Lectures on Materials Science for Architectural Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Pozzolanic Reaction of Post-Consumption Glass Powder
Investigating the pozzolanic reaction of post-consumption glass powder and the role of portlandite in the formation of sodium-rich C-S-H Mehdi Mejdi, Wiliam Wilson, Mickael Saillio, Thierry Chaussadent, Loïc Divet, Arezki Tagnit-Hamou To cite this version: Mehdi Mejdi, Wiliam Wilson, Mickael Saillio, Thierry Chaussadent, Loïc Divet, et al.. Investi- gating the pozzolanic reaction of post-consumption glass powder and the role of portlandite in the formation of sodium-rich C-S-H. Cement and Concrete Research, Elsevier, 2019, 123, 8 p. 10.1016/j.cemconres.2019.105790. hal-02181573 HAL Id: hal-02181573 https://hal.archives-ouvertes.fr/hal-02181573 Submitted on 25 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version of Record: https://www.sciencedirect.com/science/article/pii/S0008884619302728 Manuscript_8cccda46c02afc8e437c2bf6dcd461cd 1 Investigating the pozzolanic reaction of post-consumption 2 glass powder and the role of portlandite in the formation 3 of sodium-rich C-S-H 4 Mehdi Mejdi a,b , William Wilson b, Mickael Saillio a, Thierry Chaussadent a, Loic Divet a, and 5 Arezki Tagnit-Hamou b 6 7 a Université de Paris-Est, MAST, CPDM, IFSTTAR F-77447 Marne-La-Vallée, France 8 b Département de Génie Civil, Université de Sherbrooke, Sherbrooke (Québec), J1K 2R1, Canada 9 10 Abstract 11 The use of glass powder (GP) as an alternative SCM offers a viable opportunity to partially substitute 12 OPC, and therefore provides economic and environmental benefits. -
Alkali-Silica Reactivity: an Overview of Research
SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A. -
Co2ntrol Sofnolime IFU (English) |
Colour indicator Isoflurane, Desflurane and Sevoflurane. Sevoflurane (only) is reported to be During use the white granules will start to turn violet in colour and will able to degrade in contact with strong bases to produce breakdown ® deepen in intensity to indicate exhaustion of Sofnolime® and Sofnolime products of unknown toxicity to humans. Desflurane can degrade to produce SoLo®. The intensity of colour change may vary from one procedure to small amounts of carbon monoxide if it gets warm in the presence of a another. The appearance of a colour change confirms the activity of the strong alkali. Sofnolime® and Sofnolime SoLo® uses a low concentration co ntrol material and indicates the progress of the carbon dioxide absorption. of sodium hydroxide to catalyse the reaction. This ensures a high carbon 2 This allows any severe uneven gas flow (chanelling) within the canister dioxide capacity whilst at the same time minimising the risk of anaesthetic to be identified. agent interactions. Suitable monitoring of inspired carbon dioxide is required to assess when Neither carbon monoxide nor compound A, in other than trace clinically to replace the soda lime as it is the trailing edge of the reaction zone that insignificant amounts, are formed in a properly run circuit. Extreme, INSTRUCTIONS FOR USE changes colour, not the leading edge. A slowly increasing carbon dioxide abnormally hot, dry conditions are required to produce significant quantities of any by-products. Sofnolime® and Sofnolime SoLo® is widely used with ® ® 1. concentration at the outlet will usually begin to occur when the colour Sofnolime and Sofnolime SoLo Press the button; the absorber change has penetrated to around half the depth of the cartridge. -
MSE 403: Ceramic Materials
MSE 403: Ceramic Materials Course description: Processing, characteristics, microstructure and properties of ceramic materials. Number of credits: 3 Course Coordinator: John McCloy Prerequisites by course: MSE 201 Prerequisites by topic: 1. Basic knowledge of thermodynamics. 2. Elementary crystallography and crystal structure. 3. Mechanical behavior of materials. Postrequisites: None Textbooks/other required 1. Carter, C.B. and Norton, M.G. Ceramic Materials Science and Engineering, materials: Springer, 2007. Course objectives: 1. Review of crystallography and crystal structure. 2. Review of structure of atoms, molecules and bonding in ceramics. 3. Discussion on structure of ceramics. 4. Effects of structure on physical properties. 5. Ceramic Phase diagrams. 6. Discussion on defects in ceramics. 7. Introduction to glass. 8. Discussion on processing of ceramics. 9. Introduction to sintering and grain growth. 10. Introduction to mechanical properties of ceramics. 11. Introduction to electrical properties of ceramics. 12. Introduction to bioceramics. 13. Introduction to magnetic ceramics. Topics covered: 1. Introduction to crystal structure and crystallography. 2. Fundamentals of structure of atoms. 3. Structure of ceramics and its influence on properties. 4. Binary and ternary phase diagrams. 5. Point defects in ceramics. 6. Glass and glass-ceramic composites. 7. Ceramics processing and sintering. 8. Mechanical properties of ceramics. 9. Electrical properties of ceramics. 10. Bio-ceramics. 11. Ceramic magnets. Expected student outcomes: 1. Knowledge of crystal structure of ceramics. 2. Knowledge of structure-property relationship in ceramics. 3. Knowledge of the defects in ceramics (Point defects). 4. Knowledge of glass and glass-ceramic composite materials. 5. Introductory knowledge on the processing of bulk ceramics. 6. Applications of ceramic materials in structural, biological and electrical components. -
Materials Science and Engineering 1
Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program. -
We Need Your Colouring Skills!
We need your colouring skills! What do you think the colours of Mercury are? DID YOU KNOW? ercury • Mercury is the smallest planet in our solar system. • It is only slightly larger than the Earth’s Moon. • One day on Mercury is as long as 59 days on Earth. • A year on Mercury is as long as 88 Earth days • Temperatures on Mercury are extreme, reaching 430°C during the day, and -180°C at night. DID YOU KNOW? The Erth Depending on where you are on the globe, you could be spinning through space at just over 1,000 miles per hour. Water covers 70 percent of Earth's surface. 1 million Earths could fit in the Sun. Earth's atmosphere is composed of about 78 percent nitrogen, 21 percent oxygen, 0.9 percent argon, and 0.1 percent other gases. Earth is the only planet not named after a god. We need your colouring skills! What colours will you choose? We need your colouring skills! What do you think the colours of Jupiter are? DID YOU KNOW? Jupiter • Jupiter is the largest planet in the solar system. • Jupiter is as large as 1,300 Earths. • It's the 3rd brightest object in the night sky. • There's a big red spot on Jupiter, which is in fact a storm that has been raging for more than 350 years. DID YOU KNOW? Saturn • Saturn is the 2nd largest planet in the Solar System. • 764 Earths could fit inside Saturn. • Saturn's rings are made of ice and rock. They span 175,000 miles We need your and yet they’re only 20 metres thick. -
Biological Materials: a Materials Science Approach✩
JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Review article Biological materials: A materials science approachI Marc A. Meyers∗, PoYu Chen, Maria I. Lopez, Yasuaki Seki, Albert Y.M. Lin University of California, San Diego, La Jolla, CA, United States ARTICLEINFO ABSTRACT Article history: The approach used by Materials Science and Engineering is revealing new aspects Received 25 May 2010 in the structure and properties of biological materials. The integration of advanced Received in revised form characterization, mechanical testing, and modeling methods can rationalize heretofore 20 August 2010 unexplained aspects of these structures. As an illustration of the power of this Accepted 22 August 2010 methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. ⃝c 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction and basic components ............................................................................................................................................. 1 2. Hierarchical nature of biological materials ................................................................................................................................... 3 3. Structural biological materials..................................................................................................................................................... -
Materials Science
Materials Science Materials Science is an interdisciplinary field combining physics (fundamental laws of nature), chemistry (interactions of atoms) and biology (how life interacts with materials) to elucidate the inherent properties of basic and complex systems. This includes optical (interaction with light), electrical (interaction with charge), magnetic and structural properties of everyday electronics, clothing and architecture. The Materials Science central dogma follows the sequence: Structure—Properties—Design—Performance. This involves relating the nanostructure of a material to its macroscale physical and chemical properties. By understanding and then changing the structure, material scientists can create custom materials with unique properties. The goal of the materials science minor is to create a cross-disciplinary approach to fundamental topics in basic and applied physical sciences. Students will gain experience and perspectives from the disciplines of chemistry, physics and biology. The minor places a strong emphasis on current nanoscale research methods in addition to the basics of electronic, optical and mechanical properties of materials. Any student with an interest in pursuing the cross-disciplinary minor in materials science should consult with the coordinator of the minor. Students are encouraged to declare their participation in their sophomore year but no later than the end of the junior year. Students also should seek an adviser from participating faculty. Degree Requirements for the Minor General College requirements -
The Role of Italian Industry in Space Exploration
THE ROLE OF ITALIAN INDUSTRY IN SPACE EXPLORATION Maria Cristina Falvella ASI, Italian Space Agency Head of Strategies and Industrial Policy 53rd Session UN COPUOS Vienna, 17 February 2016 THE ITALIAN SPACE AGENCY (ASI) ASI has been founded in 1988 with the purpose to promote, develop and disseminate the scientific research and technology applied in the Space field. • Specific attention to the competitiveness of the Italian Space Industry, including SMEs • ASI operates in “integrated teams” => industry and research teams under the supervision of ASI ITALY AND EXPLORATION • Since 1964 Italy acts as a pioneer in space • Exploration is a flagship program for Italy, enhancing the competitiveness of the national industrial and scientific community • Participation in successful ESA and NASA programs, with challenging roles for national industries ISS and Mars : the top priorities Italy considers ISS and Mars destinations as part of a single exploration process and works to maximize the technology and system synergies among these destinations as well as to exploit the respective benefits of robotic and human exploration. • Economic and intellectual return out of the investments • Worldwide international relations • Competitiveness of the whole supply chain, from Large System Integrators (LSIs) to Small and Medium Companies (SMEs) • Leader position in international supply chains • Upgrade of technology capabilities and IPR • Benefits in non-space related systems and applications THE ITALIAN SUPPLY CHAIN The strategic effort to encourage the development -
ANAESTHETIC BREATHING SYSTEMS Rebreathing That Occurs with Any Particular Dr Q Milner, Papworth Hospital, Cambridge, UK
20 Update in Anaesthesia ANAESTHETIC BREATHING SYSTEMS rebreathing that occurs with any particular Dr Q Milner, Papworth Hospital, Cambridge, UK. anaesthetic breathing system depends on four factors; the design of the individual breathing circuit, The delivery systems which conduct anaesthetic the mode of ventilation (spontaneous or controlled), gases from an anaesthetic machine to the patient are the fresh gas flow rate and the patient’s respiratory known as the breathing systems or circuits. They pattern. Circuits may eliminate rebreathing either are designed to allow either spontaneous respiration by ensuring an adequate flow of fresh gas which or intermittent positive pressure ventilation (IPPV) flushes the circuit clear of alveolar gas, or, in the and consist of a reservoir bag, anaesthetic tubing, case of a circle system by the use of sodalime which and a pressure relief valve. A number of mechanical absorbs the CO2 so that low fresh gas flows may be ventilators include a specific breathing system eg used. For each of the circuits described below, fresh the Manley series. Other ventilators have been gas flow rates that will ensure minimal rebreathing designed to operate with existing breathing systems will be suggested. e.g. the Penlon Nuffield 200. Classification of breathing systems The function of breathing is to maintain a supply of A number of classifications exist and the one oxygen to the lungs for the blood to transport to the introduced in 1954 by Professor W W Mapleson is tissues and to remove carbon dioxide from the most commonly used in the UK (Figure 1). It does body. A breathing circuit must enable a patient to not however, include systems with carbon dioxide breathe satisfactorily without significantly absorption. -
International Space Station Basics Components of The
National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles. -
Carbon Dioxide Absorbent Granules
Carbon Dioxide Absorbent Granules QUALITY - ENHANCED COMPOSITION STANDARD FEATURES Carbolime carbon dioxide absorbent is a granular No KOH - Minimum anesthetic agent soda lime based compound intended for the ecient degradation (e.g., sevourane to Compound A removal of carbon dioxide from closed and semi- and other toxic products) compared to other closed patient breathing circuits without the use of brands containing potassium hydroxide. potassium hydroxide (KOH). Low Dust - Minimum dust levels with the Carbolime contains a precise mixture of calcium benets of high surface area and graded particle hydroxide (Ca(OH)2), water, and a small amount of size. sodium hydroxide (NaOH), with ethyl violet indicator dye to provide white -to-violet color change Low risk of carbon monoxide formation due to upon exhaustion. good resistance of dry gas desiccation. Available in several convenient package sizes, Low Bulk Density -Less weight required to ll Carbolime is supplied as hard, irregularly shaped absorber and, therefore, less waste when relling granules that have been processed to minimize dust frequent ly (e.g., daily) prior to full exhaustion. formation from friction. Carbolime has a moisture content of 12-19%, and is manufactured with a Low odor due to reliable control of indicator dye hardness and porosity which delivers dependable, concentration. Dye overdosing causes amines to ecient CO2 absorption. be released; dye underdosing causes poor/no color change. Allied’s Carbolime meets or exceeds the United States Pharmacopoeia National Formulary specications for soda lime and is manufactured in accordance with the United States Food and Drug Administration (FDA), Quality System Requirements (QSR), and ISO 13485 guidelines.