Lectures on Materials Science for Architectural Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Materials Science for Architectural Conservation Lectures on Materials Science for Architectural Conservation Lectures on Materials Science for Architectural Conservation Giorgio Torraca The Getty Conservation Institute Los Angeles ©2009 J. Paul Getty Trust The Getty Conservation Institute 1200 Getty Center Drive, Suite 700 Los Angeles, CA 90049-1684 United States Telephone 310 440-7325 Fax 310 440-7702 E-mail [email protected] www.getty.edu/conservation Production editor: Angela Escobar Copy editor: Dianne Woo Designer: Hespenheide Design ISBN: 978-0-9827668-3-5 (print on demand) The Getty Conservation Institute works internationally to advance conservation practice in the visual arts—broadly interpreted to include objects, collections, architecture, and sites. The GCI serves the conservation community through scientific research, education and training, model field projects, and the dissemination of the results of both its own work and the work of others in the field. In all its endeavors, the GCI focuses on the creation and delivery of knowledge that will benefit the professionals and organizations responsible for the conservation of the world’s cultural heritage. Contents vii Foreword Giacomo Chiari ix Preface Part 1 1 Electronegativity, Chemical Bonds, Crystals, Molecules, and Chemical Reactions 1 1.1 Electronegativity 2 1.2 Chemical Bonds 8 1.3 Properties of Materials as a Function of the Bond Type 14 1.4 Molecules 21 1.5 Chemical Reactions 30 1.6 Physical Transformations—Solutions and Emulsions 36 1.7 Hydrophilic and Hydrophobic Materials Part 2 38 Mortars, Bricks, and Concretes: Earth, Gypsum, Lime, and Cements 38 2.1 Earth as a Building Material 43 2.2 Ceramic Materials 47 2.3 Gypsum 50 2.4 Lime and Lime Mortars 54 2.5 Pozzolanic Mortars 58 2.6 Hydraulic Lime 61 2.7 Cement 65 2.8 Modern Concrete 67 2.9 Reinforced Concrete 69 2.10 Compatibility Problems Related to the Use of Cement in Architectural Conservation Part 3 72 Deterioration of Porous Building Materials 72 3.1 Mechanical Deterioration Processes 81 3.2 Physical Processes of Deterioration of Porous Materials 87 3.3 Chemical Deterioration Part 4 96 Conservation of Architectural Surfaces 96 4.1 Basic Principles 97 4.2 Cleaning of Architectural Surfaces 102 4.3 Consolidation of Architectural Surfaces 107 4.4 Protection Part 5 110 Metals 110 5.1 Ferrous Metals 138 5.2 Notes on Non-ferrous Metals Relevant to Architectural Conservation Part 6 147 Natural and Synthetic Polymers 147 6.1 Polymers 149 6.2 Natural Polymers 152 6.3 Wood: A Short Note on Properties 154 6.4 Linear Synthetic Polymers—Thermoplastics 164 6.5 Cross-linked Synthetic Polymers—Thermosetting Resins 173 6.6 Aging—Oxidation of Organic Molecules Part 7 175 Silicates, Silanes, and Silicones 175 7.1 Silicates and Fluosilicates 180 7.2 Silanes 182 7.3 Silicones 186 Bibliography 194 About the Author Foreword “Everything happens at the atomic level,” I used to tell my students. This means that if a bridge collapses, ultimately it is because a few atoms have let go of their bonds and started a small crack that continued to expand, resulting in disaster. If this paradox is true, an in-depth understanding of the mechanisms at work on a microscopic level is fundamental to the successful work of engineers and architects. The difficult part is bridging the gap between the microscopic and macroscopic lev- els from the atom to the building. Giorgio Torraca does this superbly. For many years the Getty Conservation Institute has applied the expertise of scientists and conservators in bridging that same gap. The study of the mechanisms of salt crystallization and salt extraction in order to save thousands of square feet of mural paintings in the Mogao grottoes is a typical example. Other examples include the GCI’s research into the influence of clay expansion with water and its effects on limestone in projects involving the conservation of churches and cloisters in Yorkshire and the great Maya pyramids at Copán. All of these conservation endeavors require the merging of knowledge from various branches of science. Torraca’s ability to synthesize concepts and knowledge from various fields and present them in plain, comprehensible fashion to the reader is remarkable. His previous books, Porous Building Materials and Solubility and Solvents for Conservation Problems, are the fundamental texts on which several generations of cultural heritage professionals have been educated. A characteristic that these books share with the present volume is the apparent unrefined quality of the figures and drawings. In an era of computer imaging, Torraca still draws his pictures by hand—a brilliant move that allows each illustration to convey the required concept with precision, clarity, and simplicity. Nothing is redundant. Giorgio Torraca has been my mentor, colleague, and friend for more than forty years. During this time I have had the opportunity and good fortune to appre- ciate and benefit from his ability to tackle complex problems and immediately get to the core of them. This is what the reader will find in his Lectures on Materials Science for Architectural Conservation, which the GCI presents in the same spirit of bridging the fields of science and conservation. I am sure that architectural con- servators, engineers, and conservation scientists not only will enjoy this work but will be enriched by the formative ideas presented within it. Giacomo Chiari, Chief Scientist The Getty Conservation Institute March 2009 Preface This text is based on notes and sketches I prepared for an undergraduate course titled “Chemistry of the Environment and of Cultural Property,” which I taught at the “Valle Giulia” Faculty of Architecture, University of Rome “La Sapienza,” from 2001 to 2004. The lecture notes were published in 2002 by the Scuola di Specializzazione in Restauro dei Monumenti, which kindly allowed the use of the material for an English version. The English text is not truly a translation because my intent was to find equivalent ways to express the concepts in a new language and not to translate the words; furthermore, several parts have been revised and some completely rewritten. This work was produced with the support of the Getty Conservation Institute, and I am deeply grateful to Leslie Rainer for her accurate review of the text, pin- pointing errors and suggesting improvements in the language, and to Giacomo Chiari for his enthusiastic support and suggestions (which would have increased the size of this text considerably had I the strength to carry out all of them). In the Rome lectures, the chapters were organized according to the system used in the textbooks on materials science, starting with a summary of the scientific theory of the structure of materials, with some basic chemistry added as required by our field of interest. This order is maintained in the present version, but with some reservations on my part as, having taught technology to engineers and post- graduate architects for a long time, I know how allergic to chemistry they are; so, starting a book with a chapter that is essentially chemistry did not appear to be the best way to encourage a reader to advance further. At some point I came to the conclusion that it would have been wise to rele- gate the chemistry to an appendix, but it was late in the project and I lacked the courage to do so mainly because it would have required renumbering all chapters and sections and correcting all cross-references (I use a lot of them), and most likely would have resulted in several errors. As an alternative, I have a suggestion for the chemistry-wary reader: Start reading at part 2, using part 1 mainly for reference when encountering words or concepts with which one is not familiar. I have tried to support this method of reading by providing cross-references to relevant sections in part 1 whenever I thought that such a problem might arise. In the Rome lectures, I tried to downplay the role of chemistry in the course by reducing its importance in the final exam; the students were told that the (oral) exam would start with a question on building materials and their properties, dete- rioration, and conservation (parts 2, 3, and 4, respectively), followed by a question on metals, corrosion, and conservation (part 5); then, for the last of the traditional x Preface three questions on Italian university exams, they would have to choose between structure of materials plus basic chemistry (part 1) and modern plastics (part 6), silicates, and silicones (part 7). This system worked well because most students, encouraged by some success on the first two questions, managed to address the third without excessive damage. The fact that a vast majority chose structure and chemistry showed, however, that plastics was even more difficult for them, even if it is a more interesting topic to an architect. In the present version, I attempted to reorganize parts 6 and 7 to improve readability, but still they are not as smooth and clear as they should be. My problem in teaching technology is that I think the aim should be to pro- vide ideas rather than information; although information is easily available in handbooks and on the Internet, what is missing for a student or a professional are the general concepts that allow him to organize the material in his mind so that he is able to pass an exam or use the information when evaluating problems on a drawing table or at a worksite. In the case of modern plastics, the amount of information available is enor- mous, but it is not easy to extract from it guidelines that an architect or an engi- neer could use when evaluating their successes and their failures (e.g., simple models of molecular structures and relation between structure and properties).
Recommended publications
  • Investigating the Pozzolanic Reaction of Post-Consumption Glass Powder
    Investigating the pozzolanic reaction of post-consumption glass powder and the role of portlandite in the formation of sodium-rich C-S-H Mehdi Mejdi, Wiliam Wilson, Mickael Saillio, Thierry Chaussadent, Loïc Divet, Arezki Tagnit-Hamou To cite this version: Mehdi Mejdi, Wiliam Wilson, Mickael Saillio, Thierry Chaussadent, Loïc Divet, et al.. Investi- gating the pozzolanic reaction of post-consumption glass powder and the role of portlandite in the formation of sodium-rich C-S-H. Cement and Concrete Research, Elsevier, 2019, 123, 8 p. 10.1016/j.cemconres.2019.105790. hal-02181573 HAL Id: hal-02181573 https://hal.archives-ouvertes.fr/hal-02181573 Submitted on 25 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version of Record: https://www.sciencedirect.com/science/article/pii/S0008884619302728 Manuscript_8cccda46c02afc8e437c2bf6dcd461cd 1 Investigating the pozzolanic reaction of post-consumption 2 glass powder and the role of portlandite in the formation 3 of sodium-rich C-S-H 4 Mehdi Mejdi a,b , William Wilson b, Mickael Saillio a, Thierry Chaussadent a, Loic Divet a, and 5 Arezki Tagnit-Hamou b 6 7 a Université de Paris-Est, MAST, CPDM, IFSTTAR F-77447 Marne-La-Vallée, France 8 b Département de Génie Civil, Université de Sherbrooke, Sherbrooke (Québec), J1K 2R1, Canada 9 10 Abstract 11 The use of glass powder (GP) as an alternative SCM offers a viable opportunity to partially substitute 12 OPC, and therefore provides economic and environmental benefits.
    [Show full text]
  • Alkali-Silica Reactivity: an Overview of Research
    SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A.
    [Show full text]
  • Co2ntrol Sofnolime IFU (English) |
    Colour indicator Isoflurane, Desflurane and Sevoflurane. Sevoflurane (only) is reported to be During use the white granules will start to turn violet in colour and will able to degrade in contact with strong bases to produce breakdown ® deepen in intensity to indicate exhaustion of Sofnolime® and Sofnolime products of unknown toxicity to humans. Desflurane can degrade to produce SoLo®. The intensity of colour change may vary from one procedure to small amounts of carbon monoxide if it gets warm in the presence of a another. The appearance of a colour change confirms the activity of the strong alkali. Sofnolime® and Sofnolime SoLo® uses a low concentration co ntrol material and indicates the progress of the carbon dioxide absorption. of sodium hydroxide to catalyse the reaction. This ensures a high carbon 2 This allows any severe uneven gas flow (chanelling) within the canister dioxide capacity whilst at the same time minimising the risk of anaesthetic to be identified. agent interactions. Suitable monitoring of inspired carbon dioxide is required to assess when Neither carbon monoxide nor compound A, in other than trace clinically to replace the soda lime as it is the trailing edge of the reaction zone that insignificant amounts, are formed in a properly run circuit. Extreme, INSTRUCTIONS FOR USE changes colour, not the leading edge. A slowly increasing carbon dioxide abnormally hot, dry conditions are required to produce significant quantities of any by-products. Sofnolime® and Sofnolime SoLo® is widely used with ® ® 1. concentration at the outlet will usually begin to occur when the colour Sofnolime and Sofnolime SoLo Press the button; the absorber change has penetrated to around half the depth of the cartridge.
    [Show full text]
  • MSE 403: Ceramic Materials
    MSE 403: Ceramic Materials Course description: Processing, characteristics, microstructure and properties of ceramic materials. Number of credits: 3 Course Coordinator: John McCloy Prerequisites by course: MSE 201 Prerequisites by topic: 1. Basic knowledge of thermodynamics. 2. Elementary crystallography and crystal structure. 3. Mechanical behavior of materials. Postrequisites: None Textbooks/other required 1. Carter, C.B. and Norton, M.G. Ceramic Materials Science and Engineering, materials: Springer, 2007. Course objectives: 1. Review of crystallography and crystal structure. 2. Review of structure of atoms, molecules and bonding in ceramics. 3. Discussion on structure of ceramics. 4. Effects of structure on physical properties. 5. Ceramic Phase diagrams. 6. Discussion on defects in ceramics. 7. Introduction to glass. 8. Discussion on processing of ceramics. 9. Introduction to sintering and grain growth. 10. Introduction to mechanical properties of ceramics. 11. Introduction to electrical properties of ceramics. 12. Introduction to bioceramics. 13. Introduction to magnetic ceramics. Topics covered: 1. Introduction to crystal structure and crystallography. 2. Fundamentals of structure of atoms. 3. Structure of ceramics and its influence on properties. 4. Binary and ternary phase diagrams. 5. Point defects in ceramics. 6. Glass and glass-ceramic composites. 7. Ceramics processing and sintering. 8. Mechanical properties of ceramics. 9. Electrical properties of ceramics. 10. Bio-ceramics. 11. Ceramic magnets. Expected student outcomes: 1. Knowledge of crystal structure of ceramics. 2. Knowledge of structure-property relationship in ceramics. 3. Knowledge of the defects in ceramics (Point defects). 4. Knowledge of glass and glass-ceramic composite materials. 5. Introductory knowledge on the processing of bulk ceramics. 6. Applications of ceramic materials in structural, biological and electrical components.
    [Show full text]
  • Materials Science and Engineering 1
    Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program.
    [Show full text]
  • We Need Your Colouring Skills!
    We need your colouring skills! What do you think the colours of Mercury are? DID YOU KNOW? ercury • Mercury is the smallest planet in our solar system. • It is only slightly larger than the Earth’s Moon. • One day on Mercury is as long as 59 days on Earth. • A year on Mercury is as long as 88 Earth days • Temperatures on Mercury are extreme, reaching 430°C during the day, and -180°C at night. DID YOU KNOW? The Erth Depending on where you are on the globe, you could be spinning through space at just over 1,000 miles per hour. Water covers 70 percent of Earth's surface. 1 million Earths could fit in the Sun. Earth's atmosphere is composed of about 78 percent nitrogen, 21 percent oxygen, 0.9 percent argon, and 0.1 percent other gases. Earth is the only planet not named after a god. We need your colouring skills! What colours will you choose? We need your colouring skills! What do you think the colours of Jupiter are? DID YOU KNOW? Jupiter • Jupiter is the largest planet in the solar system. • Jupiter is as large as 1,300 Earths. • It's the 3rd brightest object in the night sky. • There's a big red spot on Jupiter, which is in fact a storm that has been raging for more than 350 years. DID YOU KNOW? Saturn • Saturn is the 2nd largest planet in the Solar System. • 764 Earths could fit inside Saturn. • Saturn's rings are made of ice and rock. They span 175,000 miles We need your and yet they’re only 20 metres thick.
    [Show full text]
  • Biological Materials: a Materials Science Approach✩
    JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Review article Biological materials: A materials science approachI Marc A. Meyers∗, Po­Yu Chen, Maria I. Lopez, Yasuaki Seki, Albert Y.M. Lin University of California, San Diego, La Jolla, CA, United States ARTICLEINFO ABSTRACT Article history: The approach used by Materials Science and Engineering is revealing new aspects Received 25 May 2010 in the structure and properties of biological materials. The integration of advanced Received in revised form characterization, mechanical testing, and modeling methods can rationalize heretofore 20 August 2010 unexplained aspects of these structures. As an illustration of the power of this Accepted 22 August 2010 methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3­PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. ⃝c 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction and basic components ............................................................................................................................................. 1 2. Hierarchical nature of biological materials ................................................................................................................................... 3 3. Structural biological materials.....................................................................................................................................................
    [Show full text]
  • Materials Science
    Materials Science Materials Science is an interdisciplinary field combining physics (fundamental laws of nature), chemistry (interactions of atoms) and biology (how life interacts with materials) to elucidate the inherent properties of basic and complex systems. This includes optical (interaction with light), electrical (interaction with charge), magnetic and structural properties of everyday electronics, clothing and architecture. The Materials Science central dogma follows the sequence: Structure—Properties—Design—Performance. This involves relating the nanostructure of a material to its macroscale physical and chemical properties. By understanding and then changing the structure, material scientists can create custom materials with unique properties. The goal of the materials science minor is to create a cross-disciplinary approach to fundamental topics in basic and applied physical sciences. Students will gain experience and perspectives from the disciplines of chemistry, physics and biology. The minor places a strong emphasis on current nanoscale research methods in addition to the basics of electronic, optical and mechanical properties of materials. Any student with an interest in pursuing the cross-disciplinary minor in materials science should consult with the coordinator of the minor. Students are encouraged to declare their participation in their sophomore year but no later than the end of the junior year. Students also should seek an adviser from participating faculty. Degree Requirements for the Minor General College requirements
    [Show full text]
  • The Role of Italian Industry in Space Exploration
    THE ROLE OF ITALIAN INDUSTRY IN SPACE EXPLORATION Maria Cristina Falvella ASI, Italian Space Agency Head of Strategies and Industrial Policy 53rd Session UN COPUOS Vienna, 17 February 2016 THE ITALIAN SPACE AGENCY (ASI) ASI has been founded in 1988 with the purpose to promote, develop and disseminate the scientific research and technology applied in the Space field. • Specific attention to the competitiveness of the Italian Space Industry, including SMEs • ASI operates in “integrated teams” => industry and research teams under the supervision of ASI ITALY AND EXPLORATION • Since 1964 Italy acts as a pioneer in space • Exploration is a flagship program for Italy, enhancing the competitiveness of the national industrial and scientific community • Participation in successful ESA and NASA programs, with challenging roles for national industries ISS and Mars : the top priorities Italy considers ISS and Mars destinations as part of a single exploration process and works to maximize the technology and system synergies among these destinations as well as to exploit the respective benefits of robotic and human exploration. • Economic and intellectual return out of the investments • Worldwide international relations • Competitiveness of the whole supply chain, from Large System Integrators (LSIs) to Small and Medium Companies (SMEs) • Leader position in international supply chains • Upgrade of technology capabilities and IPR • Benefits in non-space related systems and applications THE ITALIAN SUPPLY CHAIN The strategic effort to encourage the development
    [Show full text]
  • ANAESTHETIC BREATHING SYSTEMS Rebreathing That Occurs with Any Particular Dr Q Milner, Papworth Hospital, Cambridge, UK
    20 Update in Anaesthesia ANAESTHETIC BREATHING SYSTEMS rebreathing that occurs with any particular Dr Q Milner, Papworth Hospital, Cambridge, UK. anaesthetic breathing system depends on four factors; the design of the individual breathing circuit, The delivery systems which conduct anaesthetic the mode of ventilation (spontaneous or controlled), gases from an anaesthetic machine to the patient are the fresh gas flow rate and the patient’s respiratory known as the breathing systems or circuits. They pattern. Circuits may eliminate rebreathing either are designed to allow either spontaneous respiration by ensuring an adequate flow of fresh gas which or intermittent positive pressure ventilation (IPPV) flushes the circuit clear of alveolar gas, or, in the and consist of a reservoir bag, anaesthetic tubing, case of a circle system by the use of sodalime which and a pressure relief valve. A number of mechanical absorbs the CO2 so that low fresh gas flows may be ventilators include a specific breathing system eg used. For each of the circuits described below, fresh the Manley series. Other ventilators have been gas flow rates that will ensure minimal rebreathing designed to operate with existing breathing systems will be suggested. e.g. the Penlon Nuffield 200. Classification of breathing systems The function of breathing is to maintain a supply of A number of classifications exist and the one oxygen to the lungs for the blood to transport to the introduced in 1954 by Professor W W Mapleson is tissues and to remove carbon dioxide from the most commonly used in the UK (Figure 1). It does body. A breathing circuit must enable a patient to not however, include systems with carbon dioxide breathe satisfactorily without significantly absorption.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • Carbon Dioxide Absorbent Granules
    Carbon Dioxide Absorbent Granules QUALITY - ENHANCED COMPOSITION STANDARD FEATURES Carbolime carbon dioxide absorbent is a granular No KOH - Minimum anesthetic agent soda lime based compound intended for the ecient degradation (e.g., sevourane to Compound A removal of carbon dioxide from closed and semi- and other toxic products) compared to other closed patient breathing circuits without the use of brands containing potassium hydroxide. potassium hydroxide (KOH). Low Dust - Minimum dust levels with the Carbolime contains a precise mixture of calcium benets of high surface area and graded particle hydroxide (Ca(OH)2), water, and a small amount of size. sodium hydroxide (NaOH), with ethyl violet indicator dye to provide white -to-violet color change Low risk of carbon monoxide formation due to upon exhaustion. good resistance of dry gas desiccation. Available in several convenient package sizes, Low Bulk Density -Less weight required to ll Carbolime is supplied as hard, irregularly shaped absorber and, therefore, less waste when relling granules that have been processed to minimize dust frequent ly (e.g., daily) prior to full exhaustion. formation from friction. Carbolime has a moisture content of 12-19%, and is manufactured with a Low odor due to reliable control of indicator dye hardness and porosity which delivers dependable, concentration. Dye overdosing causes amines to ecient CO2 absorption. be released; dye underdosing causes poor/no color change. Allied’s Carbolime meets or exceeds the United States Pharmacopoeia National Formulary specications for soda lime and is manufactured in accordance with the United States Food and Drug Administration (FDA), Quality System Requirements (QSR), and ISO 13485 guidelines.
    [Show full text]