Reconciling Artificial Intelligence and Non-Bayesian Models For

Total Page:16

File Type:pdf, Size:1020Kb

Reconciling Artificial Intelligence and Non-Bayesian Models For Folia Morphol. Vol. 80, No. 3, pp. 625–641 DOI: 10.5603/FM.a2020.0149 O R I G I N A L A R T I C L E Copyright © 2021 Via Medica ISSN 0015–5659 eISSN 1644–3284 journals.viamedica.pl Unification of frequentist inference and machine learning for pterygomaxillary morphometrics A. Al-Imam1, 2 , I.T. Abdul-Wahaab1, 3, V.K. Konuri4, A. Sahai5, 6, A.K. Al-Shalchy7, 8 1Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Iraq 2Queen Mary University of London, the United Kingdom 3Department of Radiology, College of Medicine, University of Baghdad, Iraq 4Department of Anatomy, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India 5Dayalbagh Educational Institution, Deemed University, Dayalbagh, Agra, India 6International Federation of Associations of Anatomists, Seattle, United States of America 7Neurosurgical Unit, Department of Surgery, College of Medicine, University of Baghdad, Iraq 8The Royal College of Surgeons, United Kingdom [Received: 17 September 2020; Accepted: 24 November 2020; Early publication date: 30 December 2020] Background: The base of the skull, particularly the pterygomaxillary region, has a sophisticated topography, the morphometry of which interests pathologists, maxillofacial and plastic surgeons. The aim of the study was to conduct ptery- gomaxillary morphometrics and test relevant hypotheses on sexual and laterali- ty-based dimorphism, and causality relationships. Materials and methods: We handled 60 dry skulls of adult Asian males (36.7%) and females (63.3%). We calculated the prime distance D [prime] for the imaginary line from the maxillary tuberosity to the midpoint of the pterygoid process between the upper and the lower part of the pterygomaxillary fissure, as well as the parasagittal D [x-y inclin.] and coronal inclination of D [x-z inclin.] of the same line. We also took other morphometrics concerning the reference point, the maxillary tuberosity. Results: Significant sexual as well as laterality-based dimorphism and bivariate correlations existed. The univariate models could not detect any significant effect of the predictors. On the contrary, summative multivariate tests in congruence with neural networks, detected a significant effect of laterality on D [x-y inclin.] (p-value = 0.066, partial eta squared = 0.030), and the interaction of laterality and sex on D [x-z inclin.] (p-value = 0.050, partial eta squared = 0.034). K-means clustering generated three clusters highlighting the significant classifier effect of D [prime] and its three-dimensional inclination. Conclusions: Although the predictors in our analytics had weak-to-moderate effect size underlining the existence of unknown explanatory factors, it provided novel results on the spatial inclination of the pterygoid process, and reconciled machine learning with non-Bayesian models, the application of which belongs to the realm of oral-maxillofacial surgery. (Folia Morphol 2021; 80, 3: 625–641) Key words: artificial intelligence, cerebral dominance, laterality, masticatory apparatus, osteology, pterygoid process, pterygopalatine fossa, stomatognathic system Address for correspondence: Dr. A. Al-Imam, 2601 Chemin de la Canardière, QC G1J 2G3, Quebec, Canada, tel: +1 (581) 700-0110 [Canada], +964 (0) 771 433 8199 [Iraq], e-mail: [email protected]; [email protected] This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to down- load articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. 625 Folia Morphol., 2021, Vol. 80, No. 3 INTRODUCTION the pterygomaxillary fissure. We shall also estimate The pterygomaxillary region and the maxillary the posterior-superior-medial three-dimensional alveolus are unique from the anatomical and clinical (3D) inclination, i.e., the parasagittal (x-y plane) standpoint and can be affected by several pathologies and the coronal (x-z plane) inclination, of the line [40, 46]. Besides, these regions have peculiar biome- connecting both points. Morphometry will also chanical properties, blood supply, as well as lymphatic include other covariables, including the distance drainage [36]. They neighbour and communicate with from the maxillary tuberosity to the pterygoid ha- some critical areas, including middle cranial fossa, mulus, the greater palatine foramen, the centre of the pterygopalatine fossa, the adjacent part of the the cruciform suture, foramen ovale, and foramen base of the skull, the carotid sheath, the nasopharynx spinosum. We shall implement non-Bayesian sta- and the “danger triangle” of the face [25]. Follow- tistical inference and machine learning models to ing a posterior maxillary molar tooth extraction, the test three hypotheses. The first two will examine the management routinely involves dental prostheses and potential sexual dimorphism and laterality-based implants. The implant site may require bone graft- differences in connection with our morphome- ing techniques that involve the maxillary tuberosity try. The third hypothesis will attempt to explore and the pterygoid process of the sphenoid bone, to patterns of causations and the interaction effect ensure an implant that closely resembles the nor- among different explanatory factors with a par- mal anatomy and attains biomechanical stability [2]. ticular interest in explaining the variables affecting The clinical applications for studies on morphome- the 3D inclination of the pterygoid process relative try and pathologies affecting the pterygomaxillary to the maxillary tuberosity. We will also discuss junction are valuable for traumatology physicians, the relevant evolutionary lines of the skull, clinical oral and maxillofacial surgeons, plastic surgeons and applications in oral and maxillofacial surgery, as dentists [2, 11]. well as reporting anecdotal pathologies of interest. The configuration of the skull is mainly deter- Following a pragmatic review of the literature, we mined by the development of the brain and the confirm that our study is first of its kind regarding masticatory apparatus and the relationships between its objective and methodology. the brain capsule and the latter [26]. In mammals, We opine that the present study is novel for five the cranial cavity grows with the enlargement of reasons. Firstly, our study is the only one in the litera- the brain and approaches the nasal cavity [14]. In ture to address the spatial inclination of the pterygoid humans, the nasal cavity altogether with the facial process in relation to the maxillary tuberosity within part of the skull, moves under the braincase, not only the Asian population. Secondly, we are approaching because of the evolutionary expansion of cerebral our research question using an unprecedented meth- hemispheres but also due to the reduction of the odology, in anatomical sciences, by implementing and masticatory apparatus [27]. These features distin- contrasting classical non-Bayesian statistics versus guish the human skull from the skulls of the lowest machine learning techniques. Thirdly, we implement- mammals as well as anthropoid apes [13]. In animals, ed several models of regression analytics, multivariate the sphenoid bone forms as the result of the fusion tests, and neural networks to attempt finding the of several bones that coexist independently [34]. It, model that best describe and explain the pterygomax- therefore, develops as a mixed bone from several illary morphometrics of interest. Fourthly, we argue paired and unpaired foci of ossification merging at that this robust approach in analysing data is external- the time of birth into three parts, which, in turn, fuse ly valid and replicable by other researchers, thereby, to form a single bone by the end of the first year of serving as a foundation of future research within the neonatal life [30]. discipline of anatomical and morphological scienc- The primary objective of the current study is to es. Finally, we are analysing our research question and measure several morphometric parameters for the study objectives not only from an anatomical sciences pterygomaxillary region, considering various ana- perspective but also from the viewpoint of evolution- tomical landmarks. Morphometry will principally ary biology and comparative anatomy, which renders include measuring the distance from the maxillary our research genuinely interdisciplinary, combining tuberosity to the midpoint of the pterygoid process aspects of human anatomy, vertebrates’ evolution, located between the upper and the lower part of data science, and artificial intelligence. 626 A. Al-Imam et al., Pterygomaxillary morphometrics MATERIALS AND METHODS recorded the distance from the maxillary tuberosity Ethics and code of conduct, the osteology to the pterygoid hamulus (D [hamulus]), the greater sample, morphometry and tools palatine foramen (D [greater palatine foramen]), the The study was conducted following the stand- centre of the cruciform suture (D [cruciform suture]), ard protocol of Ethics and Scientific Committee of foramen ovale (D [ovale]), and foramen spinosum the College of Medicine (study protocol 155-19 on (D [spinosum]). We used Neoteck aluminium digital 29 December 2019), the declaration of Helsinki by angle finder protractor and a digital protractor ap- World Medical Association, the European Union (EU) plication (Toolbox pro v5.4.0), which is
Recommended publications
  • Study of Wormian Bones on Dry Human Skull and Its Sexual Dimorphism in the Region of Andhra Pradesh
    Original Research Article Study of Wormian Bones on Dry human skull and its sexual dimorphism in the region of Andhra Pradesh Shone Vasudeo Durge Assistant Professor, Dept. of Anatomy, Fathima Institute of Medical Sciences, Ramarajupalli, Andhra Pradesh Corresponding Author: E-mail: [email protected] Abstract This study was aimed at identifying the wormian bone and their overall incidence in respect to their number and location in the region of Andhra Pradesh. Overall incidence of wormian bones was more in female (47.72%) than in male skulls (41.66%). They occurred more frequently at lambdoid suture (38%). Wormian bones along the coronal suture, Bregma and Asterion were seen only in male skulls, while intra-orbital wormian bones and wormian bones at Pterion were seen only in female skulls. This study concludes by stating that, there exists a moderate degree of sexual dimorphism among the wormian bones with respect to overall incidence, number and location. Keywords- Skull, Sexual dimorphism, Wormian bones, Lambda, Asterion. Background knowledge of WBs is important in the diagnosis of Wormian bones, also known as intra-sutural bones, these disorders (Cremin, Goodman, Spranger et al., are extra bone pieces that occur within a suture in the 1982). It was reported that their incidence is well suited cranium. These are irregular isolated bones that appear for comparative studies as an anthropological marker or in addition to the usual centers of ossification of the an indicator of population distance (Gumusburun, cranium and, although unusual, are not rare. They occur Sevim, Katkici et al., 1997). Their knowledge is of most frequently in the course of the lambdoid suture, interest to the human anatomy, physical anthropology which is more tortuous than other sutures.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • CLOSURE of CRANIAL ARTICULATIONS in the SKULI1 of the AUSTRALIAN ABORIGINE by A
    CLOSURE OF CRANIAL ARTICULATIONS IN THE SKULI1 OF THE AUSTRALIAN ABORIGINE By A. A. ABBIE, Department of Anatomy, University of Adelaide INTRODUCTION While it is well known that joint closure advances more or less progressively with age, there is still little certainty in matters of detail, mainly for lack of adequate series of documented skulls. In consequence, sundry beliefs have arisen which tend to confuse the issue. One view, now disposed of (see Martin, 1928), is that early suture closure indicates a lower or more primitive type of brain. A corollary, due to Broca (see Topinard, 1890), that the more the brain is exercised the more is suture closure postponed, is equally untenable. A very widespread belief is based on Gratiolet's statement (see Topinard, 1890; Frederic, 1906; Martin, 1928; Fenner, 1939; and others) that in 'lower' skulls the sutures are simple and commence to fuse from in front, while in 'higher' skulls the sutures are more complicated and tend to fuse from behind. This view was disproved by Ribbe (quoted from Frederic, 1906), who substituted the generalization that in dolicocephals synostosis begins in the coronal suture, and in brachycephals in the lambdoid suture. In addition to its purely anthropological interest the subject raises important biological considerations of brain-skull relationship, different foetalization in different ethnological groups (see Bolk, 1926; Weidenreich, 1941; Abbie, 1947), and so on. A survey of the literature reveals very little in the way of data on the age incidence of suture closure. The only substantial contribution accessible here comes from Todd & Lyon (1924) for Europeans, but their work is marred by arbitrary rejection of awkward material.
    [Show full text]
  • Functional Structure of the Skull and Fractures of the Skull Thickened and Thinner Parts of the Skull
    Functional structure of the skull and Fractures of the skull Thickened and thinner parts of the skull = important base for understanding of the functional structure of the skull → - the transmission of masticatory forces - fracture predilection Thickned parts: . sagittal line . ventral lateral line . dorsal lateral line Thinner parts: . articular fossa . cribriform plate . foramines, canals and fissures . anterior, medial and posterior cranial fossa Thickned parts: . tuber parietalis . mastoid process . protuberantia occipitalis ext. et int. linea temporalis . margin of sulcus sinus: - sagitalis sup. - transversus Functional structure of the skull Facial buttresses system . Of thin segments of bone encased and supported by a more rigid framework of "buttresses" . The midface is anchored to the cranium through this framework . Is formed by strong frontal, maxillary, zygomatic and sphenoid bones and their attachments to one another Tuber maxillae Vertical buttress Sinus maxillae Orbita . nasomaxillary Nasal cavity . zygomaticomaxillary . pterygomaxillary Horizontal buttress . glabella . orbital rims . zygomatic processes . maxillary palate . The buttress system absorbs and transmits forces applied to the facial skeleton . Masticatory forces are transmitted to the skull base primarily through the vertical buttresses, which are joined and additionally supported by the horizontal buttresses . When external forces are applied, these components prevent disruption of the facial skeleton until a critical level is reached and then fractures occur Stress that occurs from mastication or trauma is transferred from the inferior of the mandible via various trajectory lines → to the condyles glenoid fossa → temporal bone The main alveolar stress concentration were located interradicularly and interproximally Fractures of the skull I. Neurocranial fractures II. Craniofacial fractures I. Neurocranial fracture . A break in the skull bone are generally occurs as a result of a direct impact .
    [Show full text]
  • CT of Perineural Tumor Extension: Pterygopalatine Fossa
    731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera­ tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.
    [Show full text]
  • Humans Preserve Non-Human Primate Pattern of Climatic Adaptation
    Quaternary Science Reviews 192 (2018) 149e166 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Humans preserve non-human primate pattern of climatic adaptation * Laura T. Buck a, b, , Isabelle De Groote c, Yuzuru Hamada d, Jay T. Stock a, e a PAVE Research Group, Department of Archaeology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK b Human Origins Research Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK c School of Natural Science and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK d Primate Research Institute, University of Kyoto, Inuyama, Aichi, 484-8506, Japan e Department of Anthropology, Western University, London, Ontario, N6A 3K7, Canada article info abstract Article history: There is evidence for early Pleistocene Homo in northern Europe, a novel hominin habitat. Adaptations Received 9 October 2017 enabling this colonisation are intriguing given suggestions that Homo exhibits physiological and Received in revised form behavioural malleability associated with a ‘colonising niche’. Differences in body size/shape between 2 May 2018 conspecifics from different climates are well-known in mammals, could relatively flexible size/shape Accepted 22 May 2018 have been important to Homo adapting to cold habitats? If so, at what point did this evolutionary stragegy arise? To address these questions a base-line for adaptation to climate must be established by comparison with outgroups. We compare skeletons of Japanese macaques from four latitudes and find Keywords: Adaptation inter-group differences in postcranial and cranial size and shape. Very small body mass and cranial size in Variation the Southern-most (island) population are most likely affected by insularity as well as ecogeographic Colonisation scaling.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Ectocranial Suture Closure in Pan Troglodytes and Gorilla Gorilla: Pattern and Phylogeny James Cray Jr.,1* Richard S
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 136:394–399 (2008) Ectocranial Suture Closure in Pan troglodytes and Gorilla gorilla: Pattern and Phylogeny James Cray Jr.,1* Richard S. Meindl,2 Chet C. Sherwood,3 and C. Owen Lovejoy2 1Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260 2Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, OH 44242 3Department of Anthropology, The George Washington University, Washington, DC 20052 KEY WORDS cranial suture; synostosis; variation; phylogeny; Guttman analysis ABSTRACT The order in which ectocranial sutures than either does with G. gorilla, we hypothesized that this undergo fusion displays species-specific variation among phylogenetic relationship would be reflected in the suture primates. However, the precise relationship between suture closure patterns of these three taxa. Results indicated that closure and phylogenetic affinities is poorly understood. In while all three species do share a similar lateral-anterior this study, we used Guttman Scaling to determine if the closure pattern, G. gorilla exhibits a unique vault pattern, modal progression of suture closure differs among Homo which, unlike humans and P. troglodyte s, follows a strong sapiens, Pan troglodytes,andGorilla gorilla.BecauseDNA posterior-to-anterior gradient. P. troglodytes is therefore sequence homologies strongly suggest that P. tr og lodytes more like Homo sapiens in suture synostosis. Am J Phys and Homo sapiens share a more recent common ancestor Anthropol 136:394–399, 2008. VC 2008 Wiley-Liss, Inc. The biological basis of suture synostosis is currently Morriss-Kay et al. (2001) found that maintenance of pro- poorly understood, but appears to be influenced by a liferating osteogenic stem cells at the margins of mem- combination of vascular, hormonal, genetic, mechanical, brane bones forming the coronal suture requires FGF and local factors (see review in Cohen, 1993).
    [Show full text]
  • INCIDENCE of TYPES of PTERION in SOUTH INDIANS – a STUDY on CADAVERIC DRY SKULLS Manjunath Halagatti 1, Channabasanagouda *2
    International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(3.2):4290-94. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.313 INCIDENCE OF TYPES OF PTERION IN SOUTH INDIANS – A STUDY ON CADAVERIC DRY SKULLS Manjunath Halagatti 1, Channabasanagouda *2. 1 Assistant Professor, Department of Anatomy, Koppal Instistute of Medical Sciences, Koppal, Karnataka, India. *2 Associate Professor, Department of Anatomy, Koppal Instistute of Medical Sciences, Koppal, Karnataka, India. ABSTRACT Introduction : Pterion is an important landmark in the temporal fossa. It is a significant area for the surface location of anterior branch of middle meningeal artery and stem of lateral sulcus of the cerebrum. Based upon the pattern of articulation of the bones, different varieties of pterion have been encountered. Knowing about the incidence of types of pterion is very important for neurosurgeons, anthropologists, forensic scientists and radiologists. Materials and methods : Current study was done on 282 dry adult human cadaveric skulls (564 sides), for the incidence of different types of pterion. Types of pterion are – sphenoparietal type, frontotemporal type, stellate type and epipteric type. Results : Out of the 564 pteria,we have identified 455 sphenoparietal type, 77 frontotemporal type, 17 stellate type and 15 epipteric types. The incidence of different types of pteria have been correlated and compared with the data available from previous studies. Conclusion : The current study on incidence of types of pterion will add further knowledge to the available data about types of pterion and it will be of immense help for neurosurgeons, orthopedic surgeons, pediatricians, radiologists and anthropologists for proper diagnostic and therapeutic purposes.
    [Show full text]
  • 3.4.12.9 the Temporal Bone of Patient Ip
    3.4.12.9 The Temporal Bone of patient Ip Distances (Figure 3.30(n)): Squamous Temporal Bone: The squamous temporal bone was not measurable in this child due to lack of visibility of the asterion (as), sphenion (spt) and the stylomastoid foramen (smÐ. Extemal Auditory Meatus: The configuration of the external auditory meatus was abnormal and asymmetrical, with increased distances recorded on both sides (eampl-pol, pol-eamal, eamir- eampr, eamar-eamir). Zygomatic Process: The length of the zygomatic arch (ztl-aul, ztr-aur) was decreased bilaterally. The articular fossa height (afl-ael, afr-aer) was normal, however, posteriorly the left EAM- articular fossa length (eamal-afl) was increased. Petrous Temporal Bone (Figure 3.30(o)): The prominence of the mastoid process (mal-jfl1, mar-jflr) was increased bilaterally compared with the experimental standard. The distances of the temporal bone showed the right jugular foramen to be narrowed (flr-jfmr) with an similar tendency on the left. The inferior petrous temporo-occipital suture (fml-ptsl, jfrnr-ptsr) was increased in length. Dimensions (Figure 3.30(o)): The petrous temporal ridge distance (petal-petpl, petar-petpr) was increased bilaterally. The dimensions between the temporal bones was increased between the external auditory meatus (pol-por). The angles of the auditory canal (pol-iamViamr-por), the petrous temporal bone angles (petpl-petaVpetar-petpr) and the zygoma projection (petal-aul-ztl, petar-aur-ztr) were not significantly different from the experimental standard. Discussion: Bony distortion was found at the external auditory meatus and the zygomatic arch which was reduced in length. The jugular foramen was nanowed while the temporal occipital suture medially and the distance to the mastoid laterally were increased.
    [Show full text]
  • 1 TERMINOLOGIA ANTHROPOLOGICA Names of The
    TERMINOLOGIA ANTHROPOLOGICA Names of the parts of the human body, terms of aspects and relationships, and osteological terminology are as in Terminologia Anatomica. GENERAL TERMS EXPLANANTION ADAPTATION Adjustment and change of an organism to a specific environment, due primarily to natural selection. ADAPTIVE RADIATION Divergence of an ancestral population through adaption and speciation into a number of ecological niches. ADULT Fully developed and mature individual ANAGENESIS The progressive adaption of a single evolutionary line, where the population becomes increasingly specialized to a niche that has remained fairly constant through time. ANCESTRY One’s family or ethnic descent, the evolutionary or genetic line of descent of an animal or plant / Ancestral descent or lineage ANTEMORTEM Biological processes that can result in skeletal modifications before death ANTHROPOCENTRICISM The belief that humans are the most important elements in the universe. ANTHROPOLOGY The study of human biology and behavior in the present and in the past ANTHROPOLOGIST BIOLOGICAL A specialist in the subfield of anthropology that studies humans as a biological species FORENSIC A specialist in the use of anatomical structures and physical characteristics to identify a subject for legal purposes PHYSICAL A specialist in the subfield of anthropology dealing with evolutionary changes in the human bodily structure and the classification of modern races 1 SOCIAL A specialist in the subfield of anthropology that deals with cultural and social phenomena such as kingship systems or beliefs ANTHROPOMETRY The study of human body measurement for use in anthropological classification and comparison ARCHETYPE That which is taken as the blueprint for a species or higher taxonomic category ARTIFACT remains of past human activity.
    [Show full text]
  • Endoscopic-Assisted Repair of Craniosynostosis
    Neurosurg Focus 19 (6):E6, 2005 Endoscopic-assisted repair of craniosynostosis GREGORY J. A. MURAD, M.D., MARK CLAYMAN, M.D., M. BRENT SEAGLE, M.D., SNO WHITE, M.D., LEIGH ANN PERKINS, A.R.N.P., AND DAVID W. PINCUS, M.D., PH.D. Department of Neurosurgery, Divisions of Plastic Surgery and Pediatric Anesthesiology, and the University of Florida Craniofacial Center, University of Florida College of Medicine, Gainesville, Florida Object. The goal of the craniofacial surgeon has always been the correction of form and function with prevention of associated morbidity and death. Through the pioneering work of Jimenez and Barone, minimally invasive ap- proaches to the surgical correction of craniosynostosis are now gaining wider acceptance. Here the authors review the technique for endoscopic-assisted repair of craniosynostosis from the perspective of a new minimally invasive ap- proach. They also assess the safety, efficacy, and results of the early treatment of infants with craniosynostosis in a small series of children who underwent surgery at this institution. Methods. Data regarding synostosis type, operative time, patient age, blood loss, transfusion rates, duration of hos- pitalization, and complications were collected. Nineteen patients (12 girls and seven boys) between the ages of 1.2 and 5 months of age were treated with the endoscope-assisted technique. The mean operative time was 97 minutes. Five (26%) of 19 children received a blood transfusion. Most patients were discharged home the morning after surgery. The clinical courses of two patients who required additional major craniofacial reconstructions are discussed. There were no deaths, dural sinus tears, cerebrospinal fluid leaks, neurological injuries, or infections, and there were no compli- cations related to the use of helmet therapy.
    [Show full text]