Chromoplexaura Marki Class: Anthozoa Order: Alcyonacea Red Whip Gorgonian Family: Plexauridae

Total Page:16

File Type:pdf, Size:1020Kb

Chromoplexaura Marki Class: Anthozoa Order: Alcyonacea Red Whip Gorgonian Family: Plexauridae Phylum: Cnidaria Chromoplexaura marki Class: Anthozoa Order: Alcyonacea Red Whip Gorgonian Family: Plexauridae Lauren N. Rice Taxonomy: The type specimen for this 2013) (Fig. 2). On the polyps, the sclerites are species was named Euplexaura marki 0.04 – 0.09 mm long and are spindles and Kukünthal 1913. Recent work has separated rods with pronounced tubercles (Williams Chromoplexaura marki from the genus 2013). All sclerites for Chromoplexaura marki Euplexaura, whose species are primarily are pigmented and will retain their color even located in the Indo-Pacific (Williams 2013). after fixation in ethanol or formalin. Current phylogenetic work has indicated that Sexual Dimorphism: None described or the family Plexauridae is polyphyletic, and observed for this species. species are sometimes associated with genera from other families (McFadden et al. Possible Misidentifications 2006; Williams 2013; Wirshing et al. 2005). Specimens originating from the Indo-Pacific Some superficial similarities exist between likely belong to the genus Euplexaura and Chromoplexaura marki and various species of may bear some morphological similarities. Swiftia found in the Eastern Pacific, but more However, species in Euplexaura have phylogenetic work is needed to determine if colorless sclerites semi-spherical or ovoid in these species belong to the same or different shape, leading to easy identification genera (Williams 2013). (Fabricius and Alderslade 2001). Chromoplexaura marki might also be Description confused for several species belonging to Size: Chromoplexaura marki colonies can the genera Swiftia or Thesea, which can be reach upwards of 15 cm in height, with found in the Eastern Pacific or the Atlantic. individual branches 1.0 to 11 cm long. The Members of Swiftia have polyps that main stem and branches can be 2.5 to 4.0 emerge from distinct calyx structures and mm in diameter (Williams 2013). bear mostly spindle-shaped sclerites. Color: Colonies have a uniform orange-red or Species in the genus Thesea lack the calyx red coloration. Exposed central axis protuberances around each polyp but also structures have a dull brown-black have spindle-shaped sclerites (Williams appearance. Exserted polyps are translucent 2013). white in color (Fig. 1). General Morphology: In general, whole Ecological Information colonies are erect and planar in form. A Range: Chromoplexaura marki colonies have central, basal stem supports multiple lateral been observed from central Oregon to branches that are elongate, slightly curved, southern California (Williams 2013). and slender with slightly enlarged or swollen Local Distribution: Colonies are found along tips. The central axis is proteinaceous and the continental slope on subtidal rocks and hollow. outcrops. The rocky reef offshore of Cape Mouthparts: The polyps are approximately Arago holds numerous colonies. 1.0 mm in width and can be fully retractive but Habitat: Sublittoral benthic communities on often form low and rounded projections rocky bottom and other hard substrates. (Williams 2013). Each polyp bears 8 tentacles Temperature: The temperature range this lined with pinnules. species can tolerate remains unknown. Other species-specific parts: The sclerites Depth: 9 – 90 meters in the coenenchyma are composed primarily Associates: The epizooitic barnacle of radiates, with spindles and ovoid forms Conopea galeata is often found attached to roughly 0.06 – 0.24 mm in length (Williams the host coral's exposed axial skeleton. Older A publication of the Oregon Institute of Marine Biology at the University of Oregon. https://oimb.uoregon.edu/oregon-shelf-invertebrates Email corrections to: [email protected] barnacles become engulfed in found on colonies of Lophogorgia (Gomez coencenchymal tissue and form gall-like 1973) and the sea pen Ptilosarcus guerneyi growths along the branches (Williams 2013). (Birkeland 1974). Abundance: Unknown for this species Behavior: The behavior patterns for Chromoplexaura marki and other Plexaurid Life-History Information corals remain unexamined. Reproduction: Reproductive patterns and tendencies are currently unknown for Bibliography Chromoplexaura marki. Broadcast spawning 1. BIRKELAND, C. 1974. Interactions is common in most sub-orders of Alcyonacea between a sea pen and seven of its (Watling et al. 2011). Species in the closely predators. Ecological Monographs 44: related genus Swiftia are usually 211 – 232. gonochoristic with maximum oocyte sizes 2. COMA, R., C. LINARES, E. POLA, ranging between 197 - 726 µm (Feehan and and M. ZABALA 2001. Seguiment Waller 2015). Members of the genus Swiftia temporal de la gorgo`nia Paramuricea likely undergo free-spawning, and no clavata de les illes Medes Exercici evidence of brooding has been observed 2001. Pages 59–82 in M. Zabala, (Feehan and Waller 2015). Colonies of the editor. Seguiment temporal de l’a`rea related species Plexaura kuna undergo free- marina protegida de les illes Medes. spawning in large, synchronized events Informe anual any 2001. Departament (Lasker et al. 1998). de Medi ambient, Generalitat de Larva: The exact larval form for Catalunya, Barcelona, Spain. Chromoplexaura marki is unknown. Planula 3. FABRICIUS, K., and P. larvae, however, have been observed in the ALDERSLADE. 2001. Soft corals and related genus Plexaura (Lasker et al. 1998). sea fans – a comprehensive guide to The large oocyte diameters observed in the tropical shallow-water genera of Swiftia and other deep-sea octocorals have the Central-West Pacific, the Indian led many to hypothesize that their larvae are Ocean, and the Red Sea. Australian lecithotrophic (Watling et al. 2011). Institute of Marine Science, Juvenile: Little is known about the juvenile Townsville. p 264. stages of Chromoplexaura marki or other 4. FEEHAN, K. A., and R. G. WALLER. cold-water soft corals. 2015. Notes on reproduction of eight Longevity: Unknown for this species. Large species of Eastern Pacific cold-water colonies in the related genus Paramuricia octocorals. Journal of the Marine have been estimated at over 60 years old Biological Association of the United (Linares et al. 2007). Kingdom 95: 691-696. Growth Rate: The growth rates for 5. GOMEZ, E. D. 1973. Observations on Chromoplexuara marki remain unknown. feeding and prey specificity of Tritonia However, past studies have estimated 0.8 festiva (Stearns) with comments on cm/year for the species Paramuricia clavate other Tritoniids (Mollusca: (Coma et al. 2001; Linares et al. 2007). Opisthobranchia). The Veliger 16:163– Food: The dietary compositions for cold- 165. water gorgonian corals remains understudied. 6. KÜKENTHAL, W. 1913. Uber die Based on data collected from related shallow- Alcyonarienfauna Californiens und ihre water species, it is likely that Plexaurid corals tiergeographischen Beziehungen. consume a variety of planktonic organisms, Zoologische Jarbucher (Systematik) invertebrate eggs, and particulate organic 35(2): 219-270. matter (Ribes et al. 2003; Watling et al. 2011). 7. LASKER, H. R., K. KIM, M. A. Predators: Nudibranch species such as COFFROTH.1998. Production, Tritonia festiva likely feed on coenenchyme settlement, and survival of plexaurid tissue, causing the axial skeleton to become gorgonian recruits. Marine Ecological exposed. Similar behavior for T. festiva has Progress Series 162: 111-123. been observed when individuals have been 8. LINARES, C., D. F. DOAK, R. COMA, Rice, L.N. 2021. Chromoplexaura marki. In: Oregon Shelf Invertebrates. C.Q. Plowman and C.M. Young (eds.). Oregon Institute of Marine Biology, Charleston, OR. D. DIAZ, and M. ZABALA. 2007. Life 11. WILLIAMS, G. C. 2013. New taxa and history and viability of a long-lived revisionary systematics of marine invertebrate: the octocoral alcyonacean octocorals from the Paramuricia clavate. Ecology 88(4): Pacific coast of North America 918-928. (Cnidaria, Anthozoa). ZooKeys 283: 9. MCFADDEN, C. S., S. C. FRANCE, J. 15-42. A. SÁNCHEZ, and P. ALDERSLADE, 12. WIRSHING, H. H., C. G. MESSING, 2006. A molecular phylogenetic C. J. DOUADY, J. REED, M. J. analysis of the Octocorallia (Cnidaria: STANHOPE, and M. S. SHIVIJ. 2005. Anthozoa) based on mitochondrial Molecular evidence for multiple protein-coding sequences. Molecular lineages in the gorgonian family Phylogenetics and Evolution 41: 513- Plexauridae (Anthozoa: Octocorallia). 527 Marine Biology 147: 497-508. 10. WATLING, L., S. C. FRANCE, E. 13. Ribes M., R. Coma, and S. Rossi. PANTE, and A. SIMPSON. 2011. 2003. Natural feeding of the temperate Biology of deep-water octocorals. In: asymbiotic octocoral-gorgonian Lesser M (ed) Advances in Marine Leptogorgia sarmentosa (Cnidaria: Biology. Academic Press, London, pp Octocorallia). Marine Ecology 41–122. Progress Series 254: 141-150. Fig. 1. A whole colony of Chromoplexaura marki Fig. 2. Scanning electron micrograph showing white, exserting polyps along the showing coenenchymal sclerites for C. marki. length of the branches. The scale bar Photograph taken by R. Aitchison. represents 1 cm. This colony was collected from the Cape Arago Reef at 50 m on June 15th, 2020. A publication of the Oregon Institute of Marine Biology at the University of Oregon. https://oimb.uoregon.edu/oregon-shelf-invertebrates Email corrections to: [email protected] .
Recommended publications
  • Larval Development of Shallow Water Barnacles of the Carolinas (Cirripedia
    421 NOAA Technical Report Circular 421 OF <•*>" *o, Larval Development of / Shallow Water Barnacles of the Carolinas (Cirripedia: Sr V/ *TES O* Thoracica) With Keys to Naupliar Stages William H. Lang February 1979 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS Circular series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in this series. Technical papers originating in economics studies and from management in- vestigations appear in the Circular series. NOAA Technical Report NMFS Circulars are available free in limited numbers to governmental agencies, both Federal and State.
    [Show full text]
  • Table B – Subclass Octocorallia
    Table B – Subclass Octocorallia BINOMEN ORDER SUBORDER FAMILY SUBFAMILY GENUS SPECIES SUBSPECIES COMN_NAMES AUTHORITY SYNONYMS #Records Acanella arbuscula Alcyonacea Calcaxonia Isididae n/a Acanella arbuscula n/a n/a n/a n/a 59 Acanthogorgia armata Alcyonacea Holaxonia Acanthogorgiidae n/a Acanthogorgia armata n/a n/a Verrill, 1878 n/a 95 Anthomastus agassizii Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus agassizii n/a n/a (Verrill, 1922) n/a 35 Anthomastus grandiflorus Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus grandiflorus n/a n/a Verrill, 1878 Anthomastus purpureus 37 Anthomastus sp. Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus sp. n/a n/a Verrill, 1878 n/a 1 Anthothela grandiflora Alcyonacea Scleraxonia Anthothelidae n/a Anthothela grandiflora n/a n/a (Sars, 1856) n/a 24 Capnella florida Alcyonacea n/a Nephtheidae n/a Capnella florida n/a n/a (Verrill, 1869) Eunephthya florida 44 Capnella glomerata Alcyonacea n/a Nephtheidae n/a Capnella glomerata n/a n/a (Verrill, 1869) Eunephthya glomerata 4 Chrysogorgia agassizii Alcyonacea Holaxonia Acanthogorgiidae Chrysogorgiidae Chrysogorgia agassizii n/a n/a (Verrill, 1883) n/a 2 Clavularia modesta Alcyonacea n/a Clavulariidae n/a Clavularia modesta n/a n/a (Verrill, 1987) n/a 6 Clavularia rudis Alcyonacea n/a Clavulariidae n/a Clavularia rudis n/a n/a (Verrill, 1922) n/a 1 Gersemia fruticosa Alcyonacea Alcyoniina Alcyoniidae n/a Gersemia fruticosa n/a n/a Marenzeller, 1877 n/a 3 Keratoisis flexibilis Alcyonacea Calcaxonia Isididae n/a Keratoisis flexibilis n/a n/a Pourtales, 1868 n/a 1 Lepidisis caryophyllia Alcyonacea n/a Isididae n/a Lepidisis caryophyllia n/a n/a Verrill, 1883 Lepidisis vitrea 13 Muriceides sp.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Elizabeth (Beth) Anne Horvath Education: --May, 1976, Bachelor of Arts, Biology--Westmont College --August, 1981, Masters of Science, Biology--Cal. State Univ., Long Beach Dissertation Title: Experiences in Marine Science, an Introductory Text. Supplemental Research Projects: Pelagic Snails; Development in Pelagic Tunicates; SEM studies of Luminescence in Pelagic Tunicates --Selected Graduate Level Courses beyond Master's; subjects include-- Channel Island Biology, Deep Sea Biology, Conservation Biology; also Field Course: Natural History of the Galapagos Islands (UCLA) Teaching Experience: (Emphases on: Marine Biology, Invertebrate Zoology, Marine Ecology and Natural History, Zoology, Marine Mammals) --Westmont College, 1978-1998, Part time to Full time Instructor --Santa Barbara City College, 1989-1990, Instructor (Human Anatomy) --Westmont College, 1998-2013, Assistant Professor; 2013-Present, Associate Professor --AuSable, Pacific Rim: Assistant/Associate Professor, 1998-2006; 2018-Present --CCSP-New Zealand: Associate Professor, Spring, 2010, Fall, 2011, Fall, 2012 Courses Created/Developed: (Undergraduate level, most Upper Division): Marine Biology, Invertebrate Zoology, Marine Invertebrates, Marine Mammals, Marine Mammal Ecophysiology, Animal Diversity, General Zoology Rank: First Year at Westmont: Instructor (part-Time), 1978; Full-Time, 1988 Previous Rank: Instructor of Biology, 1990-1998; Assistant Professor, 1998-2013 Present Rank: Associate Professor, Fall 2013 to the present Administrative Duties Have Included:
    [Show full text]
  • Pontificia Universidad Católica De Valparaíso Facultad De Recursos Naturales Escuela De Ciencias Del Mar Valparaíso – Chile
    Pontificia Universidad Católica de Valparaíso Facultad de Recursos Naturales Escuela de Ciencias del Mar Valparaíso – Chile INFORME FINAL CARACTERIZACION DEL FONDO MARINO ENTRE LA III Y X REGIONES (Proyecto FIP Nº 2005-61) Valparaíso, octubre de 2007 i Título: “Caracterización del fondo marino entre la III y X Regiones” Proyecto FIP Nº 2005-61 Requirente: Fondo de Investigación Pesquera Contraparte: Pontificia Universidad Católica de Valparaíso Facultad de Recursos Naturales Unidad Ejecutora: Escuela de Ciencias del Mar Avda. Altamirano 1480 Casilla 1020 Valparaíso Investigador Responsable: Teófilo Melo Fuentes Escuela de Ciencias del Mar Pontificia Universidad Católica de Valparaíso Fono : 56-32-274264 Fax : 56-32-274206 E-mail: [email protected] Subcontrato: Universidad Católica del Norte – UCN Universidad Austral de Chile – UACH ii EQUIPO DE TRABAJO INVESTIGADORES INSTITUCION AREA DE TRABAJO Teófilo Melo F. PUCV Tecnología pesquera Juan Díaz N. PUCV Geofísica marina José I. Sepúlveda V. PUCV Oceanografía biológica Nelson Silva S. PUCV Oceanografía física y química Javier Sellanes L. UCN Comunidades benónicas Praxedes Muñoz UCN Oceanografía geo-química Julio Lamilla G. UACH Ictiología de tiburones, rayas y quimeras Alejandro Bravo UACH Corales Rodolfo Vögler Cons. Independiente Comunidades y relaciones tróficas Germán Pequeño1 UACH Ictiología CO-INVESTIGADORES INSTITUCION AREA DE TRABAJO Y COLABORADORES Carlos Hurtado F. PUCV Coordinación general Dante Queirolo P. PUCV Intensidad y distribución del esfuerzo de pesca Patricia Rojas Z.2 PUCV Análisis de contenido estomacal Yenny Guerrero A. PUCV Oceanografía física y química Erick Gaete A. PUCV Jefe de crucero y filmaciones submarinas Ivonne Montenegro U. PUCV Manejo de bases de datos Roberto Escobar H. PUCV Toma de datos en cruceros Víctor Zamora A.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (V
    Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (v. 2020) by David B. Packer1, Martha S. Nizinski2, Stephen D. Cairns3, 4 and Thomas F. Hourigan 1. NOAA Habitat Ecology Branch, Northeast Fisheries Science Center, Sandy Hook, NJ 2. NOAA National Systematics Laboratory Smithsonian Institution, Washington, DC 3. National Museum of Natural History, Smithsonian Institution, Washington, DC 4. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD This annex to the U.S. Northeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems of the United States” provides a revised and updated list of deep-sea coral taxa in the Phylum Cnidaria, Class Anthozoa, known to occur in U.S. waters from Maine to Cape Hatteras (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from Packer et al. (2017) with the addition of new species and range extensions into Northeast U.S. waters reported through 2020, along with a number of species previously not included. No new species have been described from this region since 2017. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, then alphabetically by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distributions. The total number of distinct deep-sea corals documented for the U.S.
    [Show full text]
  • Host-Microbe Interactions in Octocoral Holobionts - Recent Advances and Perspectives Jeroen A
    van de Water et al. Microbiome (2018) 6:64 https://doi.org/10.1186/s40168-018-0431-6 REVIEW Open Access Host-microbe interactions in octocoral holobionts - recent advances and perspectives Jeroen A. J. M. van de Water* , Denis Allemand and Christine Ferrier-Pagès Abstract Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities.
    [Show full text]
  • Wmed N 104 101 117 37 100 67 65 71 52
    Epibiont communities of loggerhead marine turtles (Caretta caretta) in the western Mediterranean: influence of geographical and ecological factors Domènech F1*, Badillo FJ1, Tomás J1, Raga JA1, Aznar FJ1 1Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain. * Corresponding author: F. Domènech, Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna (Valencia), Spain. Telephone: +34 963544549. Fax: +34 963543733. E-mail: [email protected] Journal: The Journal of the Marine Biological Association of the United Kingdom Appendix 1. Occurrence of 166 epibiont species used for a geographical comparison of 9 samples of loggerhead marine turtle, Caretta caretta. wMed1: western Mediterranean (this study), cMed1: central Mediterranean (Gramentz, 1988), cMed2: central Mediterranean (Casale et al., 2012), eMed1: eastern Mediterranean (Kitsos et al., 2005), eMed2: eastern Mediterranean (Fuller et al., 2010), Atl1N: North part of the northwestern Atlantic (Caine, 1986), Atl2: North part of the northwestern Atlantic (Frick et al., 1998), Atl1S: South part of the northwestern Atlantic (Caine, 1986), Atl3: South part of the northwestern Atlantic (Pfaller et al., 2008*). Mediterranean Atlantic wMed cMed eMed nwAtl North part South part n 104 101 117 37 100 67 65 71 52 Source wMed1 cMed1 cMed2 eMed1 eMed2 Atl1N Atl2 Atl1S Atl3 Crustacea (Cirripedia) Family Chelonibiidae Chelonibia testudinaria x x x x x x x x x
    [Show full text]
  • Anthozoa: Octocorallia: Plexauridae)
    Zootaxa 2995: 27–44 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A revision of the genus Heterogorgia Verrill, 1868 (Anthozoa: Octocorallia: Plexauridae) ODALISCA BREEDY1,2,3& HECTOR M. GUZMAN3 1Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica. 2Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica. E-mail: [email protected] ³Smithsonian Tropical Research Institute, Box 0843–03092, Panama, Republic of Panama. E-mail: [email protected] Abstract The genus Heterogorgia Verrill, 1868 is poorly known. Lack of good illustrations and clear definitions have historically led authors to assign or transfer species erroneously to it. The genus was established by Verrill for three eastern Pacific species, another was described by Breedy and Guzman in 2005, and the geographic distribution was extended with the discovery of a western Atlantic species described by Castro in 1990. Heterogorgia is characterised by colonies composed of a number of stout stems that branch laterally and irregularly and arise from a conspicuous spreading holdfast. Coenen- chymal sclerites are mostly colourless spindles; anthocodiae have strong spindles arranged in collaret and points; and the calyces are prominently armed with whorls of strongly projecting thorns. To define Heterogorgia we examined original type material of all eastern Pacific and western Atlantic species described until now and reference specimens from recent expeditions along the eastern Pacific. Morphological characters are analysed and illustrated using scanning electron mi- crographs. Lectotypes are designated for H. tortuosa and H.
    [Show full text]