Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes

Total Page:16

File Type:pdf, Size:1020Kb

Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes ;;;;;;;;;;;;;;;;;;;;;; anthropogenic threats, undoubtedly taking their Beak of the Fish: What fascinating and irreplaceable stories about evolution with them. Cichlid Flocks Reveal East African Great Lakes and Their Cichlid Flocks About Speciation Like Darwins finches that were isolated on islands, flocks of cichlid fishes have also undergone Processes adaptive radiations within insular habitats: the Great Lakes of East Africa. These tropical lakes are among by Holly Jessop the largest lakes in the world, reaching depths of 1500-m and areas of about 69,000-km2. Fortuitously, Introduction differences in geologic origins, features, and ages ������������������������������������������������������������������������������������������ are useful when studying the evolution of endemic influenced Charles Darwins formative ideas on cichlid fishes. Of the three lakes, Lake Tanganyika natural selection and its connections with speciation. is the oldest (forming 9-12 million years ago) and Today, the adaptive radiation evident in the beaks of deepest. This lake of 34,000-km2 hosts twelve flocks those fourteen different species of birds continues to of cichlids that have radiated into about 250 species. provide the classic textbook example of evolution in The other deep rift lake, Lake Malawi, is about the action. However, if the creation of a mere fourteen same size but is younger (formed 1-2 million years different species has been instructive, then an ago). This intermediate lake hosts about a thousand explosive creation of well over a thousand should species that have all radiated from just one flock reveal a great deal more about speciation processes. ancestor. The youngest (750,000 years old), largest, The fish family Cichlidae provides such a case: these and most shallow, Lake Victoria hosts about 500 fish have evolved thousands of new species within species that have also emanated from one cichlid their insular lake homes, and furthermore have flock. (Barlow 2000; Salzburger et al. 2005). Since the done so on extremely rapid time scales. Indeed, their greater depths of the lakes lack oxygen, cichlids are explosive and rapid cladogenesis has made cichlids confined to the surface layers and shallow benthic the greatest extant vertebrate radiation known. The habitats of the lakes. These habitats are characterized young evolutionary age of cichlids also provides a by sandy bottoms punctuated with patches of rocky window into the earliest stages of diversification, such outcroppings. (Barlow 2000). that speciation may be studied as an ongoing process of change. Moreover, the recent multitude of species Cichlid Species: A Kaleidoscope of Form and Color within the cichlid family provides an opportunity to The species composing the cichlid flocks of look for patterns in speciation processes. Such studies these East African Great Lakes possess a bounty of have suggested a three-stage pattern underlying variation in both form and color. Indeed, these fish speciation that may be generally applicable to the are prized for their beauty and interesting diversity, evolutionary origins of many other vertebrate species and as such, are popular with aquarium hobbyists. Danley & Kocher 2001; Streelman & Danley 2003). The visual scenes within the lakes are themselves Of special interest is the stage of evolution in which reminiscent of aquaria with swarms of colorful fish in different feeding structures arise among these fishes, a myriad of hues and shapes. With this abundance of particularly since parallels exist between the beaks similar fish fauna, species and their phylogenies have of Darwins finches and the jaws of cichlids. Modern been difficult to determine, using only morphology genetic techniques are responsible for insight into and color characteristics; are similarly shaped but this three-step pattern, and are increasingly being differently colored fish morphs of the same or used to further uncover the detail in the processes different species? Behavioral differences in feeding responsible for the remarkable diversity of cichlids. strategies and reproduction often clarified these Unfortunately, even as cichlids are just beginning determinations: fish that looked similar but fed, to provide the post-Darwinian age with highly mated, or reared young differently were considered valuable insights into the mechanisms of evolutionary separate species (Genner & Turner 2005). However, change, these fish are being rapidly destroyed by modern molecular techniques that examine genetic 16 characteristics have recently provided an additional Not only did cichlids in the Great Lakes means by which cichlid diversification can be explosively and rapidly diversify, they also separately ���������������������������������������������������������������������������������������������������������� converged into very similar morphologies. Figure 2 For example, Meyer et al. (1990) found no overlaps illustrates several cichlids from Lakes Tanganyika in the mitochondrial DNA types of 14 cichlid species and Malawi that share similar body forms and engage from Lake Victoria; they concluded that these fish in parallel lifestyles. Studies prior to Meyer et al. were not merely alternative morphs of one species. 1990) argued that such cichlids were polyphyletic: That is, their classification as separate species was these outwardly similar fish from different lakes justifiable given their unique genetic characters. Now, were derived from different ancestral lines, and in cichlid species are regularly defined using genetic turn were most closely related to each other. Instead, characters, in addition to information on morphology, the advent of molecular phylogenetic studies have color, and behavioral traits (Turner et al. 2001; Genner repeatedly shown that these cichlid radiations have Turner 2005). occurred separately, each within their own lake basin Meyer et al. 1990, Kocher et al. 1993, Meyer 1993, Origins: Out of Lake Tanganyika Comes Explosive, Nagl et al. 2000, Verheyan et al. 2003, Salzburger et Rapid, and Parallel Evolution al. 2005). For example, the uniquely fleshy lips of the Remarkably, nearly all of the cichlid species in Placidochromis fishes of Lake Malawi arose separately the East African Great Lakes are endemic. Moreover, from the fleshy lips of the Lobochilotes cichlids of Lake none of these cichlid species are shared between Tanganyika; Placidochromis are more closely related the lakes despite belonging to the same family to their own proximate Lake Malawi flocks than to Salzburger et al. 2005). Since they share numerous their albeit morphologically similar cousins of Lake similarities, an understanding of how these fish are Tanganyika. Even within the same lake, these fish inter-related becomes an important initial step in seem to separately evolve similar morphologies. untangling the mystery of how many differences For example, Ruber et al. (1999) found that some evolved. Again, modern genetic techniques have cichlids of Lake Tanganyika that share the same proven to be the most useful tool for this detective dentition patterns are not monophyletic. That is, work: the first examination of mitochondrial DNA different species separately evolved the same tooth of cichlids from the Great Lakes by Meyer et al. shape. Similarly, Allender et al. (2003) examined the 1990) revealed that the cichlids of each lake are genetic differences between like-colored fish from monophyletic. The family tree that emerges from the northern and southern portions of Lake Malawi. this investigation also reveals that Lake Tanganyika Using over 2000 genetic loci, they built phylogenies cichlids are the ancestors from which the cichlids in demonstrating that the same color patterns had the other two Great Lakes are derived (Figure 1). The independently evolved within different parts of finding that well over a thousand species of cichlids the lake. That is, the northern and southern fish are in Lakes Malawi and Victoria evolved from a single unrelated, but separately evolved the same color source reveals that speciation processes within these types via divergent selection. Thus, both between and lakes were remarkably explosive. within them, the Great Lakes have been reservoirs of Furthermore, Meyer et al. (1990) utilized a frequent parallel evolution (Genner & Turner 2005; molecular clock in their analysis of mitochondrial Kassam et al. 2006). DNA haplotypes, to estimate the ages of different cichlid lake flocks. They concluded that the Victorian Multistage Evolutionary Patterns cichlids are newcomers originating less than 200,000 The frequent occurrences of parallel evolution years ago, while the ages of the Lake Malawi and within cichlid flocks, added to their numerous and Tanganyika cichlids also match with the (relatively recent cladogenesis events, provide a highly useful young) geologic ages of those lakes. A recent case study of adaptive radiation. What can cichlids extensive study by Salzburger et al. (2005) that used reveal about speciation processes; are there common over twice the number of mitochondrial base pairs factors or underlying patterns? Once again, modern and ten times the number of species, confirms that phylogenetic techniques have been useful for these Lake Tanganyika is both the geographic and genetic evolutionary investigations. The 1990 mitochondrial origin for the cichlids of the other Great Lakes. This DNA sequencing study by Meyer et al. first found finding, that the multitude of species in the Great that the cichlids in Lake Malawi could be divided
Recommended publications
  • Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species.
    [Show full text]
  • Hohonu Volume 5 (PDF)
    HOHONU 2007 VOLUME 5 A JOURNAL OF ACADEMIC WRITING This publication is available in alternate format upon request. TheUniversity of Hawai‘i is an Equal Opportunity Affirmative Action Institution. VOLUME 5 Hohonu 2 0 0 7 Academic Journal University of Hawai‘i at Hilo • Hawai‘i Community College Hohonu is publication funded by University of Hawai‘i at Hilo and Hawai‘i Community College student fees. All production and printing costs are administered by: University of Hawai‘i at Hilo/Hawai‘i Community College Board of Student Publications 200 W. Kawili Street Hilo, Hawai‘i 96720-4091 Phone: (808) 933-8823 Web: www.uhh.hawaii.edu/campuscenter/bosp All rights revert to the witers upon publication. All requests for reproduction and other propositions should be directed to writers. ii d d d d d d d d d d d d d d d d d d d d d d Table of Contents 1............................ A Fish in the Hand is Worth Two on the Net: Don’t Make me Think…different, by Piper Seldon 4..............................................................................................Abortion: Murder-Or Removal of Tissue?, by Dane Inouye 9...............................An Etymology of Four English Words, with Reference to both Grimm’s Law and Verner’s Law by Piper Seldon 11................................Artifacts and Native Burial Rights: Where do We Draw the Line?, by Jacqueline Van Blarcon 14..........................................................................................Ayahuasca: Earth’s Wisdom Revealed, by Jennifer Francisco 16......................................Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes, by Holly Jessop 26................................................................................. Climatic Effects of the 1815 Eruption of Tambora, by Jacob Smith 33...........................Columnar Joints: An Examination of Features, Formation and Cooling Models, by Mary Mathis 36....................
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 2. No. 2, June. pp. 158-165. 1993 Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D. Kocher , * '1 Janet A. Conroy,* Kenneth R. McKaye,* and Jay R. Stauffer* * Department of Zoology, University of New Hampshire, Durham, New Hampshire 03824; t Appalachian Environmental Laboratory, University of Maryland, Frostburg, Maryland 21532; t School of Forest Resources, Pennsylvania State University, University Park, Pennsylvania 16802 Received March 22, 1993; revised June 29, 1993 ancestor for the Lake Victoria cichlid flock (Sage et al., The species flocks of cichlid fishes in the lakes of East 1984; Meyer et al., 1990). The mechanisms by which Africa are the most spectacular example of adaptive so many species have arisen in such a short time, radiation among living vertebrates. Similar highly de­ within closed lake basins, are a fascinating subject for rived morphologies are found among species in differ­ research. ent lakes. These similarities have been variously inter­ A separate, monophyletic origin for the species flock preted either as evidence for migration of ancestral in each lake has often been assumed, partly because species between the lakes, or of striking convergence of the high levels of endemicity found in the cichlid of morphology. To distinguish among these competing fauna, and partly because of the ancient and isolated hypotheses we sequenced a portion of the mitochon­ history of each lake (Fryer and lies, 1972). The lake drial UNA control region from six pairs of morphologi­ basins have arisen separately by a gradual lengthen­ cally similar taxa from Lakes Malawi and Tanganyika.
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • Frequent Non-Random Shifts in the Temporal Sequence of Developmental Landmark
    bioRxiv preprint doi: https://doi.org/10.1101/239954; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Frequent Non-random Shifts in the Temporal Sequence of Developmental Landmark 2 Events during Teleost Evolutionary Diversification 3 4 Running head: Evolution of teleost developmental sequence 5 6 Authors 7 Fumihiro Ito1,2 *, Tomotaka Matsumoto2,3, Tatsumi Hirata2,4 8 1Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of 9 Genetics, Mishima 411-8540, Shizuoka, Japan 10 2Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 11 Mishima 411-8540, Shizuoka, Japan 12 3Division of Evolutionary Genetics, Department of Population Genetics, National Institute of 13 Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan. 14 4Division of Brain Function, National Institute of Genetics, Yata 1111, Mishima 411-8540, 15 Shizuoka, Japan. 16 17 *Correspondence author 18 1 bioRxiv preprint doi: https://doi.org/10.1101/239954; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Morphological transformations can be generated by evolutionary changes in the sequence of 21 developmental events. In this study, we examined the evolutionary dynamics of the 22 developmental sequence on a macroevolutionary scale using the teleost. Using the information 23 from previous reports describing the development of 31 species, we extracted the developmental 24 sequences of 19 landmark events involving the formation of phylogenetically conserved body 25 parts; we then inferred ancestral developmental sequences by two different parsimony-based 26 methods—event-pairing (Jeffery, Bininda-Emonds, Coates & Richardson, 2002a) and continuous 27 analysis (Germain & Laurin, 2009).
    [Show full text]
  • Genetic and Developmental Origins of a Unique Foraging Adaptation in a Lake Malawi Cichlid Genus
    Genetic and developmental origins of a unique foraging adaptation in a Lake Malawi cichlid genus Moira R. Conitha, Yinan Hub,c, Andrew J. Conithd, Maura A. Maginnisd, Jacqueline F. Webbb, and R. Craig Albertsond,1 aGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003; bDepartment of Biological Sciences, University of Rhode Island, Kingston, RI 02881; cBiology Department, Boston College, Chestnut Hill, MA 02467; and dDepartment of Biology, University of Massachusetts, Amherst, MA 01003 Edited by Hopi E. Hoekstra, HHMI and Harvard University, Cambridge, MA, and approved May 29, 2018 (received for review November 13, 2017) Phenotypic novelties are an important but poorly understood from model organisms, which are selected in part because of their category of morphological diversity. They can provide insights into conserved phenotypes (16, 17). Additionally, novel phenotypes of- the origins of phenotypic variation, but we know relatively little ten have ancient origins and/or occur in lineages that are not about their genetic origins. Cichlid fishes display remarkable diversity amenable to laboratory investigations. Here, we address the origin in craniofacial anatomy, including several novelties. One aspect of this of a novel phenotype by identifying the genetic mechanisms un- variation is a conspicuous, exaggerated snout that has evolved in derlying tissue-level changes of a unique craniofacial morphology in a single Malawi cichlid lineage and is associated with foraging a genus of cichlid from Lake Malawi, Africa. Cichlids are an iconic model system for the study of rapid and specialization and increased ecological success. We examined the – developmental and genetic origins for this phenotype and found that extensive craniofacial diversification (18 20).
    [Show full text]
  • Geography, Ecology, Sympatry, and Male Coloration in the Lake Malawi Cichlid Genus Labeotropheus (Perciformes: Cichlidae)
    SAGE-Hindawi Access to Research International Journal of Evolutionary Biology Volume 2011, Article ID 575469, 12 pages doi:10.4061/2011/575469 Research Article One Fish, Two Fish, Red Fish, Blue Fish: Geography, Ecology, Sympatry, and Male Coloration in the Lake Malawi Cichlid Genus Labeotropheus (Perciformes: Cichlidae) Michael J. Pauers Section of Vertebrate Zoology, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233, USA Correspondence should be addressed to Michael J. Pauers, [email protected] Received 15 November 2010; Revised 15 February 2011; Accepted 28 March 2011 Academic Editor: Kristina M. Sefc Copyright © 2011 Michael J. Pauers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. While sexual selection on male coloration has been important in haplochromine cichlid speciation, few studies to date have examined potential environmental influences on color pattern evolution. Data from multiple sources on male nuptial coloration of the Lake Malawi endemic genus Labeotropheus were used to examine the relationship between color patterns and the environments in which these patterns were found. Red- or carotenoid-pigmented males were concentrated in the northwestern portion of Lake Malawi and were also associated with increasing depth. Further, the presence or absence of L. fuelleborni influenced the coloration of L. trewavasae populations; when L. fuelleborni was present, L. trewavasae males were more likely to exhibit some degree of red coloration. While these results support the idea that sexual selection on male coloration is an important factor in the haplochromine speciation, they also underscore the importance of environmental influences on the evolution of color patterns.
    [Show full text]
  • Genome-Wide Microrna Screening in Nile Tilapia Reveals
    www.nature.com/scientificreports OPEN Genome-wide microRNA screening in Nile tilapia reveals pervasive isomiRs’ transcription, sex-biased Received: 7 November 2016 Accepted: 15 May 2018 arm switching and increasing Published: xx xx xxxx complexity of expression throughout development Danillo Pinhal 1, Luiz A. Bovolenta2, Simon Moxon3, Arthur C. Oliveira1, Pedro G. Nachtigall1, Marcio L. Acencio4, James G. Patton5, Alexandre W. S. Hilsdorf6, Ney Lemke2 & Cesar Martins 7 MicroRNAs (miRNAs) are key regulators of gene expression in multicellular organisms. The elucidation of miRNA function and evolution depends on the identifcation and characterization of miRNA repertoire of strategic organisms, as the fast-evolving cichlid fshes. Using RNA-seq and comparative genomics we carried out an in-depth report of miRNAs in Nile tilapia (Oreochromis niloticus), an emergent model organism to investigate evo-devo mechanisms. Five hundred known miRNAs and almost one hundred putative novel vertebrate miRNAs have been identifed, many of which seem to be teleost-specifc, cichlid-specifc or tilapia-specifc. Abundant miRNA isoforms (isomiRs) were identifed with modifcations in both 5p and 3p miRNA transcripts. Changes in arm usage (arm switching) of nine miRNAs were detected in early development, adult stage and even between male and female samples. We found an increasing complexity of miRNA expression during ontogenetic development, revealing a remarkable synchronism between the rate of new miRNAs recruitment and morphological changes. Overall, our results enlarge vertebrate miRNA collection and reveal a notable diferential ratio of miRNA arms and isoforms infuenced by sex and developmental life stage, providing a better picture of the evolutionary and spatiotemporal dynamics of miRNAs.
    [Show full text]
  • Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
    FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.
    [Show full text]
  • Chromosome Differentiation Patterns During Cichlid Fish Evolution
    Poletto et al. BMC Genetics 2010, 11:50 http://www.biomedcentral.com/1471-2156/11/50 RESEARCH ARTICLE Open Access ChromosomeResearch article differentiation patterns during cichlid fish evolution Andréia B Poletto1, Irani A Ferreira1, Diogo C Cabral-de-Mello1, Rafael T Nakajima1, Juliana Mazzuchelli1, Heraldo B Ribeiro1, Paulo C Venere2, Mauro Nirchio3, Thomas D Kocher4 and Cesar Martins*1 Abstract Background: Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results: Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes), the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene revealed a variable number of clusters among species varying from two to six. Conclusions: The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African) and Cichlinae (American). The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes.
    [Show full text]
  • The Fish Eye View: Are Cichlids Conspicuous?
    2243 The Journal of Experimental Biology 213, 2243-2255 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jeb.037671 The fish eye view: are cichlids conspicuous? Brian E. Dalton1, Thomas W. Cronin1, N. Justin Marshall2 and Karen L. Carleton3,* 1Department of Biology, University of Maryland, Baltimore County, MD 21250, USA, 2Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia and 3Department of Biology, University of Maryland, College Park, MD 20742, USA *Author for correspondence ([email protected]) SUMMARY The extent of animal colouration is determined by an interplay between natural and sexual selection. Both forces probably shape colouration in the speciose, rock-dwelling cichlids of Lake Malawi. Sexual selection is thought to drive male colouration, overcoming natural selection to create conspicuous colour patterns via female mate choice and male–male competition. However, natural selection should make female cichlids cryptic because they mouthbrood their young. We hypothesize that as a result of both sexual and natural selection, males will have colours that are more conspicuous than female colours. Cichlid spectral sensitivity, especially in the ultraviolet, probably influences how colours appear to them. Here we use simple models of the trichromatic colour space of cichlid visual systems to compare the conspicuousness of male and female nuptial colours of nine species. Conspicuousness of colours was evaluated as their Euclidian distance in colour space from environmental backgrounds and from other colours on the same fish. We find in six of the nine species that breeding males have colours that are statistically more conspicuous than female colours. These colours contrast strongly with each other or with the backgrounds, and they fall within a range of spectra best transmitted in the habitat.
    [Show full text]