Gregariousness in the Gorgonian-Eating Gastropod Cyphoma Gibbosum:Tests of Several Possible Causes

Total Page:16

File Type:pdf, Size:1020Kb

Gregariousness in the Gorgonian-Eating Gastropod Cyphoma Gibbosum:Tests of Several Possible Causes MARINE ECOLOGY - PROGRESS SERIES Vol. 31: 255-263. 1986 Published July 24 Mar. Ecol. Prog. Ser. Gregariousness in the gorgonian-eating gastropod Cyphoma gibbosum:tests of several possible causes Donald J. Gerhart* Department of Ecology and Evolution. SUNY at Stony Brook. Stony Brook, New York 11794, USA ABSTRACT: The ovulid gastropod Cyphorna gibbosum IS a widespread and common predator of gorgonian octocorals ('sea whips') on Caribbean coral reefs. C. gibbosum is not randomly distributed, but tends to be clumped into small groups. To examine possible causes of this phenomenon, field and laboratory experiments were performed with C. gibbosum and Plexaura hornornalla, a common Caribbean gorgonian. These experiments suggest that clumping in C. gibbosum is produced by mucous trail following. Gregariousness may have evolved in C. gibbosum to increase the protection afforded by distastefulness and aposematism, although other explanations cannot be excluded. Octocoral-gastropod interactions possess several important parallels to terrestrial plant-herbivore systen~s.Further comparison of these systems may provide new insights into predator-prey coevolution. INTRODUCTION throughout the Caribbean (Ghiselin & Wilson 1966, Kinzie 1971), feeds exclusively on gorgonians. Gorgonians (Coelenterata: Anthozoa: Octocorallia) Kinzie (1971) concluded that Cyphoma gjbbosum are common, conspicuous members of Caribbean coral was a generalist within the order Gorgonacea, with no reef communities. In spite of their conspicuousness, inter-specific prey preferences. Other studies suggest gorgonians are rarely eaten by predators (Randall that Cyphoma gibbosum favors certain species of gor- 1967, Vermeij 1978, Bakus 1981). This observation is gonians (Birkeland & Gregory 1975). For any given intriguing, since predation on coral reefs is intense prey species, however, individual Cyphoma gibbosurn (Glynn et al. 1972, Bakus 1964, 1971, 1981, Sammarco are not distributed randomly, but tend to be clumped et al. 1974, Brock 1979, Sammarco 1980, Huston 1985). into small groups (Birkeland & Gregory 1975, Hazlett & Gorgonians possess several lines of defense against Bach 1982). The most dramatic examples of clumping predators, including sclerites of calcium carbonate are those reported by Kinzie (1971) of a group of 17 C. (Bayer 1961),nematocysts (Barnes 1980, Hyman 1940), gibbosurn grazing on a single gorgonian colony, and and large amounts of secondary compounds (Tursch et the observations of Birkeland & Gregory (1975) of al. 1978, Fenical 1982, Faulkner 1984). Since predation aggregations of 16, 28, and 35 individuals. can play an important role in the structuring of ecologi- Hazlett & Bach (1982) found that the clumped dis- cal communities (Slobodkin 1962, Paine 1966), these tribution of Cyphoma gibbosum was not explained by defenses may significantly affect the patterns of dis- colony size, or by the distance to the nearest neighbor- tribution and abundance of gorgonians. ing gorgonian colony. These authors contended that A few organisms have circumvented the defenses of clumping could be produced by intercolony variation gorgonians. Perhaps the most notable of these is in the quahty of the gorgonians, as perceived by the Cyphoma gibbosum, a gastropod in the family snails. Hazlett & Bach suggested that these differences Ovulidae. This snail, which is common on coral reefs in prey quality could be the result of intraspecific variation in the secondary metabolite content of gorgo- Present address: Department of Chemistry, 2545 The Mall, nians. University of Hawaii at Manoa. Honolulu, Hawaii 96822. USA Variation in secondary metabolite content is well O Inter-Research/Printed in F. R. Germany 256 Mar. Ecol. Prog. Ser. 31: 255-263, 1986 documented in Plexaura homornda, an abundant gor- are toxic or noxious (Tursch et al. 1978, Bakus 1981), C. gonian on shallow Caribbean coral reefs. A single gibbosurn also may be distasteful. If so, then gregari- chemical compound, prostaglandin A? (PGA2), com- ousness in this snail may lead to decreased susceptibil- prises 2 to 8% of the wet weight of P. homomalla ity to predation. (Weinheimer & Spraggins 1969, Schneider et al. 1977, To test these hypotheses, I performed a series of field Dominguez et al. 1980). Prostaglandins are fatty-acid and laboratory experiments at Curaqao, Netherlands derivatives with potent, hormone-like effects on a wide Anhlles, where Plexaura homomalla reportedly con- range of biological processes (Hall & Behrman 1982). tained a mixture of 15(R)- and 15(S)-PGA2(Schneider PGA2 appears to provide P. homomalla with an effec- & Morge 1971). The objectives of these experiments tive defense against predatory fish (Gerhart 1984a, b). were: (l)to document the distribution of Cyphoma In spite of the large amount of PGA2 in its tissues, gibbosum on colonies of Plexaura homomalla; (2) to however, P, homornalla is readily consumed by determine if snail-grazed colonies of P. homomalla Cyphoma gibbosum (Kinzie 1971, Gerhart 198413). differed significantly from ungrazed colonles in their The prostaglandin content of Plexaura homomalla size, population density, proximity to other gorgo- varies from location to location within the Caribbean nians, or prostaglandin isomer content; (3) to deter- (Schneider & Morge 1971, Schneider et al. 1977, mine if colonies of P. homomalla that were previously Gerhart 1984b). In some areas, colonies contain 15(S)- chosen by C. gibbosum were more acceptable to the PGA2, while in other locations, P. homomalla contains snails than colonies that had not been chosen; (4) to mostly the 15(R) isomer of PGA,. In several mamma- determine whether individuals of C. gibbosum lian bioassays, 15(S)-PGA2 is highly potent, while attracted others as they grazed on their gorgonian 15(R)-PGA2 possesses little or no activity (Nakano prey; (5) to elucidate the role of mucous trail following 1968, 1969, Nakano & Kessinger 1970, Spraggins in the production of the clumped distribution of C. 1972). If the activity differences of 15(R)- and 15(S)- gibbosum; (6)to determine whether C. gibbosum was PGA2 in Cyphoma gibbosum parallel those observed unpalatable to predators. in mammals, then C. gibbosum may prefer colonies of Plexaura homomalla which contain the less potent 15(R) isomer of PGA2. MATERIALS AND METHODS Thus, the clumped distribution of Cyphorna gib- bosum may occur because some prey colonies are more The study was performed at Kaap Malmeeuw and at acceptable to the snails than others. If so, then snails CARMABI Buoy Two on the southwest coast of transplanted to gorgonian colonies that were previ- Curaqao. These locations have been described by Van ously occupied by C. gibbosum should remain longer, den Hoek et al. (1978). on average, than snads moved to previously vacant Intercolony distribution of Cyphoma gibbosum. Fifty colonies. Furthermore, if differences in the acceptabil- colonies of Plexaura homornalla were selected ity of colonies are caused by variation in secondary haphazardly and marked with numbered plastic tags. metabolite content, this variation should be demon- Tags were tied to a nearby piece of dead coral to strable by chemical analysis of the tissue. reduce disturbance of the gorgonian. The colonies Alternatively, snails may choose colonies at random, were examined 4 to 5 times wk-l, from September 13 and subsequently attract other snails to the occupied through November 7, 1983. Five additional colonies of colony. If this is true, then Cyphoma gibbosum trans- P. homomalla, each occupied by at least 2 snds, were planted to previously vacant colonies should remain as added to the study on September 27, 1983. All observa- long, on average, as those moved to previously tions were made using SCUBA. occupied colonies. Furthermore, consistent chemical The following data were taken for each numbered differences between occupied and vacant colonies colony: (l)the distance to the nearest neighboring should not be found, and snarl-occupied gorgonians gorgonian; (2) the distance to the nearest neighboring should be chosen more frequently than unoccupied colony of Plexaura homomalla; (3) the distance to near- gorgonian colonies. est gorgonian colony occupied by a snail; (4) the max- The latter hypothesis presumes that snails have, for imum height of the colony. Tissue samples were col- some unknown reason, evolved gregarious behavior. lected from each colony at the end of the study and In terrestrial insects, gregariousness is frequently later analyzed by high efficiency thin-layer associated with distastefulness, presumably to better chromatography (HETLC) to determine the 15(R)- and exploit the defensive benefits of unpalatability (Fisher 15(S)-PGA2content of the tissue (Schneider & Morge 1958). Cyphoma gibbosum appears to sequester secon- 1971, Schneider et al. 1977, Gerhart 1984b). dary chemicals from its gorgonian prey (Steudler et al. Transplant experiments with Cyphoma gibbosurn. 1977). Since many gorgonian secondary compounds During the months of October and November 1984, 54 Cerhart: Gregariousness in a gorgonian-eating gastropod 257 colonies of Plexaura homomalla were tagged at CAR- the second run and after each subsequent run. To make MABI Buoy Two. Of these colonies, 22 were occupied sure that the snails were not influenced by differences by Cyphoma gibbosum, and the remainder were va- in the gorgonian branches, the branches were cant. At the beginning of the experiment, all snails switched between Runs 3 and 4. Finally, to ensure that were removed from the occupied colonies.
Recommended publications
  • Satellite Monitoring of Coastal Marine Ecosystems a Case from the Dominican Republic
    Satellite Monitoring of Coastal Marine Ecosystems: A Case from the Dominican Republic Item Type Report Authors Stoffle, Richard W.; Halmo, David Publisher University of Arizona Download date 04/10/2021 02:16:03 Link to Item http://hdl.handle.net/10150/272833 SATELLITE MONITORING OF COASTAL MARINE ECOSYSTEMS A CASE FROM THE DOMINICAN REPUBLIC Edited By Richard W. Stoffle David B. Halmo Submitted To CIESIN Consortium for International Earth Science Information Network Saginaw, Michigan Submitted From University of Arizona Environmental Research Institute of Michigan (ERIM) University of Michigan East Carolina University December, 1991 TABLE OF CONTENTS List of Tables vi List of Figures vii List of Viewgraphs viii Acknowledgments ix CHAPTER ONE EXECUTIVE SUMMARY 1 The Human Dimensions of Global Change 1 Global Change Research 3 Global Change Theory 4 Application of Global Change Information 4 CIESIN And Pilot Research 5 The Dominican Republic Pilot Project 5 The Site 5 The Research Team 7 Key Findings 7 CAPÍTULO UNO RESUMEN GENERAL 9 Las Dimensiones Humanas en el Cambio Global 9 La Investigación del Cambio Global 11 Teoría del Cambio Global 12 Aplicaciones de la Información del Cambio Global 13 CIESIN y la Investigación Piloto 13 El Proyecto Piloto en la República Dominicana 14 El Lugar 14 El Equipo de Investigación 15 Principales Resultados 15 CHAPTER TWO REMOTE SENSING APPLICATIONS IN THE COASTAL ZONE 17 Coastal Surveys with Remote Sensing 17 A Human Analogy 18 Remote Sensing Data 19 Aerial Photography 19 Landsat Data 20 GPS Data 22 Sonar
    [Show full text]
  • Contributions to the Knowledge of the Ovulidae. XVI. the Higher Systematics
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2007 Band/Volume: 030 Autor(en)/Author(s): Fehse Dirk Artikel/Article: Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) 121-125 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 30 1 121–125 München, 1. Mai 2007 ISSN 0341–8391 Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) Dirk Fehse Fehse, D. (2007): Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda). – Spixiana 30/1: 121-125 The higher systematics of the family Ovulidae is reorganised on the basis of re- cently published studies of the radulae, shell and animal morphology and the 16S rRNA gene. The family is divided into four subfamilies. Two new subfamilîes are introduced as Prionovolvinae nov. and Aclyvolvinae nov. The apomorphism and the result of the study of the 16S rRNA gene are contro- versally concerning the Pediculariidae. Therefore, the Pediculariidae are excluded as subfamily from the Ovulidae. Dirk Fehse, Nippeser Str. 3, D-12524 Berlin, Germany; e-mail: [email protected] Introduction funiculum. A greater surprise seemed to be the genetically similarity of Ovula ovum (Linneaus, 1758) In conclusion of the recently published studies on and Volva volva (Linneaus, 1758) in fi rst sight but a the shell morphology, radulae, anatomy and 16S closer examination of the shells indicates already rRNA gene (Fehse 2001, 2002, Simone 2004, Schia- that O.
    [Show full text]
  • New Records of the Rare Gastropods Erato Voluta and Simnia Patula, and First Record of Simnia Hiscocki from Norway
    Fauna norvegica 2017 Vol. 37: 20-24. Short communication New records of the rare gastropods Erato voluta and Simnia patula, and first record of Simnia hiscocki from Norway Jon-Arne Sneli1 and Torkild Bakken2 Sneli J-A, and Bakken T. 2017. New records of the rare gastropods Erato voluta and Simnia patula, and first record of Simnia hiscocki from Norway. Fauna norvegica 37: 20-24. New records of rare gastropod species are reported. A live specimen of Erato voluta (Gastropoda: Triviidae), a species considered to have a far more southern distribution, has been found from outside the Trondheimsfjord. The specimen was sampled from a gravel habitat with Modiolus shells at 49–94 m depth, and was found among compound ascidians, its typical food resource. Live specimens of Simnia patula (Caenogastropoda: Ovulidae) have during the later years repeatedly been observed on locations on the coast of central Norway, which is documented by in situ observations. In Egersund on the southwest coast of Norway a specimen of Simnia hiscocki was in March 2017 observed for the first time from Norwegian waters, a species earlier only found on the south-west coast of England. Also this was documented by pictures and in situ observations. The specimen of Simnia hiscocki was for the first time found on the octocoral Swiftia pallida. doi: 10.5324/fn.v37i0.2160. Received: 2016-12-01. Accepted: 2017-09-20. Published online: 2017-10-26. ISSN: 1891-5396 (electronic). Keywords: Gastropoda, Ovulidae, Triviidae, Erato voluta, Simnia hiscocki, Simnia patula, Xandarovula patula, distribution, morphology. 1. NTNU Norwegian University of Science and Technology, Department of Biology, NO-7491 Trondheim, Norway.
    [Show full text]
  • Invertébrés Benthiques Des Marquises
    Invertébrés benthiques des Marquises Bernard Salvat 5 Sylvain Petek 1, Éric Folcher 2, Cécile Debitus 1 pour les éponges Francesca Benzoni 2, Michel Pichon 3 pour les coraux Philippe Bouchet 4, Jean Tröndlé 4, Bernard Salvat 5 pour les mollusques Joseph Poupin 6 pour les crustacés Gustav Paulay 7, François Michonneau 7, John Starmer 7, Nathaniel Evans 7 pour les échinodermes Photo Y. Hubert RÉSUMÉ Les îles Marquises ne présentent plus de formations récifales comme elles en possédaient avant l’ho- locène. Malgré une grande diversité des habitats littoraux et profonds dans un milieu océanique riche en plancton, la richesse en invertébrés est moindre que celles des autres archipels de la Polynésie française. Seuls quelques groupes taxonomiques ont été étudiés; ceux dont les espèces sont de taille conséquente. Le nombre d’espèces d’éponges, coraux, mollusques, crustacés et échinodermes est de près de 1 200 avec une dominance à 90 % des mollusques et des crustacés. En raison d’un iso- lement océanographique, une très forte spéciation s’est développée dans certains groupes comme les mollusques et les crustacés alors qu’elle est nulle pour les coraux et pour l’instant impossible à évaluer pour les éponges. Histoire récifale au cours du quaternaire, habitats particuliers et importants taux d’endémisme de certains groupes font tout l’intérêt de cette faune d’invertébrés des îles Marqui- ses qui est loin d’avoir été bien inventoriée. ABSTRACT The Marquesas Islands have no longer a reef formation as they possessed before the Holocene. Despite an
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • (Gastropoda: Cypraeidae) from the Western Hemisphere, with a Description of a New Species from the Eocene of Washington
    THE NAUTILUS 109(4):113-116, 1995 Page 113 First Report of the Genus Proadusta Sacco, 1894 (Gastropoda: Cypraeidae) from the Western Hemisphere, with a Description of a New Species from the Eocene of Washington Lindsey T. Groves Richard L. Squires Malacology Section Department of Geological Sciences Natural History Museum of Los California State University Angeles County 18111 Nordhoff Street 900 Exposition Boulevard Northridge, California 91330-8266 Los Angeles, California 90007 USA USA ABSTRACT Fossil-bearing rocks at both localities consist of a thin section of richly fossiliferous and conglomeratic silty A new species of cypraeid gastropod, Proadusta goedertorum mudstone interbedded with basalt. Extrusion of the ba- n. sp., is reported from the middle lower Eocene ("Capay Stage") upper part of the Crescent Formation, Thurston Coun- salt caused shoaling and the establishment of a rocky ty, Washington. This new species was found at two localities shoreline community where gastropod and bivalved mol- where shallow-water marine deposits are interbedded with rocky lusks lived with colonial corals and abundant coralline shoreline-forming basalt flows. Proadusta Sacco, 1894 was pre- algae. Shells were transported a short distance seaward viously known only from the lower Eocene to lower Miocene where they were deposited as a matrix of coquina that of Europe, Myanmar (= Burma), and Indonesia. infilled spaces between basalt boulders. Many of the shells Key words: Proadusta, Cypraeidae, Western Hemisphere, Eo- in the coquina are small to minute, and their size pre- cene, Washington. vented them from being destroyed during transport. Within the coquina are a few larger shells, like those of the new species, that apparently lived in the shallow- subtidal environment where coquina accumulation took INTRODUCTION place (Squires & Goedert, 1994; in press).
    [Show full text]
  • Phenetic Relationship Study of Gold Ring Cowry, Cypraea Annulus
    Aquacu nd ltu a r e s e J i o r u e r h n s a i l F Fisheries and Aquaculture Journal Laimeheriwa, Fish Aqua J 2017, 8:3 ISSN: 2150-3508 DOI: 10.4172/2150-3508.1000215 Research Article Open Access Phenetic Relationship Study of Gold Ring Cowry, Cypraea Annulus (Gastropods: Cypraeidae) in Mollucas Islands Based on Shell Morphological Bruri Melky Laimeheriwa* Department of Water Resources Management, Faculty of Fisheries and Marine Science, Unpatti, Center of Marine and Marine Affairs Pattimura University Ambon, Maluku, Indonesia *Corresponding author: Bruri Melky Laimeheriwa, Department of Water Resources Management, Faculty of Fisheries and Marine Science, Unpatti, Center of Marine and Marine Affairs Pattimura University Ambon, Maluku, Indonesia, Tel: +62 911 322628; E-mail: [email protected] Received date: July 17, 2017; Accepted date: August 08, 2017; Published date: August 15, 2017 Copyright: © 2017 Laimeheriwa MB. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This study aims to construct taxonomic character of Cypraea annulus based on shell morphological; analyzed the developmental stages of the snail shell and investigated the similarities and phenotypic distances of snails with numerical taxonomic approaches. This research lasted four years on island of Larat and Ambon. The sample used was 2926. Construction of morphological taxonomic characters using binary data types with 296 test characters and ordinal types with 173 test characters; and 32 specimens of operational taxonomic units. The data is processed and analyzed on Lasboratory of Maritime and Marine Study Centre, University of Pattimura.
    [Show full text]
  • First Record of Xandarovula Patula (Pennant, 1777) in the Dutch North Sea (Gastropoda, Ovulidae )
    B75-Schrieken:Basteria-2010 28/11/2011 14:49 Page 107 First record of Xandarovula patula (Pennant, 1777) in the Dutch North Sea (Gastropoda, Ovulidae ) Niels Schrieken BiOrganized, Grenadiersweg 8, NL-3902 JC Veenendaal, The Netherlands; [email protected]. ANEMOON Foundation, P.O. Box 29, NL-2120 AA Bennebroek, The Netherlands [Corresponding author] Arjan Gittenberger GiMaRIS, J.H. Oortweg 21, NL-2333 CH Leiden, The Netherlands; [email protected] NCB Naturalis, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands . Institute of Biology Leiden (IBL) & Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9516, NL-2300 RA Leiden, The Netherlands . ANEMOON Foundation, P.O. Box 29, NL-2120 AA Bennebroek, The Netherlands & Wouter Lengkeek Bureau Waardenburg, Varkensmarkt 9, NL-4101 CK Culemborg, The Netherlands; [email protected] . Duik de Noordzee Schoon, Duyvenvoordestraat 35, NL-2681 HH Monster, The Netherlands Introduction The ovulid gastropod Xandarovula patula (Pennant, 1777) 107 was found 14.vi.2011 on the soft coral Alcyonium digitatum For a long time, Xandarovula patula (Pennant, 1777) has been Linnaeus, 1758 (Dead man’s fingers) during a dive in the referred to as Simnia patula (e.g. Reijnen et al., 2010) , regard - central North Sea on the wreck ‘Jeanette Kristina ’ on the less of the fact that Cate (1973) designated this species as the Dutch Dogger Bank. Later on additional specimens were type species of a new genus Xandarovula Cate, 1973. Dolin & found, sometimes with egg-capsules, on A. digitatum again, Ledon (2002), Fehse (2007) and Høisæter et al. (2011) even at two locations on the Dutch Cleaver Bank.
    [Show full text]
  • Host-Microbe Interactions in Octocoral Holobionts - Recent Advances and Perspectives Jeroen A
    van de Water et al. Microbiome (2018) 6:64 https://doi.org/10.1186/s40168-018-0431-6 REVIEW Open Access Host-microbe interactions in octocoral holobionts - recent advances and perspectives Jeroen A. J. M. van de Water* , Denis Allemand and Christine Ferrier-Pagès Abstract Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities.
    [Show full text]
  • Conservation of Biodiversity in México: Ecoregions, Sites
    https://www.researchgate.net/ publication/281359459_DRAFT_Conservation_of_biodiversity_in_Mexico_ecoregions_sites_a nd_conservation_targets_Synthesis_of_identification_and_priority_setting_exercises_092000_ -_BORRADOR_Conservacion_de_la_biodiversidad_en_ CONSERVATION OF BIODIVERSITY IN MÉXICO: ECOREGIONS, SITES AND CONSERVATION TARGETS SYNTHESIS OF IDENTIFICATION AND PRIORITY SETTING EXERCISES DRAFT Juan E. Bezaury Creel, Robert W. Waller, Leonardo Sotomayor, Xiaojun Li, Susan Anderson , Roger Sayre, Brian Houseal The Nature Conservancy Mexico Division and Conservation Science and Stewardship September 2000 With support from the United States Agency for Internacional Development (USAID) through the Parks in Peril Program and the Goldman Fund ACKNOWLEDGMENTS Dra. Laura Arraiga Cabrera - CONABIO Mike Beck - The Nature Conservancy Mercedes Bezaury Díaz - George Mason High School Tim Boucher - The Nature Conservancy Eduardo Carrera - Ducks Unlimited de México A.C. Dr. Gonzalo Castro - The World Bank Dr. Gerardo Ceballos- Instituto de Ecología UNAM Jim Corven - Manomet Center for Conservation Sciences / WHSRN Patricia Díaz de Bezaury Dr. Exequiel Ezcurra - San Diego Museum of Natural History Dr. Arturo Gómez Pompa - University of California, Riverside Larry Gorenflo - The Nature Conservancy Biol. David Gutierrez Carbonell - Comisión Nal. de Áreas Naturales Protegidas Twig Johnson - World Wildlife Fund Joe Keenan - The Nature Conservancy Danny Kwan - The Nature Conservancy / Wings of the Americas Program Heidi Luquer - Association of State Wetland
    [Show full text]
  • Marine Pharmacology in 2012–2013
    marine drugs Review Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action † Alejandro M. S. Mayer 1,*, Abimael D. Rodríguez 2, Orazio Taglialatela-Scafati 3 and Nobuhiro Fusetani 4 1 Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA 2 Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA; [email protected] 3 Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; [email protected] 4 Fisheries and Oceans Hakodate, Hakodate 041-8611, Japan; anobu@fish.hokudai.ac.jp * Correspondence: [email protected]; Tel.: +1-630-515-6951; Fax: +1-630-971-6414 † This review is dedicated to the memory of the late Professor Ernesto Fattorusso on the occasion of what would have been his 80th birthday, and the late Professor Robert S. Jacobs on the occasion of what would have been his 84th birthday. Received: 20 July 2017; Accepted: 21 August 2017; Published: 29 August 2017 Abstract: The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products.
    [Show full text]