Trained Immunity: a New Avenue for Tuberculosis Vaccine Development

Total Page:16

File Type:pdf, Size:1020Kb

Trained Immunity: a New Avenue for Tuberculosis Vaccine Development Trained immunity: a new avenue for tuberculosis vaccine development Maria Lerm and M. G. Netea Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Maria Lerm and M. G. Netea, Trained immunity: a new avenue for tuberculosis vaccine development, 2016, Journal of Internal Medicine, (279), 4, 337-346. http://dx.doi.org/10.1111/joim.12449 Copyright: 2015 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. This is an open access article under the terms of the Creative Commons Attribution- NonCommercial-NoDerivs License. http://eu.wiley.com/WileyCDA/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127425 Review doi: 10.1111/joim.12449 Trained immunity: a new avenue for tuberculosis vaccine development M. Lerm1 & M. G. Netea2 From the 1Division of Microbiology and Molecular Medicine, Faculty of Medicine and Health Sciences, Linkoping,€ Sweden; and 2Radboud Institute for Molecular Life Sciences, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands Abstract. Lerm M, Netea MG (Faculty of Medicine and of immunity is nonspecific. Evidence is now accu- Health Sciences, Linkoping,€ Sweden; and Radboud mulating that innate immunity can remember a University Medical Center, Nijmegen, the previous exposure to a microorganism and respond Netherlands). Trained immunity: a new avenue differently during a second exposure. Although the for tuberculosis vaccine development. (Review). specificity and memory of innate immunity cannot J Intern Med 2016; 279: 337–346. compete with the highly sophisticated adaptive immune response, its contribution to host defence Adaptive immunity towards tuberculosis (TB) has against infection and to vaccine-induced immunity been extensively studied for many years. In addi- should not be underestimated and needs to be tion, in recent years the profound contribution of explored. Here, we present the concept of trained innate immunity to host defence against this immunity and discuss how this may contribute to disease has become evident. The discovery of new avenues for control of TB. pattern recognition receptors, which allow innate immunity to tailor its response to different infec- Keywords: BCG, epigenetics, innate immunity, tious agents, has challenged the view that this arm trained immunity, tuberculosis. being at least 6 months with a combination of Introduction between two and four antibiotics. Mycobacteria belong to one of the largest and most ancient phyla of bacteria, the Actinobacteria [1], In the proposed checkpoint model for TB disease which occupies various habitats on Earth including progression [3], the innate immune system consti- soil and water. Most mycobacteria are free-living, tutes the first ‘checkpoint’ that M. tuberculosis has harmless saprophytes, but a few species have to pass to establish infection in a host (Fig. 1). Only evolved as pathogens that infect a variety of species. by passing the second ‘checkpoint’, which is rep- Although pathogenic mycobacteria are not strictly resented by adaptive immunity acting in concert species specific, Mycobacterium tuberculosis [which with innate immunity, is the bacterium able to causes tuberculosis (TB)], Mycobacterium leprae cause active disease and spread to other individ- (which causes leprosy), and Mycobacterium ulcer- uals. Though adaptive immunity undoubtedly ans (which causes painless skin lesions known as plays a central role in control of the infection in Buruli ulcers) are considered primarily human individuals in whom M. tuberculosis has estab- pathogens. M. tuberculosis was one of the first lished itself, the model suggests that there is a bacteria found to be the causative agent of a disease window of opportunity during which innate and is still among the most deadly human patho- immune mechanisms can eliminate M. tuberculo- gens, causing approximately 1.4 million deaths per sis. Indeed, there is substantial evidence that year. TB cannot be eliminated with the current tools many individuals who live under constant expo- of prevention, diagnosis, and treatment [2] and thus sure, e.g. household contacts of TB cases, can clear novel strategies to fight the disease are urgently the infection without the involvement of adaptive needed. During the last decade, many advances in immunity. This is referred to as ‘early clearance’ the understanding of the complex biology of TB have and can be explained by the presence of a highly been made. However, these efforts have not yet effective innate immunity in these individuals [4]. resulted in an improved regimen for TB control, such as a more effective vaccine or a shorter It has been suggested that the effectiveness of treatment duration, with the standard regimen these two immune barriers depends on genetic [5] ª 2015 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. 337 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. M. Lerm & M. G. Netea Review: Trained immunity for TB prevention 1 2 Early clearance Latent tuberculosis Y N NK M B Mφ Th INFECTION DC CTL ACTIVE TUBERCULOSIS Mφ Disease progression Fig. 1 The checkpoint model for tuberculosis (TB) disease progression. Innate immunity poses the first ‘checkpoint’ (1) that Mycobacterium tuberculosis has to pass to cause disease. At the second ‘checkpoint’, M. tuberculosis also has to overcome the contribution of adaptive immunity (2). Here, control or elimination of the pathogen through innate immunity is referred to as early clearance. Latent TB represents the dynamic equilibrium between adaptive immunity and M. tuberculosis. NK, natural killer cell; DC, dendritic cell; Th, T helper cell; CTL, cytolytic T cell B, B cell; M, monocyte; N, neutrophil; Mφ, macrophage. and environmental factors, such as standard of mechanisms to counteract the microbicidal activ- living (nutritional state and housing), and comor- ities of these cells, which include phagosomal bidities [6, 7]. Another, not yet fully understood, acidification, activation of proteolytic enzymes in environmental factor in this context is the impact acidified phagolysosomes, and production of of previous exposure of innate immunity to micro- antimicrobial peptides as well as reactive oxygen bial agents or even vaccines, which could educate and nitrogen metabolites [9, 10]. Thus, if the the innate immune defence to pose a more effective macrophage defence fails, M. tuberculosis estab- response against related and sometimes even lishes itself in an intracellular niche, which is unrelated infections. This evolutionarily conserved initially the phagosome with impaired antimicro- phenomenon is known as trained immunity and bial capacity [11, 12] and later the cytosol [13] into has been demonstrated in plants, invertebrates, which it escapes by means of a membrane-dama- and animals [8]. ging toxin, early secreted antigenic target (ESAT)-6 [14]. The cytosolic mycobacteria replicate effi- Here, we will review the immunological mecha- ciently (step 2, Fig. 2) before the primary host cell nisms that are important for control of TB and is killed (step 3, Fig. 2), a process in which ESAT-6 discuss how trained immunity can contribute to plays an important role [15]. The inflammation control and elimination of mycobacterial infec- triggered by the dying cells induces recruitment to tions. the site of infection of further monocytes/macro- phages (step 4, Fig. 2), which then become infected (step 5, Fig. 2). Paradoxically, these cells can serve The life cycle of M. tuberculosis as vehicles for further dissemination of the infec- The primary target cells for M. tuberculosis infec- tion in the tissue [16]. The process of early gran- tion are the alveolar macrophages. These cells uloma formation is also dependent on ESAT-6 [16, encounter and engulf the pathogen when infected 17] and is probably linked to the inflammation aerosols are inhaled and enter the alveolar space generated through necrosis triggered by the toxin (step 1, Fig. 2). M. tuberculosis employs several [15]. As the inflammatory process proceeds, gran- 338 ª 2015 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. Journal of Internal Medicine, 2016, 279; 337–346 M. Lerm & M. G. Netea Review: Trained immunity for TB prevention 3 Mφ 2 Mφ LUNG TISSUE Th Mφ 1 CTL Mφ CTL Mφ 4 Mφ Th AIRWAYS 9 CTL M M 8 M M Th CTL 5 Mφ CTL Mφ Mφ Mφ Th Mφ Mφ Mφ CTL 6 7 Fig. 2 The life cycle of Mycobacterium tuberculosis. M. tuberculosis is taken up by alveolar macrophages (Mφ) (step 1) and replicates efficiently (step 2) until the host cells are killed (step 3). Recruitment of further monocytes (M)/macrophages to the site of infection (step 4) disseminates the infection (step 5) and as the inflammatory process proceeds, granuloma are formed (step 6). CD4+ T helper type 1 (Th1) cells and CD8+ cytolytic T cells (CTLs) are recruited to form a rim surrounding the infected macrophages (step 7). Eventually, the granuloma becomes necrotic (step 8) and the structure ruptures, draining viable bacilli into the alveolar space (step 9). ulomas (clusters of macrophages) are formed (step that a relatively large proportion (20–25%) of indi- 6, Fig. 2). As the granuloma further matures, viduals who are exposed to TB never develop any lymphocytes, including both CD4+ T helper type signs of an immunological memory against M. 1 (Th1) cells and CD8+ cytolytic T cells (CTLs) [18, tuberculosis, suggesting that the high efficacy of 19], are recruited to form a rim surrounding the the innate immune response in these individuals infected macrophages (step 7, Fig. 2). Eventually, precludes the need for adaptive immunity.
Recommended publications
  • Old Vaccines for New Infections: Exploiting Innate Immunity to Control COVID-19 and Prevent Future Pandemics Downloaded by Guest on October 2, 2021 Table 1
    PERSPECTIVE Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent PERSPECTIVE future pandemics Konstantin Chumakova, Michael S. Avidanb, Christine S. Bennc,d, Stefano M. Bertozzie,f,g, Lawrence Blatth, Angela Y. Changd, Dean T. Jamisoni, Shabaana A. Khaderj, Shyam Kottililk, Mihai G. Neteal,m, Annie Sparrown, and Robert C. Gallok,1 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved March 17, 2021 (received for review January 29, 2021) The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immu- nity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed “trained immunity.” An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vac- cines arrive.
    [Show full text]
  • Infectious Agents As Stimuli of Trained Innate Immunity
    International Journal of Molecular Sciences Review Infectious Agents as Stimuli of Trained Innate Immunity Paulina Rusek 1, Mateusz Wala 2 ID , Magdalena Druszczy ´nska 1 and Marek Fol 1,* 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland; [email protected] (P.R.); [email protected] (M.D.) 2 Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-635-44-72 Received: 22 December 2017; Accepted: 2 February 2018; Published: 3 February 2018 Abstract: The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • Innate Immune Responses to Mycobacterium Tuberculosis Infection
    Linköping University Medical Dissertation No. 1761 Clara Braian Braian Clara FACULTY OF MEDICINE AND HEALTH SCIENCES Linköping University Medical Dissertation No. 1761, 2020 Department of Biomedical and Clinical Sciences Linköping University SE-581 83 Linköping, Sweden Innate immune responses Innate to Innate immune responses to www.liu.se Mycobacterium tuberculosis infection How extracellular traps and trained immunity can restrict bacterial growth Mycobacterium tuberculosis Mycobacterium Clara Braian infection 2020 Linkoping University Medical Dissertation No. 1761 Innate immune responses to Mycobacterium tuberculosis infection How extracellular traps and trained immunity can restrict bacterial grow th Clara Braian D e p a r t m e n t f i o m e d i c a l a n d l i n i c a l c i e n c e s D i v i s i o n o f n f l a m m a t i o n n d n f e c t i o n F a c u l t y o f M e d i c i n e n d e a l t h c i e n c e s L i n k ö p i n g s n i v e r s i t e t , E - 5 8 1 3 L i n k ö p i n g , w e d e n L i n k ö p i n g 2 0 2 0 © Clara Braian, 2020 All rights reserved. Paper I, II and III are reprinted with permission from the respective publishers.
    [Show full text]
  • The 100Th Anniversary of Bacille Calmette-Guérin (BCG) and the Latest Vaccines Against COVID-19
    http://dx.doi.org/10.5588/ijtld.21.0372 EDITORIAL The 100th anniversary of bacille Calmette-Guérin (BCG) and the latest vaccines against COVID-19 P. J. G. Bettencourt1,2 1Catholic University of Portugal, Lisbon, 2Center for Interdisciplinary Research in Health, Catholic University of Portugal, Lisbon, Portugal. Correspondence to: Paulo J. G. Bettencourt, Faculdade de Medicina, Universidade Católica Portuguesa, Palma de Cima, Lisbon 1649-023, Portugal. email: [email protected] Running head: BCG and new COVID vaccines Article submitted 15 June 2021. Final version accepted 17 June 2021. 1 Vaccines against COVID-19 have become the most important commodities in the world. The race to develop, produce and distribute these vaccines has intensified discussions about the safety and efficacy of vaccines, and raised a host of issues from vaccine hesitancy to the inequality of vaccine distribution. One hundred years ago, on 18 July 1921, similar arguments surrounded the first use in humans of bacille Calmette-Guérin (BCG) vaccine against TB. BCG has since gone on to become the oldest approved vaccine in the world still being administered, and billions of people have been vaccinated with it worldwide. THE EFFICACY OF BCG A series of meta-analysis by Colditz and colleagues in the 1990s, including 70 trials to determine the efficacy of BCG, revealed a reduction in the incidence of TB worldwide by 50%, with an efficacy varying between 0% and 80%.1 Latitude has a major influence on efficacy (i.e., efficacy declines near to the equator), and environmental
    [Show full text]
  • The Relationship Between COVID-19 and Innate Immunity in Children: a Review
    children Review The Relationship between COVID-19 and Innate Immunity in Children: A Review Piero Valentini 1,2,3, Giorgio Sodero 1 and Danilo Buonsenso 2,3,4,*,† 1 Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; [email protected] (P.V.); [email protected] (G.S.) 2 Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy 3 Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168 Rome, Italy 4 Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy * Correspondence: [email protected]; Tel.: +39-063-015-4390 † Current address: Danilo Buonsenso, Largo A. Gemelli 8, 00168 Rome, Italy. Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the pandemic viral pneumonia that was first identified in Wuhan, China, in December 2019, and has since rapidly spread around the world. The number of COVID-19 cases recorded in pediatric age is around 1% of the total. The immunological mechanisms that lead to a lower susceptibility or severity of pediatric patients are not entirely clear. At the same time, the immune dysregulation found in those children who developed the multisystem inflammatory syndrome (MIC-S) is not yet fully understood. The aim of this review is to analyze the possible influence of children’s innate immune systems, considering the risk of contracting the virus, spreading it, and developing symptomatic disease or complications related to infection. Citation: Valentini, P.; Sodero, G.; Keywords: COVID-19; children; coronavirus; innate immunity; SARS-CoV-2; pandemic; MIC-S Buonsenso, D.
    [Show full text]
  • Trained Immunity Confers Broad-Spectrum Protection Against
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” The Journal of Infectious Diseases MAJOR ARTICLE Downloaded from https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiz692/5691195 by Institut universitaire romand de Santé au Travail user on 15 October 2020 Trained Immunity Confers Broad-Spectrum Protection Against Bacterial Infections Eleonora Ciarlo,1 Tytti Heinonen,1 Charlotte Théroude,1 Fatemeh Asgari,2 Didier Le Roy,1 Mihai G. Netea,3,4 and Thierry Roger1 1Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland, 2Department of Biomedical Sciences, Humanitas University, Milan, Italy, 3Radboud Center for Infectious Diseases, and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands, and 4Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany Background. The innate immune system recalls a challenge to adapt to a secondary challenge, a phenomenon called trained immunity. Training involves cellular metabolic, epigenetic and functional reprogramming, but how broadly trained immunity pro- tects from infections is unknown. For the first time, we addressed whether trained immunity provides protection in a large panel of preclinical models of infections. Methods. Mice were trained and subjected to systemic infections, peritonitis, enteritis, and pneumonia induced by Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Citrobacter rodentium, and Pseudomonas aeruginosa. Bacteria, cytokines, leuko- cytes, and hematopoietic precursors were quantified in blood, bone marrow, and organs. The role of monocytes/macrophages, gran- ulocytes, and interleukin 1 signaling was investigated using depletion or blocking approaches. Results. Induction of trained immunity protected mice in all preclinical models, including when training and infection were ini- tiated in distant organs.
    [Show full text]
  • Defining Trained Immunity and Its Role in Health and Disease
    REVIEWS Defining trained immunity and its role in health and disease Mihai G. Netea 1,2,3 ✉ , Jorge Domínguez- Andrés1,2, Luis B. Barreiro4,5,6, Triantafyllos Chavakis7,8, Maziar Divangahi9,10,11, Elaine Fuchs12, Leo A. B. Joosten1,2, Jos W. M. van der Meer1,2, Musa M. Mhlanga13,14, Willem J. M. Mulder15,16,17, Niels P. Riksen1,2, Andreas Schlitzer18, Joachim L. Schultze3, Christine Stabell Benn19, Joseph C. Sun20,21,22, Ramnik J. Xavier23,24 and Eicke Latz25,26,27 ✉ Abstract | Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed ‘trained immunity’, a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity. Pattern recognition The vertebrate immune system has traditionally been called ‘LPS tolerance’, which can be induced by low receptors divided into innate and adaptive arms. Cells of the innate doses of lipopolysaccharide (LPS) and other Toll-like (PRRs). Germline- encoded immune system recognize pathogens and tissue damage receptor ligands, is also an adaptation of cellular receptors that recognize through germline- encoded pattern recognition receptors responses to an external stimulus, but which leads to a pathogen-associated molecular (PRRs)1,2, which sense diverse pathogen- associated lower inflammatory response to a second stimulation13.
    [Show full text]
  • Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development
    cells Review Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development Samuel T. Pasco and Juan Anguita * Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, 48160 Derio, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-944-061-311 Received: 19 August 2020; Accepted: 16 September 2020; Published: 16 September 2020 Abstract: Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined. Keywords: Bacillus Calmette-Guérin (BCG); innate immune memory; mucosal immunity; vaccine 1. Introduction Vaccine strategies typically aim to generate and subsequently preserve an antigen-specific, B- and/or T-cell-mediated immune response against the targeted pathogens. However, studies focused on live attenuated vaccines like the Bacillus Calmette-Guérin (BCG), measles vaccine, oral polio vaccine (OPV), and smallpox vaccine have described beneficial nonspecific effects that induce reduction in the overall mortality associated with infection [1].
    [Show full text]
  • How Pathogen Exposure Order Influences Innate Immune
    International Journal of Molecular Sciences Review Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function , , Kevin Adams, K. Scott Weber * y and Steven M. Johnson * y Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected] (K.S.W.); [email protected] (S.M.J.) Authors contributed equally to this work. y Received: 2 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: Immune memory is a defining characteristic of adaptive immunity, but recent work has shown that the activation of innate immunity can also improve responsiveness in subsequent exposures. This has been coined “trained immunity” and diverges with the perception that the innate immune system is primitive, non-specific, and reacts to novel and recurrent antigen exposures similarly. The “exposome” is the cumulative exposures (diet, exercise, environmental exposure, vaccination, genetics, etc.) an individual has experienced and provides a mechanism for the establishment of immune training or immunotolerance. It is becoming increasingly clear that trained immunity constitutes a delicate balance between the dose, duration, and order of exposures. Upon innate stimuli, trained immunity or tolerance is shaped by epigenetic and metabolic changes that alter hematopoietic stem cell lineage commitment and responses to infection. Due to the immunomodulatory role of the exposome, understanding innate
    [Show full text]
  • Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD Karen R. Jonscher1,2, Jesse Abrams2, Jacob E. Friedman2,3* 1Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA 2Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA 3Departments of Physiology and Pediatrics, University of Oklahoma Health Sciences Center, USA *Correspondence should be addressed to Jacob E. Friedman; [email protected] Received date: August 17, 2020, Accepted date: September 21, 2020 Copyright: © 2020 Jonscher KR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is strongly associated with development of NAFLD in offspring. However, mechanisms by which “priming” of the immune system in early life increases susceptibility to NAFLD are poorly understood. Recent studies have focused on the role “non-reparative” macrophages play in accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid cells during gestation.
    [Show full text]
  • Is Innate Immunity Our Best Weapon for Flattening the Curve?
    VIEWPOINT The Journal of Clinical Investigation Is innate immunity our best weapon for flattening the curve? Leonard Angka,1,2 Marisa Market,1,2 Michele Ardolino,1,2,3 and Rebecca C. Auer1,4 1Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. 2Department of Biochemistry, Microbiology, and Immunology, 3Centre for Infection, Immunity, and Inflammation, and 4Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada. The COVID-19 pandemic is a stern re­ Ideally, alternative strategies to social penia, and a protracted clinical course (6). minder not to take our immune system for distancing should (a) still protect high­ These similarities should raise a caution­ granted. The fact that some individuals con­ risk individuals, (b) accelerate the glob­ ary flag, since humoral responses against tract and clear the SARS–CoV-2 virus without al recovery, and (c) easily be adapted to this feline coronavirus, rather than being apparent symptoms stands in sharp contrast tackle future pandemics. Here, we move protective, result in a more severe disease to the damage that this virus has brought forward the hypothesis that harnessing course. In these cases, subneutralizing lev­ upon more vulnerable populations, including innate immunity is our best weapon for els of spike S protein antibodies opsonize the elderly and patients with chronic con­ fighting novel viral outbreaks by prevent­ the virus and promote infection of immune ditions or cancer. While the differences in ing a productive infection or by accelerat­ cells expressing Fc receptors (antibody­de­ severity of infection between these popula­ ing viral clearance. pendent enhancement of disease).
    [Show full text]