Endoscopic Transnasal Approach to the Pterygopalatine Fossa

Total Page:16

File Type:pdf, Size:1020Kb

Endoscopic Transnasal Approach to the Pterygopalatine Fossa ORIGINAL ARTICLE Endoscopic Transnasal Approach to the Pterygopalatine Fossa John M. DelGaudio, MD Objective: To describe an endoscopic transnasal ap- through the same approach with further lateral expo- proach to the pterygopalatine fossa (PPF). sure to the area of the inferior orbital fissure. Design: Case series of 3 patients. Results: All patients had successful endoscopic ap- proaches for tumor removal (case 1) and biopsy (cases Setting: An academic medical center. 2 and 3) of the PPF. The second patient had a repeat en- doscopic biopsy 1 week later to obtain more tissue for Patients: One patient presented with an asymptomatic diagnostic purposes. None of the patients had any ma- PPF schwannoma. The second patient presented after a jor vascular complications. At follow-up, 2 of 3 patients sudden onset of complete unilateral vision loss with a com- had persistent sensory deficits. plete ipsilateral sphenoid sinus opacification and radio- graphic signal abnormality in the PPF and inferior or- bital fissure. The third patient had a history of adenoid Conclusions: The endoscopic transnasal approach to the cystic carcinoma of the lacrimal gland, and was found PPF is a safe and effective method for biopsy and re- to have new-onset facial numbness. moval of PPF masses. The endoscopic approach im- proves access and visualization, and has the potential to Intervention: One patient had a complete excision of reduce complications compared with open approaches. a schwannoma by means of an endoscopic transnasal ap- Image guidance is helpful in these cases. proach. The other 2 patients had wide exposure and bi- opsies of the PPF. One patient had a revision procedure Arch Otolaryngol Head Neck Surg. 2003;129:441-446 NDOSCOPIC SURGERY has ery periods when compared with stan- gained universal accep- dard open approaches. tance as the surgical The pterygopalatine fossa (PPF) is a method of choice for the difficult-to-access anatomic area. It is lo- treatment of inflammatory cated behind the posterior wall of the max- Esinonasal disease. With increasing famil- illary sinus, bordered by the pterygoid iarity with endoscopic techniques, plates posteriorly and the greater sphe- increased understanding of sinus and noid wing and middle cranial fossa supe- perisinus anatomy, and advanced tech- riorly. It has connections with the infra- nology in the form of instrumentation temporal fossa laterally through the and image-guided systems, there has pterygomaxillary fissure, the posterior na- been a natural extension of these tech- sal cavity medially through the spheno- niques to include treatment of other dis- palatine foramen, the orbit superiorly ease processes. These include endoscopic through the inferior orbital fissure, and the treatment of sinus and skull base palate inferiorly through the palatine fo- tumors,1-3 repair of cerebrospinal fluid ramina. Structures contained within the leaks and meningoencephaloceles,4,5 PPF include the internal maxillary artery orbital decompression,6,7 approaches to and its branches, the maxillary division of From the Department of the orbital apex and clivus,8,9 transsphe- the trigeminal nerve (V ), and the vidian Otolaryngology–Head and 2 noidal approaches to the pituitary,10 and nerve. Tumors of the PPF are uncom- Neck Surgery, Emory 11,12 University School of Medicine, arterial ligations for epistaxis. These mon, with the most common being nerve Atlanta, Ga. Dr DelGaudio has approaches allow good visualization sheath tumors. no relevant financial interest in of difficult-to-access locations with Standard approaches to the PPF re- this article. decreased morbidity and shorter recov- quire transmaxillary techniques that vio- (REPRINTED) ARCH OTOLARYNGOL HEAD NECK SURG/ VOL 129, APR 2003 WWW.ARCHOTO.COM 441 ©2003 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 Figure 1. Case 1. Coronal computed tomographic scan of the sinuses shows a schwannoma in the right pterygopalatine fossa (thin arrow). The left pterygopalatine fossa is normal (thick arrow). Figure 2. Case 1. Axial magnetic resonance image shows a late the anterior and posterior walls of the maxillary si- well-circumscribed mass in the right pterygopalatine fossa causing anterior nus, with the risks of facial edema and pain, infraorbital displacement of the posterior wall of the maxillary sinus. nerve injury, oroantral fistula, chronic maxillary sinus- itis, and vascular injury. An endoscopic approach to the PPF can potentially reduce these risks, along with pro- Caldwell-Luc operation if necessary. The patient was viding better visualization than headlight- or microscope- counseled regarding the risk of vascular injury to the in- directed approaches. Herein we report an endoscopic ap- ternal maxillary artery and the possible need to convert proach to the PPF for definitive resection of a schwannoma to an open approach. in 1 patient and for biopsy of the PPF in 2 other pa- The procedure was begun with a large maxillary an- tients. trostomy, ethmoidectomy, and wide sphenoidotomy to expose the medial and anterior aspects of the tumor REPORT OF CASES (Figure 3). The mucosa of the posterior maxillary si- nus was elevated from superomedial to inferolateral. The CASE 1 thinned posterior wall of the maxillary sinus was easily removed from the anterior and superior surfaces of the A 33-year-old woman was referred for evaluation of a right PPF mass to expose the capsule. The sphenopalatine ar- PPF mass identified on sinus computed tomographic (CT) tery was dissected from the surface and medial aspect of scan ordered for evaluation of recurrent nasal conges- the mass, cauterized, and transected medially to com- tion. The CT scan showed a well-circumscribed PPF mass pletely free the medial aspect of the tumor. The tumor that had thinned and anteriorly displaced the posterior was then bluntly dissected off of the pterygoid plates pos- wall of the maxillary sinus (Figure 1). Magnetic reso- teriorly. Because of the tight confines of the PPF and the nance imaging showed the mass to be well circum- dense inferior attachments of the tumor to the vascula- scribed and isointense with brain on T2 images, to en- ture of the PPF, the tumor could not be removed en bloc. hance with gadolinium, and to have a slightly The capsule was therefore opened to allow complete re- heterogeneous appearance (Figure 2). The patient de- moval of the tumor. The inferior portion of the tumor nied facial paresthesia or pain, and results of neurologic was removed last, after identification and clipping of the examination were normal. Endoscopic examination main trunk and branches of the internal maxillary ar- showed only fullness in the lateral nasal wall adjacent to tery (Figure 4). After confirmation of complete tumor the posterior attachment of the right middle turbinate. removal and irrigation of the PPF, the surgical area with The mass was presumed to be a nerve sheath tumor on exposed pterygoid periosteum was covered with a dis- the basis of the clinical and radiologic data. solvable hyaluronic acid pack. An endoscopic transnasal approach for resection of Postoperatively the patient was observed overnight the mass was recommended to the patient. Consent was and discharged the following morning. She did develop also obtained for a canine fossa approach and possible numbness in the distribution of the maxillary division (REPRINTED) ARCH OTOLARYNGOL HEAD NECK SURG/ VOL 129, APR 2003 WWW.ARCHOTO.COM 442 ©2003 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 MT S T ∗ Figure 5. Case 2. Axial computed tomographic scan shows asymmetry of Figure 3. Endoscopic view of pterygopalatine fossa schwannoma (T) before the pterygopalatine fossa, with the right side showing loss of normal removal of overlying thinned bone of maxillary sinus. MT indicates middle soft-tissue architecture (thin arrow) compared with the left (thick arrow). turbinate; S, sphenoid sinus; and asterisk, suction cannula. Sphenoid sinus (asterisk) is opacified with a heterogeneous appearance suggestive of fungal contents. MT PP S IMA N M IT Figure 6. Case 2. Coronal magnetic resonance image shows normal tissue signal of the left pterygopalatine fossa (black arrow) and orbital apex (thick Figure 4. Endoscopic view of pterygopalatine fossa. The internal maxillary white arrow), but the right pterygopalatine fossa and orbital apex tissues artery (IMA) is isolated and the sphenopalatine artery (arrow) has been show loss of normal tissue signal (thin white arrows). S indicates sphenoid clipped. A nerve (N) is seen exiting from the final piece of tumor (asterisk) sinus. located behind the IMA. MT indicates middle turbinate; IT, inferior turbinate; PP, pterygoid plates; and M, posterior wall of maxillary sinus. were normal. No other cranial nerve abnormalities were identified. of V2 that minimally improved during the next 12 A CT scan of the sinuses disclosed right sphenoid months. Follow-up CT scan and serial evaluations opacification with hyperostosis of the sinus walls. The showed no evidence of recurrence 6 months postopera- sphenoid contents had a heterogeneous appearance. There tively. was no extension outside of the sinus, and the remain- der of the sinuses was clear. No bone erosion was pres- CASE 2 ent. There was a subtle asymmetry of the soft-tissue char- acteristics in the right PPF (Figure 5). Magnetic A 44-year-old woman was referred for evaluation 6 resonance imaging demonstrated the same asymmetry in weeks after developing complete vision loss in the right the PPF. The soft tissue in the right PPF displayed loss eye that occurred during 36 hours. Her vision did not of normal enhancement, and this extended to the infe- respond to high-dose oral and intravenous corticoste- rior orbital fissure and the orbital apex. No discrete mass roids. Ophthalmologic examination showed only mini- was identified (Figure 6). The radiologic appearance mal light perception in the right eye and no other and clinical history were suggestive of an infiltrative pro- abnormalities.
Recommended publications
  • Anatomy of Maxillary and Mandibular Local Anesthesia
    Anatomy of Mandibular and Maxillary Local Anesthesia Patricia L. Blanton, Ph.D., D.D.S. Professor Emeritus, Department of Anatomy, Baylor College of Dentistry – TAMUS and Private Practice in Periodontics Dallas, Texas Anatomy of Mandibular and Maxillary Local Anesthesia I. Introduction A. The anatomical basis of local anesthesia 1. Infiltration anesthesia 2. Block or trunk anesthesia II. Review of the Trigeminal Nerve (Cranial n. V) – the major sensory nerve of the head A. Ophthalmic Division 1. Course a. Superior orbital fissure – root of orbit – supraorbital foramen 2. Branches – sensory B. Maxillary Division 1. Course a. Foramen rotundum – pterygopalatine fossa – inferior orbital fissure – floor of orbit – infraorbital 2. Branches - sensory a. Zygomatic nerve b. Pterygopalatine nerves [nasal (nasopalatine), orbital, palatal (greater and lesser palatine), pharyngeal] c. Posterior superior alveolar nerves d. Infraorbital nerve (middle superior alveolar nerve, anterior superior nerve) C. Mandibular Division 1. Course a. Foramen ovale – infratemporal fossa – mandibular foramen, Canal -> mental foramen 2. Branches a. Sensory (1) Long buccal nerve (2) Lingual nerve (3) Inferior alveolar nerve -> mental nerve (4) Auriculotemporal nerve b. Motor (1) Pterygoid nerves (2) Temporal nerves (3) Masseteric nerves (4) Nerve to tensor tympani (5) Nerve to tensor veli palatine (6) Nerve to mylohyoid (7) Nerve to anterior belly of digastric c. Both motor and sensory (1) Mylohyoid nerve III. Usual Routes of innervation A. Maxilla 1. Teeth a. Molars – Posterior superior alveolar nerve b. Premolars – Middle superior alveolar nerve c. Incisors and cuspids – Anterior superior alveolar nerve 2. Gingiva a. Facial/buccal – Superior alveolar nerves b. Palatal – Anterior – Nasopalatine nerve; Posterior – Greater palatine nerves B.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Morphology of the Pterion in Serbian Population
    Int. J. Morphol., 38(4):820-824, 2020. Morphology of the Pterion in Serbian Population Morfología del Pterion en Población Serbia Knezi Nikola1; Stojsic Dzunja Ljubica1; Adjic Ivan2; Maric Dusica1 & Pupovac Nikolina4 KNEZI, N.; STOJSIC, D. L.; ADJIC, I.; MARIC, D. & PUPOVAC, N. Morphology of the pterion in Serbian population. Int. J. Morphol., 38(4):820-824, 2020. SUMMARY: The pterion is a topographic point on the lateral aspect of the skull where frontal, sphenoid, parietal and temporal bones form the H or K shaped suture. This is an important surgical point for the lesions in anterior and middle cranial fossa. This study was performed on 50 dry skulls from Serbian adult individuals from Department of Anatomy, Faculty of Medicine in Novi Sad. The type of the pterion on both sides of each skull was determined and they are calcified in four types (sphenoparietal, frontotemporal, stellate and epipteric). The distance between the center of the pterion and defined anthropological landmarks were measured using the ImageJ software. Sphenoparietal type is predominant with 86 % in right side and 88 % in left side. In male skulls, the distance from the right pterion to the frontozygomatic suture is 39.89±3.85 mm and 39.67±4.61 mm from the left pterion to the frontozygomatic suture. In female skulls the distance is 37.38±6.38 mm on the right and 35.94±6.46 mm on the left. The shape and the localization of the pterion are important because it is an anatomical landmark and should be used in neurosurgery, traumatology and ophthalmology.
    [Show full text]
  • Functional Structure of the Skull and Fractures of the Skull Thickened and Thinner Parts of the Skull
    Functional structure of the skull and Fractures of the skull Thickened and thinner parts of the skull = important base for understanding of the functional structure of the skull → - the transmission of masticatory forces - fracture predilection Thickned parts: . sagittal line . ventral lateral line . dorsal lateral line Thinner parts: . articular fossa . cribriform plate . foramines, canals and fissures . anterior, medial and posterior cranial fossa Thickned parts: . tuber parietalis . mastoid process . protuberantia occipitalis ext. et int. linea temporalis . margin of sulcus sinus: - sagitalis sup. - transversus Functional structure of the skull Facial buttresses system . Of thin segments of bone encased and supported by a more rigid framework of "buttresses" . The midface is anchored to the cranium through this framework . Is formed by strong frontal, maxillary, zygomatic and sphenoid bones and their attachments to one another Tuber maxillae Vertical buttress Sinus maxillae Orbita . nasomaxillary Nasal cavity . zygomaticomaxillary . pterygomaxillary Horizontal buttress . glabella . orbital rims . zygomatic processes . maxillary palate . The buttress system absorbs and transmits forces applied to the facial skeleton . Masticatory forces are transmitted to the skull base primarily through the vertical buttresses, which are joined and additionally supported by the horizontal buttresses . When external forces are applied, these components prevent disruption of the facial skeleton until a critical level is reached and then fractures occur Stress that occurs from mastication or trauma is transferred from the inferior of the mandible via various trajectory lines → to the condyles glenoid fossa → temporal bone The main alveolar stress concentration were located interradicularly and interproximally Fractures of the skull I. Neurocranial fractures II. Craniofacial fractures I. Neurocranial fracture . A break in the skull bone are generally occurs as a result of a direct impact .
    [Show full text]
  • CT of Perineural Tumor Extension: Pterygopalatine Fossa
    731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera­ tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.
    [Show full text]
  • Humans Preserve Non-Human Primate Pattern of Climatic Adaptation
    Quaternary Science Reviews 192 (2018) 149e166 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Humans preserve non-human primate pattern of climatic adaptation * Laura T. Buck a, b, , Isabelle De Groote c, Yuzuru Hamada d, Jay T. Stock a, e a PAVE Research Group, Department of Archaeology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK b Human Origins Research Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK c School of Natural Science and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK d Primate Research Institute, University of Kyoto, Inuyama, Aichi, 484-8506, Japan e Department of Anthropology, Western University, London, Ontario, N6A 3K7, Canada article info abstract Article history: There is evidence for early Pleistocene Homo in northern Europe, a novel hominin habitat. Adaptations Received 9 October 2017 enabling this colonisation are intriguing given suggestions that Homo exhibits physiological and Received in revised form behavioural malleability associated with a ‘colonising niche’. Differences in body size/shape between 2 May 2018 conspecifics from different climates are well-known in mammals, could relatively flexible size/shape Accepted 22 May 2018 have been important to Homo adapting to cold habitats? If so, at what point did this evolutionary stragegy arise? To address these questions a base-line for adaptation to climate must be established by comparison with outgroups. We compare skeletons of Japanese macaques from four latitudes and find Keywords: Adaptation inter-group differences in postcranial and cranial size and shape. Very small body mass and cranial size in Variation the Southern-most (island) population are most likely affected by insularity as well as ecogeographic Colonisation scaling.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Foramina, Fossa and Vacuities in the Skull and Lower Jaw of Mud Turtle, Trionyx Gangeticus (Cuv.) by D
    FORAMINA, FOSSA AND VACUITIES IN THE SKULL AND LOWER JAW OF MUD TURTLE, TRIONYX GANGETICUS (CUV.) BY D. K. MANSHARAMANI (Department of Zoology, ttolkar Science College, lndore) Received March 3, 1965 (Communicated by Dr. Benicharan Mahendra, F.A.SC.) As far as the author is aware, no work has been done on the skull of mud turtles specially the foramina, fossa and vacuities. I have therefore studied the cranial peculiarities of Trionyx gangeticus, with special reference to foramina, fossa and vacuities of the skull and lower jaw. Trionyx gangeticus, a monotypic, trionychid testudine, exhibits many foramina, fossa and vacuities in its skull, which is typically akinetic moni- mostylic and anapsidian. The latter condition undergoes partial modifi- cation in the shape of temporal region which reveals emargination. The temporal arch is formed by jugal and quadratojugal. The orbits are close to the anterior half separated by prefrontal on the dorsal side. The anterior nares are near the tip of the snout, bounded by prcunaxilla below and prefrontal above. The skull is oblong-swollen, nose convex-arched, forehead convex, upper jaw'with broad flat rugose alveolar plate, which is narrow in front and wide behind. It has three long posterior processes formed by supra- occipital in the middle and squamosals on either side. The premaxilla is extremely small, unpaired and does not reach the nasal cavity or the vomer. The maxillaries are correspondingly enlarged surrounding the choanae, which are separated by narrow vomer. The palatines form a broad deep concavity which is joined behind by long basi-sphenoid, which separates the long pterygoids from each other.
    [Show full text]
  • Endoscopic Access to the Infratemporal Fossa and Skull Base a Cadaveric Study
    ORIGINAL ARTICLE Endoscopic Access to the Infratemporal Fossa and Skull Base A Cadaveric Study Christopher J. Hartnick, MD; John S. Myseros, MD; Charles M. Myer III, MD Objectives: To demonstrate that the regions of the in- Endoscopic visualization and instrumentation was then fratemporal fossa and skull base at the level of the fora- performed. The infratemporal fossa was readily identi- men ovale can be visualized endoscopically and that struc- fied. The skull base at the level of the foramen ovale and tures can be manipulated within these regions using the branches of the third division of the trigeminal nerve endoscopic instruments. were seen distinctly. A probe was placed with ease within the foramen ovale itself. Methods: Cadaveric dissection of 3 human cadavers us- ing an endoscopic optical dissector. In all, 6 endoscopic Conclusions: Endoscopic access to the infratemporal infratemporal fossa and skull base approaches were per- fossa is readily accomplished, with excellent visualiza- formed. tion and instrumentation ability. This novel technique provides access to this remote region for evaluation, pos- Setting: Human temporal bone laboratory. sible biopsy, and potential treatment of infratemporal fossa lesions. Results: A Gillies incision was coupled with a lateral brow incision, and then subperiosteal planes were developed. Arch Otolaryngol Head Neck Surg. 2001;127:1325-1327 HE INFRATEMPORAL fossa is lymphoma, and juvenile nasopharyngeal a relatively remote region angiofibroma. Many of these tumors can beneath the skull base. Ac- undergo biopsy at some other, more readily cess to this region requires accessible area, or the diagnosis is se- thorough knowledge of the cured using imaging studies (computed Tanatomy of the region itself and of the sur- tomography or magnetic resonance rounding structures.
    [Show full text]
  • Morphometric Study of Different Types of Pterion and It's Relation With
    Anatomy Praba Antony Mary A and Venkatramaniah / JPBMS, 2012, 21 (04) Available online at www.jpbms.info ISSN NO- 2230 – 7885 CODEN JPBSCT ResearchJPBMS article NLM Title: J Pharm Biomed Sci. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL SCIENCES Morphometric Study of different types of Pterion and It’s relation with middle meningeal artery in dry skulls of Tamil Nadu * A.Mary Antony Praba¹, C.Venkatramaniah². ¹Assistant Professor, Department of Anatomy, Tagore Medical College, Chennai, India. ²Assistant Professor, Department of Anatomy, Sri Lakshmi Narayana Institute of Medical Sciences, Pondy, India. Abstract: Pterion is a region in the anterior part of the floor of the temporal fossa where the greater wing of the sphenoid, the parietal, frontal and the squamous temporal bones meet and form a H shaped suture. Alternatively it is the meeting region of these 4 bones(1,2). It is an commonly used landmark to find the place of anterior division of middle meningeal artery inside. There are four different types of pterions they are the spenoparietal, frontotemporal, stellate and the epipteric varieties(3,2,4). Because the anatomical variation is been so much cared by the forensic anthropologists, neurosurgeons and the forensic pathologists, we find it necessary to study the occurrence of different types of pterion in the skulls of Tamil Nadu regions. So as to full fill the criteria the different types of pterion and it’s occurrence in relation with the middle meningeal artery is been studied. The most occurring type of pterion among tamil nadu skulls are found to be the spenoparietal variety and the frontotemporal the least.
    [Show full text]
  • 3.4.12.9 the Temporal Bone of Patient Ip
    3.4.12.9 The Temporal Bone of patient Ip Distances (Figure 3.30(n)): Squamous Temporal Bone: The squamous temporal bone was not measurable in this child due to lack of visibility of the asterion (as), sphenion (spt) and the stylomastoid foramen (smÐ. Extemal Auditory Meatus: The configuration of the external auditory meatus was abnormal and asymmetrical, with increased distances recorded on both sides (eampl-pol, pol-eamal, eamir- eampr, eamar-eamir). Zygomatic Process: The length of the zygomatic arch (ztl-aul, ztr-aur) was decreased bilaterally. The articular fossa height (afl-ael, afr-aer) was normal, however, posteriorly the left EAM- articular fossa length (eamal-afl) was increased. Petrous Temporal Bone (Figure 3.30(o)): The prominence of the mastoid process (mal-jfl1, mar-jflr) was increased bilaterally compared with the experimental standard. The distances of the temporal bone showed the right jugular foramen to be narrowed (flr-jfmr) with an similar tendency on the left. The inferior petrous temporo-occipital suture (fml-ptsl, jfrnr-ptsr) was increased in length. Dimensions (Figure 3.30(o)): The petrous temporal ridge distance (petal-petpl, petar-petpr) was increased bilaterally. The dimensions between the temporal bones was increased between the external auditory meatus (pol-por). The angles of the auditory canal (pol-iamViamr-por), the petrous temporal bone angles (petpl-petaVpetar-petpr) and the zygoma projection (petal-aul-ztl, petar-aur-ztr) were not significantly different from the experimental standard. Discussion: Bony distortion was found at the external auditory meatus and the zygomatic arch which was reduced in length. The jugular foramen was nanowed while the temporal occipital suture medially and the distance to the mastoid laterally were increased.
    [Show full text]
  • Lecture 7 Anatomy the PTERYGOPALATINE FOSSA
    د.احمد فاضل القيسي Lecture 7 Anatomy THE PTERYGOPALATINE FOSSA The pterygopalatine fossa lies beneath the posterior surface of the maxilla and the pterygoid process of the sphenoid bone. The pterygopalatine fossa contains the maxillary nerve, the maxillary artery (third part) and the pterygopalatine parasympathetic ganglion. Boundaries Anteriorly: posterior surface of maxilla. Posteriorly: anterior margin of pterygoid process below and greater wing of sphenoid above. Medially: perpendicular plate of palatine bone. Superiorly: greater wing of sphenoid. Laterally: communicates with infratemporal fossa through pterygomaxillary fissure Communications and openings: 1. The pterygomaxillary fissure: transmits the maxillary artery from the infratemporal fossa, the posterior superior alveolar branches of the maxillary division of the trigeminal nerve and the sphenopalatine veins. 2. The inferior orbital fissure: transmits the infraorbital and zygomatic branches of the maxillary nerve, the orbital branches of the pterygopalatine ganglion and the infraorbital vessels. 3. The foramen rotundum from the middle cranial fossa, occupying the greater wing of the sphenoid bone and transmit the maxillary division of the trigeminal nerve 4. The pterygoid canal from the region of the foramen lacerum at the base of the skull. The pterygoid canal transmits the greater petrosal and deep petrosal nerves (which combine to form the nerve of the pterygoid canal) and an accompanying artery derived from the maxillary artery. 5. The sphenopalatine foramen lying high up on the medial wall of the fossa.This foramen communicates with the lateral wall of the nasal cavity. It transmits the nasopalatine and posterior superior nasal nerves (from the pterygopalatine ganglion) and the sphenopalatine vessels. 6. The opening of a palatine canal found at the base of the fossa.
    [Show full text]