12 Aphis Glycines Matsumura, Soybean Aphid (Hemiptera: Aphididae)

Total Page:16

File Type:pdf, Size:1020Kb

12 Aphis Glycines Matsumura, Soybean Aphid (Hemiptera: Aphididae) Chapter 12 93 12 Aphis glycines Matsumura, Soybean Aphid (Hemiptera: Aphididae) Jacques Brodeur Université de Montréal, Montréal, Québec 12.1 Pest Status al., 2011 and references therein). The yield of soybean declined with the density of The soybean aphid, Aphis glycines aphids per plant, and plants are Matsumura (Hemiptera: Aphididae), is a particularly susceptible to aphid injury multivoltine species native to Asia. In when infested at an early growth stage. North America it was fi rst detected in Aphid feeding can lead to a decrease in Michigan, USA in 2000 and rapidly spread plant growth, resulting in reduced pod set, through the continent (Venette and Rags- fewer and smaller seeds within pods at dale, 2004). Surveys of soybean, Glycine maturity and a decrease in protein and oil max (L.) Merr. (Fabaceae), fi elds in Ontario content. Aphis glycines also can transmit a and Quebec in 2001 revealed the presence number of plant-pathogenic viruses to of the aphid in Canada (Brodeur et al., soybean, but virus outbreaks have not 2003; Hunt et al., 2003). The establishment occurred so far. However, A. glycines has of A. glycines in Canada represents a caused signifi cant virus epidemics in other spectacular example of biological invasion. crops, e.g. snap bean, Phaseolus vulgaris L. By 2002, all soybean-growing regions in (Fabaceae), potato, Solanum tuberosum L. Quebec were infested, and 51 of 54 (Solanaceae), squash, Cucurbita spp. sampled fields were colonized by A. (Cucurbitaceae), during aphid dispersal. glycines (Brodeur et al., 2003). The aphid Growers now have to routinely budget for has rapidly colonized all US states and aphid scouting and, under some circum- Canadian provinces, e.g. Manitoba, Ontario, stances, application of insecticides to Quebec, where soybean is produced remain profi table. The introduction of A. (Ragsdale et al., 2011) and is causing glycines also has major consequences to profound changes in the agroecosystem the environment as infestations can lead to (Heimpel et al., 2004). For instance, the A. insecticide applications over a vast area of glycines invasion has led to an increase in agricultural land that was previously densities of insect predators, thus putting untreated. For example, following a severe other arthropods at risk through indirect A. glycines outbreak in 2007, 57% of the effects, such as apparent competition. soybean grown in Quebec that was insured The introduction of A. glycines into was treated with insecticides (Financière Canada poses a serious threat to soybean Agricole du Québec, 2007). production and the environment. The aphid Aphis glycines is a holocyclic and can severely reduce the yield of soybean, heteroecious species, alternating from pri- either directly through its feeding activity mary (buckthorn; Rhamnus spp. (Rhamna- or indirectly through the transmission of ceae)) to secondary (soybean; G. max) viral diseases (see review by Ragsdale et hosts. Unfortunately, the establishment in © CAB International 2013. Biological Control Programmes in Canada 2001–2012 (eds P.G. Mason and D.R. Gillespie) 94 Chapter 12 North America of this exotic aphid was fi ed as resistant or mostly resistant, mainly made possible by the prior and intentional through antibiosis and antixenosis mech- introduction of its two host plants: buck- anisms. Resistant varieties have been thorn from northern Europe and soybean commercialized since 2009. from Asia. In spring, on buckthorn, A. As aphid populations increase in glycines nymphs hatch from overwintering abundance and disperse, they trigger eggs and develop into parthenogenetic import ant functional and numerical re- fundatrices. After a few generations on the sponses by native and naturalized primary host, winged morphs emigrate to generalist predators. In Quebec, Mignault cultivated soybean where many over- et al. (2006) and Firlej et al. (2012) lapping generations occur throughout the characterized the species composition of summer. In autumn, winged females, called the foliar and ground fauna, respectively, gynoparae, and males are produced and associated with A. glycines in commercial emigrate on to buckthorn where they feed. soybean fi elds. Coccinellidae (Coleoptera) Gynoparae produce nymphs that develop were the most abundant aphidophagous into oviparae, mate with males and deposit predators in sweep samples in 2002 overwintering eggs on Rham nus spp. Aphis (58.6%) and 2003 (44.8%), with one native glycines has a great capacity to disperse species, Coleomegilla maculata lengi within and between fi elds as winged Timberlake, and three naturalized species, morphs are produced throughout the grow- Harmonia axyridis (Pallas), Coccinella ing season. Winged morphs can disperse septempunctata L. and Propylea quatuor- between plants or enter low-level jet decimpunctata L., co-occurring with the streams and migrate over great distances soybean aphid throughout the growing (Rhainds et al., 2008; Zhang et al., 2008). season (Mignault et al., 2006). Carabidae (Coleoptera) beetles were the most com- mon ground predators captured in pitfall 12.2 Background traps. A total of 33 species from 15 genera were identifi ed, with the exotic Ptero- Aphis glycines was fi rst managed by foliar stichus melanarius (Illiger) represent ing applications of non-selective pyrethroid 75.8% and 84.5% of all individuals and organophosphate insecticides (dim- trapped in 2004 and 2005, respectively ethoate and Lambda-cyhalotrin) during (Firlej et al., 2012). outbreaks according to decision thresholds, Mortality caused by generalist predators crop maturity and abundance of natural has been repeatedly shown to limit the enemies. More recently, growers have economic impact of A. glycines in Asia and started to use neonicotinoid insecticides North America (reviewed by Ragsdale et (Thiamethoxame) applied as seed treat- al., 2011). In Quebec, Rhainds et al. (2007) ments (Magalhaes et al., 2008). This underlined the collective impact of preda- practice is controversial because aphid tors to regulate A. glycines populations, as population densities do not commonly indicated by the relatively low abundance reach the economic thresholds and because of aphids on plants experimentally infested the effi cacy of such systemic insecticides with aphids in comparison with control decreases with time and is likely not (caged) plants. The impact of carabid suffi cient to control A. glycines infestations beetles on A. glycines populations is less when they occur late in the season obvious than for foliar predators. There (Johnson et al., 2008). was no relationship between carabid trap The introduction of A. glycines into catches and A. glycines density, suggesting North America prompted intense research that carabid beetles do not respond in the development of soybean varieties numerically to soybean aphid populations resistant to aphid infestation (Hill et al., at the spatial scale (Firlej et al., 2012). 2006; Kim et al., 2010). More than two However, using molecular gut-content dozen soybean varieties have been identi- analysis, Firlej et al. (2013) showed that a Chapter 12 95 signifi cant proportion of P. melanarius, the 12.3 Biological Control Agents dominant carabid species in soybean fi elds, typically feed on A. glycines early in the In Canada, in addition to the on-going season when aphid densities are very low. ecological studies on generalist predators As reported in other studies (Holland and attacking A. glycines in soybean fi elds, the Thomas, 1997; Winder et al., 2005), the possibility of introducing exotic parasit- authors hypothesized that carabids are oids to strengthen the complex of natural unlikely to prevent large A. glycines enemies is being evaluated. A classical infestations but they can limit population biological control programme was initiated growth rate under low aphid density. in the USA in 2001, the year following the The benefi cial impact of generalist discovery of A. glycines in North America. predators appears consistent across a wide After exploration in Asia, host specifi city range of soybean management systems studies and experiments to assess potential (Costamagna and Landis, 2006), although effi cacy as biological control agent of A. their effectiveness is infl uenced by the glycines, Binodoxys communis (Gahan) abundance of A. glycines (Costamagna and (Hymenoptera: Bracon idae) was identifi ed Landis, 2007), the landscape structure and as a promising candidate and a permit from spatial distribution of aphid populations United States Department of Agriculture- (Desneux et al., 2006), within-fi eld man- Animal and Plant Health Inspection agement practices (Ragsdale et al., 2011) Service was granted for fi eld release in the and high levels of intraguild predation USA (Wyckhuys et al., 2007). Releases of (Gagnon et al., 2011). This ecological B. communis began in 2007 in the north- context suggests a cautious approach central USA, with approval to conduct toward the introduction of exotic biological laboratory studies in Canada following in control agents and the promotion of 2009. measures to preserve or enhance predator populations, such as limiting the use of pesticides in soybean fi elds. In Asia, parasitoids and entomopatho- 12.4 Evaluation of Biological Control genic fungi complete the typical guild of aphid natural enemies attacking A. Binodoxys communis has so far failed to glycines (Han, 1997). Although a total of establish in North America following seven hymenopteran parasitoids have been multiple releases (Ragsdale et al., 2011) reported attacking A. glycines
Recommended publications
  • Egg Load Dynamics and the Risk of Egg and Time Limitation Experienced by an Aphid Parasitoid in the field Christine Dieckhoff1, Julian C
    Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field Christine Dieckhoff1, Julian C. Theobald2, Felix L. Wackers€ 2 & George E. Heimpel3 1Department of Entomology & Wildlife Ecology, University of Delaware, Newark, Delaware 19716 2Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University, Lancaster, LA1 4YQ, UK 3Department of Entomology, University of Minnesota, St Paul, Minnesota 55108 Keywords Abstract Aphis glycines, Binodoxys communis, biological control, egg load, soybean aphid. Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limita- Correspondence tion are mediated by oviposition and egg maturation rates as well as by starva- C. Dieckhoff, University of Delaware, tion risk and other determinants of adult lifespan. Here, we assessed egg load Entomology & Wildlife Ecology, 250 and nutritional state in the soybean aphid parasitoid Binodoxys communis under Townsend Hall, Newark, DE 19716, USA. field conditions to estimate its risk of becoming either egg- or time-limited. Tel: 302-731-7330 (ext 222); The majority of female B. communis showed no signs of egg limitation. Experi- Fax: 302-368-1674; E-mail: [email protected] mental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads Funding information remained constant over the course of the day at approximately 80 eggs, suggest- This research was funded through a USDA- ing that egg maturation compensates for oviposition. This is the first case of NRI grant to G.
    [Show full text]
  • 2009 Proceedings.Indd
    Proceedings of the South Dakota Academy of Science, Vol. 88 (2009) 139 THE RELEASE OF A NEW BENEFICIAL INSECT FOR THE BIOLOGICAL CONTROL OF SOYBEAN APHID, A CROP PEST IN SOUTH DAKOTA Ana Mičijević1, Kelley J. Tilmon1, Roger Barrick2, Steve Sutera2, Larry Wag- ner2, Connie Strunk2, Paul Johnson2, Gary Erickson2, and Ray Gosmire2 1 Plant Science Department 2 South Dakota Cooperative Extension Service South Dakota State University Brookings, SD 57007 ABSTRACT The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an important insect pest of soybean, a major crop in South Dakota. First discovered in the USA in 2000, it was accidentally introduced from Asia and spread quickly throughout Midwest. Insecticides are currently the primary control method for this pest, but biological control—control of pests through beneficial species—is a promising management approach. Soybean aphid is seldom a problem in its native Asia largely because of a group of natural enemies that feed on it. Uni- versities and USDA entomologists have identified the Asian parasitoid Binodoxys communis (Gahan) (Hymenoptera: Braconidae) as a promising species to release in the US for biological control of the soybean aphid. Since 2007 South Dakota has been part of a multi-state project to introduce B. communis to the region. In the summer of 2008 seven Midwestern states participated in parasitoid releases. Releases in South Dakota were a cooperative effort between SDSU scientists, Extension Educators, and South Dakota producers. We released B. communis in ten soybean fields in ten counties in eastern South Dakota. We inoculated release sites with a small number of parasitoids which might increase and spread over time.
    [Show full text]
  • On Biodiversity in Grasslands: Coexistence, Invasion and Multitrophic Interactions
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Petermann, J S Abstract: In a rapidly changing world suffering from extensive diversity loss, the most pressing questions remain largely unanswered: how can diversity exist in the first place and what are the consequences of its decline for ecosystems? In grasslands, resource niches have to date been considered the major mechanism responsible for plant coexistence and diversity. The neutral theory has recently challenged this view by attributing species coexistence solely to stochastic processes. Whereas the negative effects of plant diversity loss on primary productivity have been demonstrated numerous times in biodiversity experiments, its effects on higher trophic levels have rarely been explored. Here, we used aglasshouse experiment, simulation modelling approaches and field studies in the Jena biodiversity experiment to examine diversity maintenance, invasion and community assembly in plant communities and effects of plant diversity loss on higher trophic levels. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-24943 Dissertation Published Version Originally published at: Petermann, J S. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions. 2009, University of Zurich, Faculty of Science. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Jana S. Petermann Die vorliegende Arbeit wurde von der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich im Herbstsemester 2009 als Dissertation angenommen. Promotionskomitee: Prof. Dr. Bernhard Schmid (Vorsitz) Prof. Dr. Christine Müller Prof. Dr. Jasmin Joshi Prof. Dr.
    [Show full text]
  • Parasitism of the Soybean Aphid, Aphis Glycines by Binodoxys Communis: the Role of Aphid Defensive Behaviour and Parasitoid Reproductive Performance
    Bulletin of Entomological Research (2008) 98, 361–370 doi:10.1017/S000748530800566X Ó 2008 Cambridge University Press Printed in the United Kingdom First published online 25 February 2008 Parasitism of the soybean aphid, Aphis glycines by Binodoxys communis: the role of aphid defensive behaviour and parasitoid reproductive performance K.A.G. Wyckhuys1 *, L. Stone3, N. Desneux2, K.A. Hoelmer4, K.R. Hopper4 and G.E. Heimpel2 1Horticulture Research Center, Universidad Jorge Tadeo Lozano, Chia (Cundinamarca), Colombia: 2Department of Entomology, University of Minnesota, St. Paul, USA: 3Saint Olaf College, Northfield, Minnesota, USA: 4Beneficial Insect Introductions Research Unit, USDA-ARS, Newark, Delaware, USA Abstract The Asian parasitoid, Binodoxys communis (Gahan) (Hymenoptera: Braconidae), is a candidate for release against the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America. In this study, we examined preferences by B. communis for the different developmental stages of A. glycines and investigated consequences of these preferences for parasitoid fitness. We also determined to what extent aphid defensive behaviours mediate such preferences. We found that B. communis readily attacks and successfully develops in the different A. glycines developmental stages. Binodoxys communis development time gradually increased with aphid developmental stage, and wasps took longest to develop in alates. An average (+SE) of 54.01+0.08% of parasitized A. glycines alatoid nymphs transformed into winged adult aphids prior to mummification. No-choice assays showed a higher proportion of successful attacks for immature apterous A. glycines nymphs compared to adults and alatoid nymphs. Also, choice trials indicated avoidance and lower attack and oviposition of adults and alatoid nymphs.
    [Show full text]
  • Occurrence of Aulacorthum Solani on Potato: a Vector of Potato Virus Yo and Potato Leafroll Virus in India
    20133A-- Jandrajupalli Sridhar Indian Journal of Entomology 83 (2021) Online published Ref. No. e20133A DoI No.: 10.5958/0974-8172.2020.00262.X OCCURRENCE OF AULACORTHUM SOLANI ON POTATO: A VECTOR OF POTATO VIRUS YO AND POTATO LEAFROLL VIRUS IN INDIA JANDRAJUPALLI SRIDHAR1*, VALLEPU VENKATESWARLU5, NEELAM KUMARI, ANUJ BHATNAGAR2, BASWARAJ R, RAVINDER KUMAR, M NAGESH3, JAGESH K TIWARI, AND S K CHAKRABARTI ICAR- Central Potato Research Institute (CPRI), Shimla 171001, Himachal Pradesh 1Present address: ICAR- National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh 2ICAR- CPRI Centre, Modipuram, Meerut 250110, Uttar Pradesh 3ICAR- National Bureau of Agricultural Important Insect Resources, Post Bag No. 2491, H A Farm P O, Bellary Road, Bangalore 560024 5ICAR- Central Tobacco Research Institute, Bhaskarnagar, Rajahmundry 533105 Andhra Pradesh *Email: [email protected] (corresponding author) ABSTRACT Foxglove aphid Aulacorthum solani is a polyphagous pest causing direct and indirect losses to crops, and potato is its important host. Its incidence and distribution have extended manifolds in potato growing regions of India especially in seed production areas. In the recent past, it has been occurring on potato in the four agroecosystems of Shimla, Jalandhar, Modipuram and Gwalior. This study determines species distribution and its viruliferous nature with respect to most predominant viruses viz., Potato virus Yo (PVYo) and Potato leafroll virus (PLRV). Adults of A. solani (prestarved) were given an acquisition feeding of 24 hr on pure culture of PVYo and PLRV, and then released on to tissue culture raised healthy potato seedlings for inoculation. These plants were allowed for expression of external visual symptoms and were PCR tested at weekly intervals for 35 days.
    [Show full text]
  • Oat Aphid, Rhopalosiphum Padi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The price of protection Leybourne, Daniel; Bos, Jorunn; Valentine, Tracy A.; Karley, Alison Published in: Insect Science DOI: 10.1111/1744-7917.12606 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Leybourne, D., Bos, J., Valentine, T. A., & Karley, A. (2020). The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryoat aphid, Rhopalosiphum padi. Insect Science, 69-85. https://doi.org/10.1111/1744-7917.12606 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Dec. 2019 Insect Science (2020) 27, 69–85, DOI 10.1111/1744-7917.12606 ORIGINAL ARTICLE The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi Daniel J.
    [Show full text]
  • IPM for High Tunnel Vegetables: Practical Pathways for Organic Crop Production Focusing on Insect and Mite
    IPM for High Tunnel Vegetables: Practical Pathways for Organic Crop Protection Focusing on Insect and Mite Pest Issues MOFGA Farmer to Farmer Conference November 2019 Who Are We? • Margaret Skinner, UVM Entomologist Biological Control of Key Pests Western Flower Thrips (greenhouses) Aphids (high tunnel vegetables) • Ron Valentin, Bioworks, Technical Specialist Biological Control of Key Pests Banker plants Beneficials • Pooh Sprague, Edgewater Farm, Grower Owner/Operator Vegetable market garden Greenhouse ornamentals Who Are YOU? Wisdom from Benjamin Franklin • TELL Me and I FORGET • TEACH ME and I may Remember • INVOLVE ME and I LEARN Today’s Multi- Faceted Program • Step-by-step IPM approach to insect pests: Me • Success with Biological Control: Ron • Welcome to the “Real World”: Pooh • Open discussion us us us us Lao Tzu, 4th Century BC Appearance of Insects 350 300 250 200 150 100 Millions of years Millions 50 0 Homo erectus: 6 million years Homo sapiens: 200,000 years So what? So… How can we DEAL WITH IT? IPM What is IPM? IPM = Integrated Pest Management Integration of several strategies to reduce pests using pesticides as little as possible A Step-by-Step Process for Tackling Pests To succeed with IPM, follow these words of wisdom: Know your enemy and know yourself and you can fight a hundred battles without disaster. Sun Tzu, 1753-1818 The Corner Stones Pest ID What is it? I What does it do? Scouting P How many are there? Where are they? M Biology How does it do it? When does it do it? What’s in a NAME? • Class Insecta is separated into Orders • Insect Orders are separated into FAMILIES • Families are separated into GENERA • Each Genus is separated into SPECIES Scientific Name Genus Species Author Myzus persicae (Sulzer) (Order Hemiptera, Family Aphididae) Common Names green peach aphid or peach-potato aphid Some Dead and Some Alive Know your friends and your enemies.
    [Show full text]
  • Soybean Aphid Establishment in Georgia
    Soybean Aphid Establishment in Georgia R. M. McPherson, Professor, Entomology J.C. Garner, Research Station Superintendent, Georgia Mountain Research and Education Center, Blairsville, GA P. M. Roberts, Extension Entomologist - Cotton & Soybean The soybean aphid, Aphis glycines Matsumura, has (nymphs) through parthenogenesis (reproduction by direct become a major new invasive pest species in North America. growth of egg-cells without male fertilization). Several It was first detected on Wisconsin soybeans during the generations of both winged and wingless female aphids are summer of 2000. By the end of the 2001 growing season, produced on soybeans during the summer. As soybeans begin soybean aphid populations were observed from New York to mature, both male and female winged aphids are produced. westward to Ontario, Canada, the Dakotas, Nebraska They migrate back to buckthorn where they mate and the and Kansas and southward to Missouri, Kentucky and females lay the overwintering eggs, thus starting the annual Virginia. By 2009 it had been detected in most of the cycle all over again. soybean-producing states in the U.S. On September 10 and October 1, 2002, during monthly field sampling of soybeans at the Georgia Mountain Research and Education Center in Blairsville, Ga., several small colonies of soybean aphids (eight to 10 aphids per leaf) were collected. Aphid identification was verified by Susan Halbert, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Fla. Soybean aphids have been observed on soybeans in Union County, Ga., (Blairsville) Photo 1. Colony of soybean aphids on a every year since 2002 and in several other Georgia counties in soybean leaf.
    [Show full text]
  • Soybean Aphid Identification, Biology, and Management
    CHAPTER THIRTY-FIVE Soybean Aphid Identification, Biology, and Management Kelley Tilmon ([email protected]) Buyung Hadi ([email protected]) The soybean aphid (Aphis glycines) is a significant insect pest of soybean in the North Central region of the U.S., and if left untreated can reduce regional production values by as much as $2.4 billion annually (Song et al., 2006). The soybean aphid is an invasive pest that is native to eastern Asia, where soybean was first domesticated. The pest was first detected in the U.S. in 2000 (Tilmon et al., 2011) and in South Dakota in 2001. It quickly spread across 22 states and three Canadian provinces. Soybean aphid populations have the potential to increase rapidly and reduce yields (Hodgson et al., 2012). This chapter reviews the identification, biology and management of soybean aphid. Treatment thresholds, biological control, host plant resistance, and other factors affecting soybean aphid populations will also be discussed. Table 35.1 provides suggestions to lessen the financial impact of aphid damage. Table 35.1. Keys to reducing economic losses from aphids. • Use resistant aphid varieties; several are now available. • Monitor closely because populations can increase rapidly. • Soybean near buckthorn should be scouted first. • Adults can be winged or wingless • Determine if your field contains any biocontrol agents (especially lady beetles). • Control if the population exceeds 250 aphids/plant. CHAPTER 35: Soybean Aphid Identification, Biology, and Management 1 Description Adult soybean aphids can occur in either winged or wingless forms. Wingless aphids are adapted to maximize reproduction, and winged aphids are built to disperse and colonize other locations.
    [Show full text]
  • Tracking the Role of Alternative Prey in Soybean Aphid Predation
    Molecular Ecology (2007) 16, 4390–4400 doi: 10.1111/j.1365-294X.2007.03482.x TrackingBlackwell Publishing Ltd the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach JAMES D. HARWOOD,* NICOLAS DESNEUX,†§ HO JUNG S. YOO,†¶ DANIEL L. ROWLEY,‡ MATTHEW H. GREENSTONE,‡ JOHN J. OBRYCKI* and ROBERT J. O’NEIL† *Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, Kentucky 40546-0091, USA, †Department of Entomology, Purdue University, Smith Hall, 901 W. State Street, West Lafayette, Indiana 47907-2089, USA, ‡USDA-ARS, Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, Beltsville, Maryland 20705, USA Abstract The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is a pest of soybeans in Asia, and in recent years has caused extensive damage to soybeans in North America. Within these agroecosystems, generalist predators form an important component of the assemblage of natural enemies, and can exert significant pressure on prey populations. These food webs are complex and molecular gut-content analyses offer nondisruptive approaches for exam- ining trophic linkages in the field. We describe the development of a molecular detection system to examine the feeding behaviour of Orius insidiosus (Hemiptera: Anthocoridae) upon soybean aphids, an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild prey species, Harmonia axyridis (Coleoptera: Coccinellidae). Specific primer pairs were designed to target prey and were used to examine key trophic connections within this soybean food web. In total, 32% of O. insidiosus were found to have preyed upon A. glycines, but disproportionately high consumption occurred early in the season, when aphid densities were low.
    [Show full text]
  • Soybean Aphid Identification, Biology, and Management
    SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 35: Soybean Aphid Identification, Biology, and Management Kelley Tilmon Buyung Hadi The soybean aphid (Aphis glycines) is a significant insect pest of soybean in the North Central region of the U.S., and if left untreated can reduce regional production values by as much as $2.4 billion annually (Song et al., 2006). The soybean aphid is an invasive pest that is native to eastern Asia, where soybean was first domesticated. The pest was first detected in the U.S. in 2000 (Tilmon et al., 2011) and in South Dakota in 2001. It quickly spread across 22 states and three Canadian provinces. Soybean aphid populations have the potential to increase rapidly and reduce yields (Hodgson et al., 2012). This chapter reviews the identification, biology, and management of soybean aphid. Treatment thresholds, biological control, host plant resistance, and other factors affecting soybean aphid populations will also be discussed. Table 35.1 provides suggestions to lessen the financial impact of aphid damage. Table 35.1. Keys to reducing economic losses from aphids. • Use resistant aphid varieties; several are now available. • Monitor closely because populations can increase rapidly. • Soybean near buckthorn should be scouted first. • Adults can be winged or wingless • Determine if your field contains any biocontrol agents (especially lady beetles). • Control if the population exceeds 250 aphids/plant. 35-293 extension.sdstate.edu | © 2019, South Dakota Board of Regents Description Adult soybean aphids can occur in either winged or wingless forms. Wingless aphids are adapted to maximize reproduction, and winged aphids are built to disperse and colonize other locations.
    [Show full text]
  • Recommended IPM Approach and Treatment Threshold for Soybean Aphid Control in Soybean
    AUGUST 2018 Recommended IPM Approach and Treatment Threshold for Soybean Aphid Control in Soybean Soybean aphids (Aphis glycines) are major pests of soybeans (Glycines max) in Minnesota. Soybean aphids injure soybean plants by piercing the plants with tiny needle-like mouth parts and sucking out sap, which can reduce soybean yield. Due to their small size, aphids must occur in high numbers on soybean plants to result in yield loss. Such damaging populations occur yearly in Minnesota (but not necessarily the same regions every year), resulting in the need for an Integrated Pest Management (IPM) approach to successfully control this pest. Scouting Not all soybean fields are likely to have soybean aphid problems. Early aphid infestations in spring are often found in smaller fields near buckthorn, their primary overwintering plant, and migrate to soybean (See soybean aphid life-cycle in MN below). These infestations are often more abundant on tender and young leaves. Active scouting should be carried out from Mid-June through growth stage R6.5 (pods and leaves begin to yellow). As soybean progresses through reproductive growth stages, aphid populations move to leaves, stems and pods lower on the plants. The presence of lady beetles or ants are often indicative of soybean aphid populations. Sample 20-30 plants from throughout the entire field. Consider sampling at least 1x / week during active scouting period. Count both adults and nymphs (see picture on page 4). An alternative method to scouting is “speed scouting” or sequential sampling method. Speed scouting can be used to save time, however, this method provides less information and can slightly over-recommend treatment of fields.
    [Show full text]