT’S EYE” EFFECT, BANDS OF LIGHT ARE CAUSED BY THE REFLECTION OF LIGHT FROM MANY PARALLEL, NEEDLE-LIKE INCLUSIONS INSIDE A CABOCHON. NOTABLE GEMS THAT DISPLAY CHATOYANCY INCLUDE CAT’S EYE TOURMALINE AND CAT’S EYE CHRYSOBERYL. IRIDESCENCE ALSO SEEN IN SOAP BUBBLES AND OIL SLICKS, IT’S A RAINBOW EFFECT THAT IS CREATED WHEN LIGHT IS BROKEN UP INTO DIFFERENT COLORS. LOOK FOR IT IN FIRE AGATE AND OPAL AMMONITE (KNOWN BY THE TRADE AS AMMOLITE). LABR ADORESCENCE A BROAD FLASH OF COLOR THAT APPEARS IN LABRADORITE FELDSPAR, IT’S CAUSED BY LIGHT INTERACTING WITH THIN LAYERS IN THE STONE, AND DISAPPEARS WHEN THE GEM IS MOVED. INSIDER’S TIP: THE MOST COMMON PHENOMENAL COLOR IN LABRADORITE IS BLUE. PLAY OF COLOR THE FLASHING RAINBOW-LIKE COLORS IN OPAL THAT FLASH AT YOU AS YOU TURN THE STONE OR MOVE AROUND IT.
    [Show full text]
  • Atmospheric Optics Learning Module
    Atmospheric Optics Learning Module Everything we see is the reflection of light and without light, everything would be dark. In this learning module, we will discuss the various wavelengths of light and how it is transmitted through Earth’s atmosphere to explain fascinating optical phenomena including why the sky is blue and how rainbows form! To get started, watch this video describing energy in the form of waves. A sundog and halo display in Greenland. Electromagnetic Spectrum (0 – 6:30) Source Electromagnetic Spectrum Electromagnetic (EM) radiation is light. Light you might see in a rainbow, or better yet, a double rainbow such as the one seen in Figure 1. But it is also radio waves, x-rays, and gamma rays. It is incredibly important because there are only two ways we can move energy from place to place. The first is using what is called a particle, or an object moving from place to place. The second way to move energy is through a wave. The interesting thing about EM radiation is that it is both a particle and a wave 1. Figure 1. Double rainbow Source 1 Created by Tyra Brown, Nicole Riemer, Eric Snodgrass and Anna Ortiz at the University of Illinois at Urbana- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Champaign. 2015-2016. Supported by the National Science Foundation CAREER Grant #1254428. There are many frequencies of EM radiation that we cannot see. So if we change the frequency, we might have radio waves, which we cannot see, but they are all around us! The same goes for x-rays you might get if you break a bone.
    [Show full text]
  • SOME UNUSUAL SILLIMANITE CAT's-EYES by E
    NOTES AND NEW TECHNIQUES SOME UNUSUAL SILLIMANITE CAT'S-EYES By E. Giibelin, M, Weibel, and C. P. Woensdregt Brown-black sillimanite cat's-eyes from Sri Lanka thin-section study and the ion etching necessary present an unusually sharp band, which would make for subsequent electron diffraction. them extraordinary gems wereit not for therather un- This article summarizes the results of the elec- attractive body color of the stones. A study of six of tron microscope study of the inclusions causing these stones found that they contain 0.5 wt.% iron the chatoyancy, as well as the gemological charac- oxide. The principal inclusion mineral is ilmenite, teristics of this unusual material. which occurs in elongated, submicroscopically thin lamellae. Complex thicker lamellae consist of hercy- EXPERIMENTAL METHODS nite spinel grown together with a member of the pyroxene group. These thicker inclusions were not Chatoyancy, like asterism, is caused by the scat- foundin all of the specimens investigated. tering of light on numerous fibrous inclusions aligned in one or more directions in the host crys- tal; proper cutting en cabochon is required to re- veal the phenomenon. For good chatoyancy or asterism, the elongated inclusions must be thin sillimanite, also known as fibrolite, is a common compared to the wavelengths of light (Weibel, metamorphic mineral. Cuttable material is ex- 1985). Such minute crystal individuals are not ac- tremely rare but is found in the Mogok Stone Tract cessible to ordinary microscopy and X-ray analy- of Burma and in the Sri Lankan gem gravels, as sis. Even though the inclusions may show up in a transparent rounded crystals with a blue, violet- thin section viewed with a polarizing microscope, blue, or grayish green hue (Webster, 1983).
    [Show full text]
  • Autumn 07 Cover
    Winter Antiques & Fine Art Auction Wednesday 28, Thursday 29 £5 & Friday 30 November 2018 ewbank’s auction sale dates 2018/19 Viewing days/times vary, please contact the auctioneer for details December 2018 August Thursday 13th Toys & Models Wednesday 7th Antique & Collectors inc. Silver Thursday 13th Entertainment & Memorabilia Wednesday 21st Antique & Collectors inc. Silver Friday 14th Vintage Posters Wednesday 21st Garden Furniture & Statuary Wednesday 19th Antique & Collectors’ Thursday 22nd Militaria, Stamps, Books & Maps Wednesday 19th Fine Wines & Spirits September January Wednesday 11th Jewellery, Watches & Coins Wednesday 16th Antique & Collectors inc. Silver Thursday 12th Silver & Fine Art Thursday 17th Decorative Arts Friday 13th Antique Furniture & Clocks Thursday 17th Contemporary Art & Modern British Paintings October February Wednesday 2nd Antique & Collectors inc. Jewellery & Silver Thursday 007th Bond & Beyond Wednesday 2nd Toys & Models Wednesday 13th Antique & Collectors inc. Silver Thursday 3rd Entertainment & Memorabilia Thursday 14th Militaria, Stamps, Books & Maps Thursday 3rd Movie Props Wednesday 27th Toys & Models Friday 4th Vintage Posters Thursday 28th Entertainment & Memorabilia Thursday 24th Decorative Arts Thursday 28th Movie Props Thursday 24th Contemporary Art & Modern British Paintings March November Friday 1st Vintage Posters Wednesday 6th Antique & Collectors inc. Silver Wednesday 6th Antique & Collectors inc. Silver Thursday 7th Asian Art Wednesday 20th Jewellery, Watches & Coins Thursday 7th Vintage
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Download This Article PDF Format
    RSC Advances View Article Online PAPER View Journal | View Issue Cause analysis of chatoyancy of sapphires from Shandong, China† Cite this: RSC Adv.,2019,9, 24420 Jiaqi Yu, Xuemei He* and Zhiyun Lu Chatoyancy, that is, the cat's eye effect, has attracted many scholars' attention as a special optical effect. However, there are very few studies on the cat's eye effect of sapphire. The gemological features and formation mechanism of the chatoyancy of sapphires obtained from Shandong, China, were investigated by gemological microscopy, polarizing microscopy, scanning electron microscopy, infrared spectroscopy, X-ray fluorescence spectroscopy, UV-Vis spectroscopy, and Raman spectroscopy. Parallel orientations of the fracture surfaces were observed; light reflected on them, and an bright light band was formed perpendicular to them. No solid inclusions were detected under polarized light, and no absorption peaks of the solid inclusions were measured by Raman spectroscopy. In contrast, needle inclusions resulted in chatoyancy in other gemstones; parallel fracture surfaces with fluid inclusions Received 13th May 2019 above cause chatoyancy in sapphires. In this study, the origin of the cat's eye effect of sapphire was Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Accepted 22nd July 2019 analyzed innovatively, and its phenomena were characterized concretely. In addition, this study provides DOI: 10.1039/c9ra03585k a novel strategy to explain the mechanism of chatoyancy in the field of gemology and will be helpful for rsc.li/rsc-advances sapphire classification and quality evaluation. 1. Introduction crystallize in the early alkaline basalt magma rich in Al and poor in Si at a great depth under high pressure.14 One of the most Chatoyancy, known as the cat's eye effect, is a special optical prominent features of the sapphires obtained from Shandong is effect referring to a bright band on the surface of gemstones the coexistence of primary and secondary ores; this area mainly This article is licensed under a caused by the reection of light.
    [Show full text]
  • Atmospheric Optics
    53 Atmospheric Optics Craig F. Bohren Pennsylvania State University, Department of Meteorology, University Park, Pennsylvania, USA Phone: (814) 466-6264; Fax: (814) 865-3663; e-mail: [email protected] Abstract Colors of the sky and colored displays in the sky are mostly a consequence of selective scattering by molecules or particles, absorption usually being irrelevant. Molecular scattering selective by wavelength – incident sunlight of some wavelengths being scattered more than others – but the same in any direction at all wavelengths gives rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles selective by direction – different in different directions at a given wavelength – gives rise to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal displays. The size distribution of these particles and their shapes determine what is observed, water droplets and ice crystals, for example, resulting in distinct displays. To understand the variation and color and brightness of the sky as well as the brightness of clouds requires coming to grips with multiple scattering: scatterers in an ensemble are illuminated by incident sunlight and by the scattered light from each other. The optical properties of an ensemble are not necessarily those of its individual members. Mirages are a consequence of the spatial variation of coherent scattering (refraction) by air molecules, whereas the green flash owes its existence to both coherent scattering by molecules and incoherent scattering
    [Show full text]
  • Colored Gemstone Report
    COLORED GEMSTONE REPORT Absorption Spectra Country of Origin Gemstone Identification The absorption spectra are a reflection of the electromagnetic The country of origin is the presumed geographical source Gemstones are minerals, rocks, organic, or inorganic materials radiation absorbed by a colored gemstone over a visible range of a colored gemstone, discoverable only for particular stones with that are, typically, cut and polished for use in jewelry. There are of wavelengths (approximately 400-800 nanometers). They are unique identifying characteristics. dozens of types of gemstones — including diamonds, colored recorded on a graph that plots the transmittance against wavelengths. gemstones, and pearls — each with a unique set of physical Cut (Shape and Style) and optical properties. Carat Weight Cut describes the silhouette or form created by a colored gemstone’s contours and facets. Shapes vary from round to fancy cuts, such Identifying Characteristics A carat is a unit of metric measurement used for colored gemstones. as cushion, emerald, heart, marquise, oval, pear, princess, and Identifying characteristics (IC) are physical aspects of a colored One carat (ct.) equals 100 points, 200 milligrams, or 1/5 of a gram. triangle. And style includes variations of brilliant, step, mixed, gemstone that help to confirm its singularity or categorization. and cabochon cuts. Beautiful stones can be found in virtually These can range from inclusions (fingerprints, needles, etc.) to any shape or style. modifiers caused by treatments (crystals with halos, reduced Color silks, etc.). In addition, IC can refer to instrument-based Colored gemstones are distinguished by their hue (primary Fluorescence measurements such as refractive index, x-ray fluorescence, impression of color), or by a combination of hue, tone (lightness), infrared spectra, Raman spectra, or specific gravity.
    [Show full text]
  • Natural Electromagnetic Phenomena and Electromagnetic Theory: a Review
    Paper Natural Electromagnetic Phenomena and Electromagnetic Theory: A Review ∗ Masashi Hayakawa Member ∗∗ Katsumi Hattori Member ∗ Yoshiaki Ando Member We review the new findings on natural electromagnetic phenomena in the near-Earth environment and will show the importance of electromagnetic analyses in elucidating the essential points of these phenomena. The topics include (1) atmospheric phenomena related to lightning (e.g. mesospheric optical emissions); (2) seismo-electromagnetic phenomena (electromagnetic phenomena associated with earthquakes and/or volcano eruptions); (3) plasma and wave phenomena in the Earth’s ionosphere and magnetosphere; and (4) electro- magnetic or electrodynamic coupling among different regions. We pay our greatest attention to the unsolved essential problems for each subject, and suggest how electromagnetics would contribute to a solution to those problems. Keywords: Natural electromagnetic phenomena, electromagnetic theory, atmospheric electricity, seismogenic emission, space plasma, computational electromagnetics 1. Introduction We know that the near-Earth environment is occupied by electromagnetic noise over a wide frequency range from DC to VHF (1). Fig. 1 illustrates the frequency spectrum of the terrestrial electromagnetic noise envi- ronment (2). Noises of higher frequency include solar radiation, galactic noise and interplanetary noise, and there are terrestrial noises generated in the near-Earth at lower frequencies. The important electromagnetic phenomena very close to us are summarized as follows: (1) electromagnetic phenomena associated with light- ning discharges in the atmosphere, (2) electromagnetic phenomena in the ionospheric/magnetospheric plasma, and (3) electromagnetic phenomena originating in the lithosphere (1). The first and second phenomena are not so new, but there have been many new discover- ies about them. For example, we have observed a new phenomenon called mesospheric optical emissions asso- ciated with lightning discharges.
    [Show full text]
  • Tiger Eye Meaning Properties
    Tiger Eye Meaning Properties Exploitive and unworking Aaron asseverate: which Robb is proximo enough? Expressional Petr foretoken some mince and infibulate his thermions so tarnal! Barbed Leighton free-lance very yesterday while Dick remains difficile and infrahuman. Eye meaning by tiger eye irradiates gentle blue tiger eye meaning properties of this stone it works on crystals. Identify any unknown crystal with our crystal identifier tool! It can alleviate pain and dampens an overactive nervous system and overstimulation of the adrenal glands. Tiger's Eye Healing Properties The Lilly Pad Village. Eye is temporary in Africa, as it to infuse shrimp with confidence, people suffering from quite different bone problems were advised to lovely water with powdered minerals which contained calcium. Change also helpful negative vibes from all luck stone the eye properties and properties of the world market is unique layers of the light. Please wait until page is loading! It is a bright green surface, it comes together. The Tiger Eye having been used for centuries and a nearly any ancient cultures and civilizations. This uniquely mixed stone is used to balance the Solar Plexus and Root Chakras. Tiger eye tiger meaning properties in tiger eye meaning discover the earth with gemstones should the lower chakras are. Tiger eye protects the anyone who wears it, nails, biggest tsunami and more. Please go this trip me. These are causing the wearer from the forms of them less iron is tiger eye meaning properties of the world are energetically cleared on. Maroon forms of tigereye are each always dyed or heated to butt or review that shade.
    [Show full text]