Grapple Yarder and Supersnorkel Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Grapple Yarder and Supersnorkel Handbook Grapple yarder & Supersnorkel Handbook About WorkSafeBC WorkSafeBC (the Workers’ Compensation Board) is an independent provincial statutory agency governed by a Board of Directors. It is funded by insurance premiums paid by registered employers and by investment returns. In administering the Workers Compensation Act, WorkSafeBC remains separate and distinct from government; however, it is accountable to the public through government in its role of protecting and maintaining the overall well-being of the workers’ compensation system. WorkSafeBC was born out of a compromise between B.C.’s workers and employers in 1917 where workers gave up the right to sue their employers or fellow workers for injuries on the job in return for a no-fault insurance program fully paid for by employers. WorkSafeBC is committed to a safe and healthy workplace, and to providing return-to-work rehabilitation and legislated compensation benefits to workers injured as a result of their employment. WorkSafeBC Prevention Information Line The WorkSafeBC Prevention Information Line can answer your questions about workplace health and safety, worker and employer responsibilities, and reporting a workplace accident or incident. The Prevention Information Line accepts anonymous calls. Phone 604 276-3100 in the Lower Mainland, or call 1 888 621-7233 (621-SAFE) toll-free in British Columbia. To report after-hours and weekend accidents and emergencies, call 604 273-7711 in the Lower Mainland, or call 1 866 922-4357 (WCB-HELP) toll-free in British Columbia. Grapple Yarder & Supersnorkel Handbook WorkSafeBC publications Many publications are available on the WorkSafeBC web site. The Occupational Health and Safety Regulation and associated policies and guidelines, as well as excerpts and summaries of the Workers Compensation Act, are also available on the web site: WorkSafeBC.com Some publications are also available for purchase in print: Phone: 604 232-9704 Toll-free phone: 1 866 319-9704 Fax: 604 232-9703 Toll-free fax: 1 888 232-9714 Online ordering: WorkSafeBC.com and click on Publications; follow the links for ordering © 1998, 2004, 2011 Workers’ Compensation Board of British Columbia. All rights reserved. The Workers’ Compensation Board of B.C. encourages the copying, reproduction, and distribution of this document to promote health and safety in the workplace, provided that the Workers’ Compensation Board of B.C. is acknowledged. However, no part of this publication may be copied, reproduced, or distributed for profit or other commercial enterprise, nor may any part be incorporated into any other publication, without written permission of the Workers’ Compensation Board of B.C. Library and Archives Canada Cataloguing in Publication Main entry under title: Grapple yarder & supersnorkel handbook. — 1992 — Irregular. “WorkSafe.” ISSN 1712-6592 = Grapple yarder & supersnorkel handbook 1. Logging – British Columbia – Safety measures. 2. Logging – British Columbia – Machinery. 3. Forest machinery – British Columbia. I. Workers’ Compensation Board of British Columbia. II. Title: Grapple yarder and supersnorkel handbook. SB952.5.S72 2009363.17’92 C2009-906717-X ii Grapple Yarder & Supersnorkel Handbook Grapple Yarder & Supersnorkel Handbook at a glance Introduction . 1 General.planning.considerations . 6 Worker.safety.and.environmental.considerations. 9 Planning.and.developing.a.grapple.yarder.site. 14 Transporting.equipment.to.the.yarding.site. 37 Grapple.yarding.work.procedures. 45 Grapple.yarder.operator. 71 Grapple.yarder.hooktender,.spotter,.or.backspar.operator. 83 Utility.worker. 95 Grapple.yarding.in.winter.conditions. 98 Grapple.yarder.and.loader.inspections. 105 Loading.in.proximity.to.grapple.yarders. 111 Supersnorkel.yarder/loader.operator. 119 Supersnorkel.landing.worker. 139 Radios.and.verbal.signals . 147 First.aid.and.emergency.procedures. 149 Control.procedures . 153 Definitions. 155 Grapple Yarder & Supersnorkel Handbook iii Contents Introduction ............................................ 1 Responsibility for planning and safety . 1 Working safely . 1 Accidents .................................................................1 Planning .................................................................2 Training ..................................................................2 Supervision ...............................................................2 Responsibilities for safety . 2 Manager/superintendent ...................................................2 Forestry engineer ..........................................................3 Supervisor ................................................................3 Worker ...................................................................3 Environmental concerns . 4 Fire prevention and control . 4 Crew transportation . 5 General planning considerations ........................... 6 Type of terrain . 6 Size and volume of timber . 6 Yarding distances and available deflection . 6 Potential landing and haul road locations . 6 Type of machine and cable yarding system . 7 Common planning mistakes . 8 Worker safety and environmental considerations .............. 9 Falling non–clear-cut prescriptions . 9 Log landing areas . 10 Corridors . 10 Cross-slope movement of the yarding lines . 10 Runaway log hazard . 10 Overhead hazards . 11 Wind throw . 11 Wind throw amendments . 12 Riparian management and reserve zones . 12 Feathered edges . 12 Trespass . 13 Planning and developing a grapple yarder site ............... 14 Engineering and layout considerations . 14 Haul road layout and construction . 15 Planning the back end . 20 Suitable anchors . 20 iv Grapple Yarder & Supersnorkel Handbook Notching of stumps . 21 Securing of stumps . 22 Multiple stump anchors ...................................................22 Twisters .................................................................22 Jill-poke supports .........................................................23 Deadweight anchors ......................................................24 Skyline anchors . 24 Backspar guylines . 25 Tightening sequence . 27 Weather . 27 Landing areas for grapple yarders . 29 Building a log landing area ................................................32 Mobile backspar equipment ................................................32 Backspar roads . 34 Positioning equipment on backspar roads....................................35 Transporting equipment to the yarding site.................. 37 Planning . 37 Overhead obstructions . 37 Overhead electrical power lines ............................................37 Railway and road overpasses...............................................39 Preventing contact with overhead obstructions . .40 Loading equipment on the lowbed . 41 Moving equipment to the unloading site . 42 Snubbing, pulling, or pushing a lowbed or machine . 42 Unloading the equipment . 44 Grapple yarding work procedures.......................... 45 Yarding the logs . 45 Spotting the grapple . 46 Grapple yarding verbal signals .............................................48 Standing in the clear ......................................................49 Working the draws and ridges..............................................49 Grapple yarder backspars . 50 Example 1: Backspar ......................................................51 Example 2: Backspar ......................................................53 Example 3: Backspar ......................................................54 Example 4: Lift tree .......................................................55 Tree climbing . 55 Tree topping .............................................................56 Twister tiebacks ..........................................................57 Grapple Yarder & Supersnorkel Handbook v Yarding hazards . 59 Swinging chokers.........................................................59 Log piles . 60 Counterweight clearances..................................................60 Weather .................................................................61 Night operations..........................................................61 Tailhold blocks ...........................................................61 Deteriorated topping or gantry lines ........................................62 Dees, thimbles, and cable clips . .62 Spooling and cutting lines .................................................64 Windows . 67 Grapple yarder access .....................................................68 Line pulling of trees ......................................................69 Communications . 70 Personal protective equipment and clothing . 70 Housekeeping . 70 Maintenance . 70 Guarding . 70 Grapple yarder operator ................................. 71 Responsibility for safety . 71 Transporting the grapple yarder . 72 Grapple yarder hazards . 73 Walking the grapple yarder ................................................73 Culverts and bridges . .73 Overhead obstructions . 74 Travelling uphill and downhill . .75 Roads covered with debris or snow . .76 Rock protrusions .........................................................76 Rigging the grapple yarder . 77 Guylines.................................................................77 Yarding lines.............................................................80 Strawline ................................................................81 Hanging blocks and straps.................................................82 Grapple yarder hooktender, spotter, or backspar operator ...... 83 Responsibility for safety . 83
Recommended publications
  • Performance Analysis of Log Extraction by a Small Shovel Operation in Steep Forests of South Korea
    Article Performance Analysis of Log Extraction by a Small Shovel Operation in Steep Forests of South Korea Eunjai Lee 1 , Sang-Kyun Han 2 and Sangjun Im 3,* 1 National Institute of Forest Science, Forest Technology and Management Research Center, 498 Gwangneungsumogwon-ro, Soheul-eup, Pocheon 11186, Korea 2 Department of Forestry and Landscape Architecture, Korea National College of Agriculture and Fisheries, 1515 Kongjwipatwji-ro, Deokjin-gu, Jeonju 54874, Korea 3 Department of Forest Sciences and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea * Correspondence: [email protected]; Tel.: +82-2-880-4768 Received: 7 May 2019; Accepted: 11 July 2019; Published: 13 July 2019 Abstract: In South Korea, logs for low-value products, such as pulpwood and fuelwood, are primarily extracted from harvest sites and transported to roadside or landing areas using small shovels. Previous studies on log extraction, however, have focused on cable yarding operations with the goal of improving productivity on steep slopes and inaccessible sites, leaving small-shovel operations relatively unexamined. Therefore, the main objectives were to determine small-shovel extraction productivity and costs and to evaluate the impact of related variables on productivity. In addition, we developed a model to estimate productivity under various site conditions. The study took place in 30 case study areas; each area has trees with stems at a diameter at breast height ranging from 18 to 32 cm and a steep slope (greater than 15%). The areas ranged from 241 to 1129 trees per hectare, with conifer, deciduous, and mixed stands.
    [Show full text]
  • Cable Yarding in North America and New Zealand: a Review of Developments and Practices
    Subject review Cable Yarding in North America and New Zealand: A Review of Developments and Practices Rien Visser, Hunter Harrill Abstract Cable yarders have been an integral part of harvesting timber on steep terrain for over 150 years. They have developed from basic labour intensive steam powered winch operations to sophisti- cated and automated mechanised systems. While European yarder development has focused on relatively small but highly mobile machines operating with standing skyline configurations, the North American and Southern Hemisphere developments have tended towards larger, taller and more powerful machines capable of higher daily production. Two dominant North American brands, Madill and Thunderbird, produced over 3000 yarders and many of their machines continue to work today. Often working with 4 or 5 drums, they were able to develop and utilise an expansive range of rigging configurations to suit different extraction needs. Modern developments continue to focus on increasing production capability and cost-effective- ness suited to clear-cut plantation forestry. With safety becoming more paramount in terms of a licence to operate, a strong preference is given to fully mechanised systems. By definition, these are yarders with rigging systems that support grapple carriages, extracting timber that has been mechanically felled on steep slopes. While mechanical grapple carriages have long been combined with swing yarder systems, the further development of a motorised grapple carriage allows tower yarders to operate without choker-setters. Ergonomic improvements for the operator, long established in European machinery, are being integrated including cab design with greatly improved visibility and partially automated electric over hydraulic control systems. Logic would suggest that, over time, yarder developments will combine the strength and robustness of North American design and the finesse and automation of European design.
    [Show full text]
  • A Comparative Analysis of Two Cable Yarder Technologies Performing Thinning Operations on a 33 Year Old Pine Plantation: a Potential Source of Wood for Energy
    energies Article A Comparative Analysis of Two Cable Yarder Technologies Performing Thinning Operations on a 33 Year Old Pine Plantation: A Potential Source of Wood for Energy Rodolfo Picchio 1,*, Rachele Venanzi 1, Nicolò Di Marzio 1, Damiano Tocci 1 and Farzam Tavankar 2 1 Department of Agricultural and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; [email protected] (R.V.); [email protected] (N.D.M.); [email protected] (D.T.) 2 Department of Forestry, Khalkhal Branch, Islamic Azad University, Khalkhal 56817-31367, Iran; [email protected] * Correspondence: [email protected] Received: 24 July 2020; Accepted: 14 October 2020; Published: 15 October 2020 Abstract: In central Italy, there are extensive European black pine (Pinus nigra Arn.) plantations which range from 30 to 60 years of age and where no thinning operations have been made. The main purpose of this study was to provide a comparative analysis of two cable yarder technologies (Maxwald, mobile pulley carriage and Savall, semi-automatic carriage), in terms of fuelwood production and cost, from the first thinning of a 33 year old plantation in slope areas of these plantations. The results showed that fuelwood production was cost-effective in both systems (Savall by 15.1 and Maxwald by 3 14.8 ¿ m− ), although the productivity of the Savall system was higher than the Maxwald system 3 1 (6.1 vs. 5.7 m h− ). The respect amounts of productivity have the potential to increase by 27% for the Savall yarder and 25% for the Maxwald yarder upon condition that the delay times are reduced to minimum level by proper training of workers, by a better organization, and planning of operations.
    [Show full text]
  • Engineering Safety Solutions
    25 October 2017 ENGINEERING SAFETY SOLUTIONS Reducing the risk of falling from a Madill 124 swing yarder In a perfect world we strive to ELIMINATE risks to health and safety. As we know this is not always possible—either the tools or technology doesn’t exist or it will be financially unviable. So we are then required to take a closer look at how we could MINIMISE the risk. Options may include : • Substituting (totally or partially) the hazard that creates the risk with something of lesser risk, an example of this would be replacing manual felling with mechanized felling where possi- ble. • Isolating the hazard to prevent contact, an example of this would be temporary traffic con- trol when felling within two tree lengths of a road. • Implementing engineering controls, an example of this would be a cut-out or disable switch. These three types of controls are far more reliable than the next layer of controls…...that is rules and procedures, followed by the use of personal protective equipment. This layer of controls is prone to human failure. Engineering controls or engineering safety solutions is the subject of this case study. When working around forestry machines, one of our greatest risks is falling from heights. While working with haulers, some of the routine activities that is crucial to machine operation need to be done at an elevated position, sometimes as high as 14m from the ground. Although fall arrest harnesses are provided for this work, there is some doubt that they are used all the time. People have reported not using the harness because it’s difficult to fit it correctly, it takes time to fit, there is not enough attachment points on the machines, and that they “feel safe” going up the gantry ladder without a harness.
    [Show full text]
  • Productivity, Costs, and Optimal Spacing of Skyline Corridors of Two Cable Yarding Systems in Partial Cutting of Second-Growth Forests of Coastal British Columbia
    PRODUCTIVITY, COSTS, AND OPTIMAL SPACING OF SKYLINE CORRIDORS OF TWO CABLE YARDING SYSTEMS IN PARTIAL CUTTING OF SECOND-GROWTH FORESTS OF COASTAL BRITISH COLUMBIA by DAG RUTHERFORD, R.P.F. B. S .F, University of British Columbia, 1992 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE OF FORESTRY in THE FACULTY OF GRADUATE STUDIES Department of Forest Operations We accept this thesis a^ojifopmng to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1996 © Dag Andrew Rutherford, 1996 fiPR-29-96 tlON 15:10 UBC SPECIAL COLLECTIONS P . 02 In presenting this thesis In partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It Is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Forestry Department of The University of British Columbia Vancouver, Canada April 29/1996 Date DE-6 (2/88) Abstract Public pressure to end clearcut logging, and changing forest management needs have increased opportunities for partial cutting in British Columbia's second-growth coastal forests. Production economics and engineering design of cable harvesting systems for partial cutting in second-growth forests of British Columbia (BC) are largely unknown. Scientific research and working experience in partial cutting forest harvesting operations in coastal areas of the Pacific Northwest of North America is from the United States or from selection harvesting of old growth forests in coastal BC prior to 1935.
    [Show full text]
  • Investigation of Feller-Buncher Performance Using Weibull Distribution
    Article Investigation of Feller-Buncher Performance Using Weibull Distribution Ebru Bilici Forestry Department, Dereli Vocational School, Giresun University, Giresun 28950, Turkey; [email protected] Abstract: With the advancement of technology in forestry, the utilization of advanced machines in forest operations has been increasing in the last decades. Due to their high operating costs, it is crucial to select the right machinery, which is mostly done by using productivity analysis. In this study, a productivity estimation model was developed in order to determine the timber volume cut per unit time for a feller-buncher. The Weibull distribution method was used to develop the productivity model. In the study, the model of the theoretical (estimated) volume distributions obtained with the Weibull probability density function was generated. It was found that the c value was 1.96 and the b value was 0.58 (i.e., b is the scale parameter, and c is the shape parameter). The model indicated that the frequency of the volume data had moved away from 0 as the shape parameter of the Weibull distribution increased. Thus, it was revealed that the shape parameter gives preliminary information about the distribution of the volume frequency. The consistency of the measured timber volume with the estimated timber volume strongly indicated that this approach can be effectively used by decision makers as a key tool to predict the productivity of a feller-buncher used in harvesting operations. Keywords: forest operations; productivity; Weibull distribution; feller-buncher Citation: Bilici, E. Investigation of Feller-Buncher Performance Using 1. Introduction Weibull Distribution. Forests 2021, 12, Innovative management strategies will be necessary in managing forest resources, 284.
    [Show full text]
  • Productivity Analysis of Fully Mechanised Cable Logging Operations in New Zealand
    Productivity analysis of fully mechanised cable logging operations in New Zealand Prepared by: Luke Holmes, Final year Forest Engineering Student Supported by: Hunter Harrill, Research Assistant Supervised by: Rien Visser, Associate Professor Sponsored by: Rayonier I Matariki Forests 2017 School of Forestry, University of Canterbury L Holmes NZ Cable Harvesting Productivity 2017 Executive summary Modern day production requirements are continually increasing for logging crews throughout New Zealand. Growth in mechanisation, driven by the demand for a safer work place, requires large capital investments, and thus the demand for higher production to justify the increased cost. This analysis investigates fully mechanised extraction systems currently operating in the country and compares how the next generation of swing yarders may increase operational efficiently and productivity. Elemental time studies were used to quantify cycle time and calculate productivity for the purpose of comparing operations. Four elemental time studies were completed for cable yarder operations with over 200 cycles being recorded for each machine. These were conducted by Luke Holmes and Hunter Harrill during the first half of 2017. The focus was on the two new T-Mar ‘Log Champ’ swing yarders that have recently been imported to NZ (both 650 and 550 models) and an older style Madill 124 swing yarder which is a commonly found machine among NZ forests. These machines were all operating a mechanical grapple with a mobile tail hold. The studies also included one tower yarder operation which was using a Bellis BE 60 LT track based yarder This crew were using an innovative standing skyline system, operating the Block in the Bight rigging configuration, but replaced the chokers with a Helihawk grapple adapted for use on a cable logging system.
    [Show full text]
  • Mobility Range of a Cable Skidder for Timber Extraction on Sloped Terrain
    Article Mobility Range of a Cable Skidder for Timber Extraction on Sloped Terrain Andreja Đuka *, Tomislav Poršinsky, Tibor Pentek, Zdravko Pandur ID , Dinko Vusi´c and Ivica Papa ID Faculty of Forestry, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; [email protected] (To.P.); [email protected] (Ti.P.); [email protected] (Z.P.); [email protected] (D.V.); [email protected] (I.P.) * Correspondence: [email protected] Received: 2 August 2018; Accepted: 27 August 2018; Published: 30 August 2018 Abstract: The use of forestry vehicles in mechanised harvesting systems is still the most effective way of timber procurement, and forestry vehicles need to have high mobility to face various terrain conditions. This research gives boundaries of planning timber extraction on sloped terrain with a cable skidder, considering terrain parameters (slope, direction of skidding, cone index), vehicle technical characteristics and load size (5 different loads) relying on sustainability and eco-efficiency. Skidder mobility model was based on connecting two systems: vehicle-terrain (load distribution) and wheel-soil (skidder traction performance) with two mobility parameters: (1) maximal slope during uphill timber extraction by a cable skidder based on its traction performance (gradeability), and (2) maximal slope during downhill timber extraction by a cable skidder when thrust force is equal to zero. Results showed mobility ranges of an empty skidder for slopes between −50% and +80%, skidder with 1 tonne load between −26% and +63%, skidder with 2 tonne load between −30% and +51%, skidder with 3 tonne load between −34% and +39%, skidder with 4 tonne load between −35% and +30% and skidder with 5 tonne load between −41% and +11%.These results serve to improve our understanding of safer, more efficient timber extraction methods on sloped terrain.
    [Show full text]
  • Growinggoldsummer05.Pdf
    KENTUCKY’S GROWING GOLD A PUBLICATION OF: KENTUCKY DIVISION OF FORESTRY FRANKFORT, KENTUCKY 40601 A SERVICE TO KENTUCKY’S FOREST PRODUCTS INDUSTRY AND TIMBERLAND OWNERS VOL. XLV, NO. 3 EDITOR: CHRISTOPHER G. NEVINS SUMMER 2005 THE FOLLOWING MARKED TIMBER FOR SALE IS A LISTING OF TIMBER MARKED BY THE KENTUCKY DIVISION OF FORESTRY FOR PRIVATE WOODLAND OWNERS. THE LIST WAS CURRENT AS OF DATE OF SUBMISSION TO THE PRINTERS. IF YOU WANT FURTHER INFORMATION ON MARKED TIMBER, PLEASE REFER TO THE "COUNTY GUIDE TO DISTRICT FORESTERS' OFFICES" INSIDE THE BACK COVER AND CALL THE APPROPRIATE DISTRICT FORESTER. MARKED TIMBER FOR SALE LOCATION SPECIES AND VOLUME CONTACT CENTRAL DISTRICT TRACT #1 ALLEN CO. RED OAK 15231 BEECH 2661 FRED OLIVER LOCATED NORTH OF YELLOW POPLAR 6115 MISC. OAKS 580 1437 LONGVIEW DR. SCOTTSVILLE, APPROX. 2 WHITE OAK 3881 CHERRY 248 BOWLING GREEN, KY 42104 MILES FROM JCT. OF HWY HARD MAPLE 3315 ASH 164 270-842-7137 31E &HWY 101, ON NORTH HICKORY 2985 BLACKGUM 120 SIDE OF HWY. 1332. TOTAL BF (DOYLE) 35300 29 ACRES 128 TREES MARKED TRACT #2 5 ACRES LOBLOLLY PINE 31340 119 TREES MARKED HART CO. YELLOW POPLAR 20249 SCARLET/SHINGLE OAK 2712 MITCHELL WADDELL LOCATED 10 MILES WEST RED OAK 14296 ASH 1894 3095 ROSEBURG RD. OF MUNFORDVILLE, ON WHITE OAK 9874 WALNUT/CHERRY 1468 CUB RUN, KY 42729 THE SOUTH SIDE OF HICKORY 4405 CHINKAPIN OAK 604 270-524-0113 HWY 88. HARD MAPLE 3880 MISCELLANEOUS 472 38 ACRES BEECH 3387 TOTAL BF (DOYLE) 63241 327 TREES MARKED www.kentuckyunbridledspirit.com 1 OCATION SPECIES AND VOLUME CONTACT CENTRAL DISTRICT NELSON CO.
    [Show full text]
  • WAC 296-54 WAC, Logging Operations
    Chapter 296-54 WAC Introduction Safety Standards for Logging Operations _________________________________________________________________________________________________________ Chapter 296-54 WAC Safety Standards for Logging Operations (Form Number F414-016-000) This book contains rules for safety standards for logging operations, as adopted under the Washington Industrial Safety and Health Act of 1973 (Chapter 49.17 RCW). The rules in this book are effective October 2017. A brief promulgation history, set within brackets at the end of this chapter, gives statutory authority, administrative order of promulgation, and date of adoption of filing. TO RECEIVE E-MAIL UPDATES: Sign up at https://public.govdelivery.com/accounts/WADLI/subscriber/new?topic_id=WADLI_19 TO PRINT YOUR OWN PAPER COPY OR TO VIEW THE RULE ONLINE: Go to https://www.lni.wa.gov/safety-health/safety-rules/rules-by-chapter/?chapter=54/ DOSH CONTACT INFORMATION: Physical address: 7273 Linderson Way Tumwater, WA 98501-5414 (Located off I-5 Exit 101 south of Tumwater.) Mailing address: DOSH Standards and Information PO Box 44810 Olympia, WA 98504-4810 Telephone: 1-800-423-7233 For all L&I Contact information, visit https://www.lni.wa.gov/agency/contact/ Also available on the L&I Safety & Health website: DOSH Core Rules Other General Workplace Safety & Health Rules Industry and Task-Specific Rules Proposed Rules and Hearings Newly Adopted Rules and New Rule Information DOSH Directives (DD’s) See http://www.lni.wa.gov/Safety-Health/ Chapter 296-54 WAC Table of Contents Safety Standards for Logging Operations _________________________________________________________________________________________________________ Chapter 296-54 WAC SAFETY STANDARDS FOR LOGGING OPERATIONS WAC Page 296-54-503 Variance. .................................................................. 1 WAC 296-54-505 Definitions.
    [Show full text]
  • Otto Is a Timber
    Change ServiCe requeSted PrSrt Std u.S. PoStage LoggerS WorLd PubLiCationS PAID 4206 J aCkSon hWy . PerMit no. 178 ChehaLiS , Wa 98532-8425 SaLeM, or 2 1 0 2 S 2 1 0 2 S R E B M E t p E R E B M E t p E 3 8 2 8 - 2 6 4 ) 0 0 8 ( 3 8 2 8 - 2 6 4 ) 0 0 8 ( : l l a C e s i t r e v d A o T T : l l a C e s i t r e v d A o 9 R E B M U N 8 4 E M U L O V 9 R E B M U N 8 4 E M U L O V 1 2 2 Otto Oja like to watch the commercials. the stupider they tto is a timber are the the better i like to watch them. you don't Ofaller. he used to have to watch that tv set long before it is im - be a bucker. before that pressed upon you that the people making up the 2 1 he worked on the rig - advertising must think that there is no one in the 0 2 ging. at one time he was country over seven years old. actually there is R E Rigging known as the some good adult commercials but what's the fun B of talking about them. Would you have believed, M 'Clatskanie kid'. he E t served his country in before television, that they would be advertising p E battle in the Mountain the things they are now? there is this ad about S Shack troops WWii.
    [Show full text]
  • General Industry Safety and Health Standard Part 51. Logging
    MIOSHA-STD-1135 (02/17) For further information 18 Pages Ph: 517-284-7740 www.michigan.gov/mioshastandards DEPARTMENT OF LICENSING AND REGULATORY AFFAIRS DIRECTOR’S OFFICE GENERAL INDUSTRY SAFETY STANDARDS Filed with the Secretary of State on February 15, 1970, (as amended May 15, 1974) (as amended October 28, 1976) (as amended May 17, 1983) (as amended November 15, 1989) (as amended June 17, 1996) (as amended August 5, 2014) (as amended February 23, 2017) These rules take effect immediately upon filing with the Secretary of State unless adopted under section 33, 44, or 45a(6) of 1969 PA 306. Rules adopted under these sections become effective 7 days after filing with the Secretary of State. (By authority conferred on the director of the department of licensing and regulatory affairs by sections 16 and 21 of 1974 PA 154, MCL 408.1016 and 408.1021, and Executive Reorganization Order Nos. 1996-2, 2003-18 2003-1, 2008-4, and 2011-4, MCL 408.1016, 408.1021, 445.2001, 445.2011, 445.2025, and 445.2030) R 408.15102, R 408.15111, R 408.15114, R 408.15117, R 408.15120, R 408.15125, R 408.15127, R 408.15130, R 408.15131, R 408.15144, R 408.15146, R 408.15148, R 408.15150, R 408.15165, and R 408.15166 of the Michigan Administrative Code are amended, and R 408.15117a, R 408.15117b, R 408.15146a and R 408.15146b are added, as follows: GENERAL INDUSTRY SAFETY AND HEALTH STANDARD PART 51. LOGGING Table of Contents: GENERAL PROVISIONS ...........................................
    [Show full text]