Thematic Review

Total Page:16

File Type:pdf, Size:1020Kb

Thematic Review e Authorʼs Choice thematic review Thematic Review Series: Sphingolipids Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols † † † Sarah T. Pruett,1,* Anatoliy Bushnev,* Kerri Hagedorn, Madhura Adiga, Christopher A. Haynes, † M. Cameron Sullards, Dennis C. Liotta,* and Alfred H. Merrill, Jr.2,† Department of Chemistry,* Emory University, Atlanta, GA 30322; and Schools of Biology, Chemistry, and † Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230 Downloaded from Abstract “Sphingosin” was first described by J. L. W. Thu- after the original designation of the first isolated com- dichum in 1884 and structurally characterized as 2S,3R,4E-2- pound from brain as “sphingosin” by J. L. W. Thudichum aminooctadec-4-ene-1,3-diol in 1947 by Herb Carter, who in 1884 (1). Today, the term “sphingosine” is usually “ also proposed the designation of lipides derived from reserved for (2S,3R,4E)-2-aminooctadec-4-ene-1,3-diol sphingosine as sphingolipides.” This category of amino alco- (compound 6 in Fig. 1), which has important biological hols is now known to encompass hundreds of compounds www.jlr.org that are referred to as sphingoid bases and sphingoid base- functions in cell signaling per se (2, 3) as well as after de- like compounds, which vary in chain length, number, posi- rivatization to the 1-phosphate (compound 9 in Fig. 1) (2, tion, and stereochemistry of double bonds, hydroxyl groups, 4, 5), N-acylated metabolites (ceramides; compound 4 in and other functionalities. Some have especially intriguing Fig. 1) (2, 6, 7), and more complex phosphosphingolipids at Univ of IL Chicago, on January 30, 2014 features, such as the tail-to-tail combination of two sphin- and glycosphingolipids with head groups attached to the goid bases in the a,v-sphingoids produced by sponges. Most hydroxyl on carbon 1. The structural diversity of the latter of these compounds participate in cell structure and reg- compounds is widely appreciated, with hundreds of head ulation, and some (such as the fumonisins) disrupt normal group variants for mammals alone, as was reviewed re- sphingolipid metabolism and cause plant and animal dis- “ ” ease. Many of the naturally occurring and synthetic sphingoid cently (8, 9) and addressed at a number of omics web bases are cytotoxic for cancer cells and pathogenic microor- sites, such as SphinGOMAP (www.sphingomap.org), the ganisms or have other potentially useful bioactivities; hence, Japanese Lipid Bank (http://www.lipidbank.jp) and Glyco- they offer promise as pharmaceutical leads. This thematic forum (http://www.glycoforum.gr.jp/), the Lipid Maps review gives an overview of the biodiversity of the back- Consortium (www.lipidmaps.org), the Consortium for bones of sphingolipids and the broader field of naturally oc- Functional Glycomics (http://www.functionalglycomics. — curring and synthetic sphingoid base-like compounds. org/fg/), and the Complex Carbohydrate Research Cen- Pruett, S. T., A. Bushnev, K. Hagedorn, M. Adiga, C. A. ter at the University of Georgia (http://www.ccrc.uga.edu/ Haynes, M. C. Sullards, D. C. Liotta, and A. H. Merrill, Jr. ~moremen/glycomics/). Biodiversity of sphingoid bases (“sphingosines”)andre- lated amino alcohols. J. Lipid Res. 2008. 49: 1621–1639. Somewhat less well appreciated is that sphingoid bases also display considerable structural diversity, as was ele- gantly reviewed by K. A. Karlsson almost 40 years ago Supplementary key words sphinganine • phytosphingosine • fumonisin • myriocin • long-chain base • anti-tumor • anti-fungal (10, 11). In remembrance of Herbert E. Carter, who first elucidated the structure of sphingosine 6 and dihydro- sphingosine 2 (12) and “proposed to designate those lip- ” Sphingolipids are composed of a structurally related fam- ides derived from sphingosine as sphingolipides (13), this ily of backbones termed sphingoid bases, which are some- thematic review summarizes and updates points made pre- times referred to as “long-chain bases” or “sphingosines” viously regarding the structural diversity of sphingoid bases (10, 11) and expands the topic to include sphingoid bases and sphingoid base-like compounds that have been discov- The work from our laboratories on naturally occurring sphingolipids cited in this review was supported by National Institutes of Health Grants GM-076217 and GM-069338 (Lipid Maps Consortium), and work involving sphingolipid analogs was supported by funding from the National Cancer Institute (Grant CA-87525). e Authorʼs Choice — Final version full access. Abbreviations: SPT, serine palmitoyltransferase. 1 Present address of S. T. Pruett: Yerkes National Primate Research Manuscript received 15 May 2008. Center, Emory University, Atlanta, GA 30329. Published, JLR Papers in Press, May 21, 2008. 2 To whom correspondence should be addressed. DOI 10.1194/jlr.R800012-JLR200 e-mail: [email protected] Copyright © 2008 by the American Society for Biochemistry and Molecular Biology, Inc. This article is available online at http://www.jlr.org Journal of Lipid Research Volume 49, 2008 1621 Downloaded from www.jlr.org at Univ of IL Chicago, on January 30, 2014 Fig. 1. Biosynthesis and turnover of the three major categories of sphingoid bases in mammalian cells. DHR, dihydroceramide; SPT, ser- ine palmitoyltransferase. ered in intervening years. In addition to being fascinating mediate in the de novo biosynthesis of sphingosine via de- for their biodiversity, some of these naturally occurring saturation of dihydroceramides (3) to produce ceramides compounds (and synthetic analogs) are promising drug (4)(17)andfortheformationof“phytosphingosine” 7 leads, while others cause disease, as exemplified by the (2S,3S,4R-2-aminooctadecane-1,3,4-triol) and what is collo- fumonisins (14). quially referred to as “phytoceramide” (compound 5 in Fig. 1) via hydroxylation of sphinganine (18) or dihydrocer- amide (17). The alternative names (4E)-sphing-4-enine and DIVERSITY IN THE SPHINGOID BASE BACKBONES (4E)-sphingenine are sometimes used to designate the OF SPHINGOLIPIDS specific location of the double bond of sphingosine. The International Union of Pure and Applied Chemists- Within a few decades after the structure for sphingosine International Union of Biochemists Joint Commission 6 hadbeendetermined(12)andsensitivemethodsfor (16) and others (19) have recommended naming chain the analysis of sphingoid bases devised (15), there was evi- length homologs by the root chemical name of the parent dence for .60 structural variations (10, 11). The 1997 Inter- hydrocarbon (e.g., a 20 carbon sphinganine is called an national Union of Pure and Applied Chemists-International icosasphinganine and one with 14 carbon atoms is called Union of Biochemists Joint Commission on Biochemical No- tetradecasphinganine), and the position and stereochem- menclature (16) proposed that “Sphingoids are long-chain istry of substituents such as double bonds (with E/Z pre- aliphatic amino alcohols...represented by the compound ferred over trans/cis), hydroxyl groups, methyl groups, originally called ‘dihydrosphingosine’ [(2S,3R)-2-amino- etc., should be stated explicitly, if known. Examples of such octadecane-1,3-diol]…[and]… imply a chain length of 18 car- compounds are shown in Figs. 2 and 3. A useful short- bon atoms.” Dihydrosphingosine (compound 2 in Fig. 1; hand nomenclature is to give the number of hydroxyl also called “sphinganine”) is one of the major sphingoid groups [“d” for the two (di-) hydroxyls of sphingosine and bases found in many organisms as well as an early inter- sphinganine and “t” (tri-) for the additional hydroxyl in 4- 1622 Journal of Lipid Research Volume 49, 2008 Downloaded from www.jlr.org at Univ of IL Chicago, on January 30, 2014 Fig. 2. Sphingoid bases of mammalian tissues. hydroxysphinganine] followed by the number of carbon brosides in black epidermis from the Antarctic minke atoms in the backbone and the number of double bonds, whale also have a high proportion (?25%) of 16 carbon with the location and configuration given as a prefix or suf- sphingoid bases (30). fix. Therefore, sphingosine is designated 4E-d18:1 (and Variation in the number and position of double bonds D sometimes d18:1 4t), dihydrosphingosine is designated and hydroxyl groups also occurs. Plasma, brain, and human d18:0, and phytosphingosine (4-hydroxysphinganine) is aorta contain a 4E,14Z-diene 15 (31, 32), and 6-hydroxy- designated t18:0. sphingosine 16 is present in skin sphingolipids (23, 33, 34). An unusual sphingosine with the double bond between car- Mammalian sphingoid bases bons 3 and 4 (5-hydroxy,3E-sphingosine; compound 17 in The predominance of 18 carbon sphingoid bases (d18:0, Fig. 3) has been found in acid-hydrolyzed brain extracts d18:1, and t18:0) in most mammalian sphingolipids is con- (35). While it is possible that 17 is a by-product of the acid sistent with the preference of mammalian serine palmitoyl- hydrolysis (36, 37) (as will be discussed below for Fig. 8), it transferase (SPT) for saturated fatty acyl-CoAs with 16 6 is nonetheless interesting that the N-octanoyl derivatives of 1 carbon atoms, combined with the abundance of palmitoyl- both the 5R and 5S stereoisomers of 17 have been reported CoA (20, 21); nonetheless, small amounts of sphingoid to be more potent than ceramide in inhibition of the pro- bases with other chain lengths of 12 to 26 carbons have liferation of a human breast cancer cell line (MCF-7 cells) been reported (22, 23). The most
Recommended publications
  • Retinamide Increases Dihydroceramide and Synergizes with Dimethylsphingosine to Enhance Cancer Cell Killing
    2967 N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing Hongtao Wang,1 Barry J. Maurer,1 Yong-Yu Liu,2 elevations in dihydroceramides (N-acylsphinganines), Elaine Wang,3 Jeremy C. Allegood,3 Samuel Kelly,3 but not desaturated ceramides, and large increases in Holly Symolon,3 Ying Liu,3 Alfred H. Merrill, Jr.,3 complex dihydrosphingolipids (dihydrosphingomyelins, Vale´rie Gouaze´-Andersson,4 Jing Yuan Yu,4 monohexosyldihydroceramides), sphinganine, and sphin- Armando E. Giuliano,4 and Myles C. Cabot4 ganine 1-phosphate. To test the hypothesis that elevation of sphinganine participates in the cytotoxicity of 4-HPR, 1Childrens Hospital Los Angeles, Keck School of Medicine, cells were treated with the sphingosine kinase inhibitor University of Southern California, Los Angeles, California; D-erythro-N,N-dimethylsphingosine (DMS), with and 2 College of Pharmacy, University of Louisiana at Monroe, without 4-HPR. After 24 h, the 4-HPR/DMS combination Monroe, Louisiana; 3School of Biology and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, caused a 9-fold increase in sphinganine that was sustained Atlanta, Georgia; and 4Gonda (Goldschmied) Research through +48 hours, decreased sphinganine 1-phosphate, Laboratories at the John Wayne Cancer Institute, and increased cytotoxicity. Increased dihydrosphingolipids Saint John’s Health Center, Santa Monica, California and sphinganine were also found in HL-60 leukemia cells and HT-29 colon cancer cells treated with 4-HPR. The Abstract 4-HPR/DMS combination elicited increased apoptosis in all three cell lines. We propose that a mechanism of N Fenretinide [ -(4-hydroxyphenyl)retinamide (4-HPR)] is 4-HPR–induced cytotoxicity involves increases in dihy- cytotoxic in many cancer cell types.
    [Show full text]
  • Anticancer Effects of Vitamin E Forms and Their Long-Chain Metabolites Via Modulation of Sphingolipid Metabolism Yumi Jang Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2015 Anticancer Effects of Vitamin E Forms and Their Long-chain Metabolites via Modulation of Sphingolipid Metabolism Yumi Jang Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Jang, Yumi, "Anticancer Effects of Vitamin E Forms and Their Long-chain Metabolites via Modulation of Sphingolipid Metabolism" (2015). Open Access Dissertations. 1119. https://docs.lib.purdue.edu/open_access_dissertations/1119 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Yumi Jang Entitled Anticancer Effects of Vitamin E Forms and Their Long-chain Metabolites via Modulation of Sphingolipid Metabolism For the degree of Doctor of Philosophy Is approved by the final examining committee: Qing Jiang Chair Dorothy Teegarden John R. Burgess Yava Jones-Hall To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Qing Jiang Approved by: Connie M. Weaver 9/2/2015 Head of the Departmental Graduate Program Date i ANTICANCER EFFECTS OF VITAMIN E FORMS AND THEIR LONG-CHAIN METABOLITES VIA MODULATION OF SPHINGOLIPID METABOLISM A Dissertation Submitted to the Faculty of Purdue University by Yumi Jang In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I owe a debt of gratitude to many people who have made this dissertation possible.
    [Show full text]
  • A Phase I Clinical Trial of Safingol in Combination with Cisplatin in Advanced Solid Tumors
    Published OnlineFirst January 21, 2011; DOI: 10.1158/1078-0432.CCR-10-2323 Clinical Cancer Cancer Therapy: Clinical Research A Phase I Clinical Trial of Safingol in Combination with Cisplatin in Advanced Solid Tumors Mark A. Dickson1, Richard D. Carvajal1, Alfred H. Merrill, Jr.3, Mithat Gonen2, Lauren M. Cane1, and Gary K. Schwartz1 Abstract Purpose: Sphingosine 1-phosphate (S1P) is an important mediator of cancer cell growth and pro- liferation. Production of S1P is catalyzed by sphingosine kinase 1 (SphK). Safingol, (L-threo-dihydro- sphingosine) is a putative inhibitor of SphK. We conducted a phase I trial of safingol (S) alone and in combination with cisplatin (C). Experimental Design: A3þ 3 dose escalation was used. For safety, S was given alone 1 week before the combination. S þ C were then administered every 3 weeks. S was given over 60 to 120 minutes, depending on dose. Sixty minutes later, C was given over 60 minutes. The C dose of 75 mg/m2 was reduced in cohort 4 to 60 mg/m2 due to excessive fatigue. Results: Forty-three patients were treated, 41 were evaluable for toxicity, and 37 for response. The maximum tolerated dose (MTD) was S 840 mg/m2 over 120 minutes C 60 mg/m2, every 3 weeks. Dose- limiting toxicity (DLT) attributed to cisplatin included fatigue and hyponatremia. DLT from S was hepatic enzyme elevation. S pharmacokinetic parameters were linear throughout the dose range with no significant interaction with C. Patients treated at or near the MTD achieved S levels of more than 20 mmol/L and maintained levels greater than and equal to 5 mmol/L for 4 hours.
    [Show full text]
  • Protein Kinase C ␣/␤ Inhibitor Go6976 Promotes Formation of Cell Junctions and Inhibits Invasion of Urinary Bladder Carcinoma Cells
    [CANCER RESEARCH 64, 5693–5701, August 15, 2004] Protein Kinase C ␣/␤ Inhibitor Go6976 Promotes Formation of Cell Junctions and Inhibits Invasion of Urinary Bladder Carcinoma Cells Jussi Koivunen,1 Vesa Aaltonen,1 Sanna Koskela,1,3 Petri Lehenkari,1,3 Matti Laato,4,5 and Juha Peltonen1,2,5 Departments of 1Anatomy and Cell Biology and 2Dermatology, University of Oulu, Oulu, Finland; 3Department of Surgery, Clinical Research Center, University of Oulu, Oulu, Finland; 4Department of Surgery, Turku University Central Hospital, Turku, Finland; and 5Department of Medical Biochemistry, University of Turku, Turku, Finland ABSTRACT drugs in cell cultures and animal models (14–19). Furthermore, isoen- zyme-specific PKC inhibitors seem to be more effective anticancer Changes in activation balance of different protein kinase C (PKC) drugs than broad-spectrum inhibitors, suggesting the role of PKC isoenzymes have been linked to cancer development. The current study activation balance in cancer (20). investigated the effect of different PKC inhibitors on cellular contacts in cultured high-grade urinary bladder carcinoma cells (5637 and T24). Epithelial cells have abundant cell-cell junctions, which have a Exposure of the cells to isoenzyme-specific PKC inhibitors yielded vari- critical role in cell behavior and tissue morphogenesis. The most able results: Go6976, an inhibitor of PKC␣ and PKC␤ isoenzymes, in- important anchoring structures between epithelial cells are adherens duced rapid clustering of cultured carcinoma cells and formation of an junctions and desmosomes. Adherens junctions are composed of increased number of desmosomes and adherens junctions. Safingol, a transmembrane cadherin proteins; ␤-catenin, which attaches to cyto- PKC␣ inhibitor, had similar but less pronounced effects.
    [Show full text]
  • (MAP) Kinase Pathway
    Leukemia (1998) 12, 1843–1850 1998 Stockton Press All rights reserved 0887-6924/98 $12.00 http://www.stockton-press.co.uk/leu REVIEW The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity P Dent1,2, WD Jarvis3, MJ Birrer4, PB Fisher5, RK Schmidt-Ullrich1 and S Grant2,3,6 Departments of 1Radiation Oncology, 3Medicine, 2Pharmacology and Toxicology, and 6Microbiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA; 4National Cancer Institute, Biomarkers Branch, Division of Clinical Sciences, Rockville, MD; 5Columbia University College of Physicians and Surgeons, Department of Pathology and Urology, New York, NY, USA During the last 10 years, multiple signal transduction pathways terized dual specificity (threonine/tyrosine) protein kinase.4–6 within cells have been discovered. These pathways have been The use of the nomenclature MAPKK/MKK has declined, and linked to the regulation of many diverse cellular events such as proliferation, senescence, differentiation and apoptosis. this enzyme is more frequently referred to as MEK (mitogen This review will focus upon the many roles of signaling by the activated/extracellular regulated kinase). Shortly after the dis- p42/p44 mitogen-activated protein (MAP) kinase pathway. covery of MEK, a second isoform of this enzyme was identified Recent evidence suggests that signaling by the MAP kinase (MEK1 and MEK2).7 MEK1/2 were also found to be regulated pathway can both enhance proliferation by increased by reversible phosphorylation, and within 6 months of the dis- expression of molecules such as cyclin D1, but also cause covery of MEK2, the protein kinase responsible for catalyzing growth arrest by increased expression of molecules such as Cip-1/MDA6/WAF1 MEK1/2 activation was discovered, the proto-oncogene the cyclin kinase inhibitor protein p21 .
    [Show full text]
  • Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy
    cancers Review Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy Preeti Gupta 1, Aaliya Taiyab 1 , Afzal Hussain 2, Mohamed F. Alajmi 2, Asimul Islam 1 and Md. Imtaiyaz Hassan 1,* 1 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; [email protected] (P.G.); [email protected] (A.T.); [email protected] (A.I.) 2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; afi[email protected] (A.H.); [email protected] (M.F.A.) * Correspondence: [email protected] Simple Summary: Cancer is the prime cause of death globally. The altered stimulation of signaling pathways controlled by human kinases has often been observed in various human malignancies. The over-expression of SphK1 (a lipid kinase) and its metabolite S1P have been observed in various types of cancer and metabolic disorders, making it a potential therapeutic target. Here, we discuss the sphingolipid metabolism along with the critical enzymes involved in the pathway. The review provides comprehensive details of SphK isoforms, including their functional role, activation, and involvement in various human malignancies. An overview of different SphK inhibitors at different phases of clinical trials and can potentially be utilized as cancer therapeutics has also been reviewed. Citation: Gupta, P.; Taiyab, A.; Hussain, A.; Alajmi, M.F.; Islam, A.; Abstract: Sphingolipid metabolites have emerged as critical players in the regulation of various Hassan, M..I. Targeting the Sphingosine Kinase/Sphingosine- physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas 1-Phosphate Signaling Axis in Drug sphingosine-1-phosphate (S1P) promotes cell proliferation and survival.
    [Show full text]
  • Compounds As Lysophosphatidic Acid
    (19) TZZ _ _T (11) EP 2 462 128 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 261/14 (2006.01) C07D 413/04 (2006.01) 21.09.2016 Bulletin 2016/38 A61K 31/42 (2006.01) A61K 31/4427 (2006.01) A61P 11/06 (2006.01) A61P 35/00 (2006.01) (21) Application number: 10807045.9 (86) International application number: (22) Date of filing: 03.08.2010 PCT/US2010/044284 (87) International publication number: WO 2011/017350 (10.02.2011 Gazette 2011/06) (54) COMPOUNDS AS LYSOPHOSPHATIDIC ACID RECEPTOR ANTAGONISTS VERBINDUNGEN ALS LYSOPHOSPHATIDSÄURE-REZEPTORANTAGONISTEN COMPOSÉS EN TANT QU’ANTAGONISTES DU RÉCEPTEUR DE L’ACIDE LYSOPHOSPHATIDIQUE (84) Designated Contracting States: (74) Representative: Reitstötter Kinzebach AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Patentanwälte GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Sternwartstrasse 4 PL PT RO SE SI SK SM TR 81679 München (DE) (30) Priority: 04.08.2009 US 231282 P (56) References cited: WO-A1-2004/031118 WO-A2-2009/011850 (43) Date of publication of application: US-A1- 2003 114 505 US-A1- 2006 194 850 13.06.2012 Bulletin 2012/24 • YAMAMOTO, T. ET AL.: ’Synthesis and (73) Proprietor: Amira Pharmaceuticals, Inc. evaluation of isoxazole derivatives as Princeton, NJ 08543 (US) lysophosphatidic acid (LPA) antagonists’ BIOORGANIC & MEDICINAL CHEMISTRY (72) Inventors: LETTERS vol. 17, 2007, pages 3736 - 3740, • HUTCHINSON, John, Howard XP022114572 San Diego • OHTA, H. ET AL.: ’Ki16425, a Subtype-Selective CA 92103 (US) Antoganist for EDG-Family Lysophosphatidic • SEIDERS, Thomas, Jon AcidReceptors’ MOLECULAR PHARMACOLOGY San Diego vol.
    [Show full text]
  • Protein Kinase C: a Target for Anticancer Drugs?
    Endocrine-Related Cancer (2003) 10 389–396 REVIEW Protein kinase C: a target for anticancer drugs? HJ Mackay and CJ Twelves Department of Medical Oncology, Cancer Research UK Beatson Laboratories, Alexander Stone Building, Switchback Road, Glasgow G61 1BD, UK (Requests for offprints should be addressed to C Twelves; Email: [email protected]) (HJ Mackayis now at Department of Drug Development, Medical Oncology,Princess Margaret Hospital, Toronto, Ontario, Canada) (CJ Twelves is now at Tom Connors Cancer Research Centre, Universityof Bradford, Bradford, UK) Abstract Protein kinase C (PKC) is a familyof serine/threonine kinases that is involved in the transduction of signals for cell proliferation and differentiation. The important role of PKC in processes relevant to neoplastic transformation, carcinogenesis and tumour cell invasion renders it a potentiallysuitable target for anticancer therapy. Furthermore, there is accumulating evidence that selective targeting of PKC mayimprove the therapeutic efficacyof established neoplastic agents and sensitise cells to ionising radiation. This article reviews the rationale for targeting PKC, focuses on its role in breast cancer and reviews the preclinical and clinical data available for the efficacyof PKC inhibition. Endocrine-Related Cancer (2003) 10 389–396 Introduction anchoring proteins (Csuki & Mochley-Rosen 1999, Way et al. 2000). The protein kinase C (PKC) family consists of at least 12 The phospholipid diacylglycerol (DAG) plays a central isozymes that have distinct and in some cases opposing roles role in the activation of PKC by causing an increase in the in cell growth and differentiation (Blobe et al. 1994, Ron & affinity of PKCs for cell membranes which is accompanied Kazanietz 1999).
    [Show full text]
  • Cycloserine and Threo-Dihydrosphingosine Inhibit TNF-A-Induced Cytotoxicity: Evidence for the Importance of De Novo Ceramide Synthesis in TNF-A Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1643 (2003) 1–4 www.bba-direct.com Rapid report Cycloserine and threo-dihydrosphingosine inhibit TNF-a-induced cytotoxicity: evidence for the importance of de novo ceramide synthesis in TNF-a signaling Sybille G. E. Meyer*, Herbert de Groot Institut fu¨r Physiologische Chemie, Universita¨tsklinikum Essen, Hufelandstrasse 55, D-45147 Essen, Germany Received 2 July 2003; accepted 9 October 2003 Abstract Measuring the cell death induced by tumor necrosis factor (TNF-a) in L929 cells, we discovered for the first time that L-cycloserine, an established inhibitor of serine palmitoyltransferase, as well as DL-threo-dihydrosphingosine (threo-DHS, threo-sphinganine) significantly protected against TNF-a-induced cytotoxicity. Under the same conditions sphingosine and DL-erythro-dihydrosphingosine (erythro-DHS) did not change TNF-a-induced cytotoxicity, thus underlining the specificity of threo-DHS. In serine-labeled cells, newly (de novo) synthetized labeled ceramide was significantly diminished by threo-DHS alone or together with TNF-a, which makes the (dihydro) ceramide synthase the likely target of threo-DHS. These results suggest the decisive role of ceramide de novo synthesis in TNF signaling. D 2003 Elsevier B.V. All rights reserved. Keywords: Ceramide de novo synthesis; Safingol; Sphinganine; Sphingosine; Threo-dihydrosphingosine; Tumor necrosis factor-a (TNF-a) Tumor necrosis factor-a (TNF-a) is a pleiotropic cyto- ceramide was only shown in TNF/cycloheximide-induced kine produced mainly by macrophages. It mediates inflam- cell death in cerebral endothelial cells using Fumonisin B1 mation and regulates immune function by triggering the [9].
    [Show full text]
  • Overexpression of Ecto-5′-Nucleotidase Promotes P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 52 (1997), pp. 953—961 Overexpression of ecto-5 '-nucleotidase promotes P-glycoprotein expression in renal epithelial cells SEVERINE LEDOUX, CHRISTINE LEROY, GRALDINE SIEGFRIED, DOMINIQUE PRIE, PHILIPPE MOULLIER, and GJRARD FRIEDLANDER INSERM U 426, and Department of Physiology, Faculté Xavier-Bichat, Université Denis-Diderot, Paris, and Laboratoire de Thérapie Genique, CHI] Hôtel-Dieu, Nantes, France Overexpression of ecto-5'-nucleotidase promotes P-glycoprotein ex- doxorubicin and epidophyllotoxin [1, 2] out of the tumoral cells pression in renal epithelial cells. P-glycoprotein (P-gp), responsible for and thus prevents drug intracellular accumulation and toxicity. multidrug resistance (MDR) of tumoral cells, is also expressed in apical P-gp has been detected in a variety of normal cells including membranes of normal epithelial cells, among which are proximal tubular cells. Ecto-5'-nucleotidase (5'Nu), co-located with P-gp in renal brush epithelial cells from small intestine, colon, biliary canalicules and border membranes, could be instrumental in the expression of MDR kidney proximal tubules [11.Inepithelial cells, especially in renal phenotype. P-gp activity [assessed by rhodamine 123 (R123) and [3H]vin- proximal tubular cells, P-gp has been detected in apical mem- blastine (3H-VBL) accumulation] was evaluated in MDCK cell lines in branes [1]. This localization suggests a role of P-gp in the which human 5'Nu was expressed at different levels after retroviral infection: MDCK-5'NU/—- cells with a low 5'Nu activity <2 extrusion of molecules to the tubular lumen, but the precise pmol/mg protein/mm) and MDCK-5'NU/+ cells, which expressed a high function and the endogenous substrate(s) of P-gp in normal cells level of 5'Nu (Vr,,ax 150 18.5pmol/mg protein/mm).
    [Show full text]
  • Sphingolipids Standards and Additional Research Tools
    Sphingolipids Standards and Additional Research Tools Sphingolipids reside in the outer leaflet of the cell membrane where they modulate Inhibitors Available uoro Pamitic Acid (90380) Locai cyoA Sytetae cell-cell interactions andTriaci (10007448)can regulate differentiation, proliferation, and programmed cell death. Ceramide is the intermediateLSerie PamitoyoA in the formation of multiple types of sphingolipids Myrioci (63150) Serie Pamitoytraerae L-Cycoerie (17780) that mediate a wide range of biological activities.1-Amiodecyidee bis-Phosphonic To Acid (sodiumhelp salt) (13583) you study distinct aspects EtaoamiePoate Benztropine (mesylate) (16214) 3-Ketoiaie cis-Flupenthixol (hydrochloride) (17634) C16-Fatty Aldehyde GW 4869 (hydrochloride hydrate) (13127) of this important lipid signaling pathway, CaymanTomatidine (hydrochloride) (16938)carries many different sphingolipid 3-Ketoiaie eductae Fumoii 1 (62580) GM4 DN (19939) Fumoii 2 (13227) Fumoii 3 (20434) standards as well as inhibitorsP053 for the various enzymes driving key events in Siaie Siomyeiae Siaidae Siomyei Siomyei Sytae sphingolipid metabolism. Ceramide Sytae Gaactosyceramide Suatide Gaactoyceramide Suotraerae Feretiide (17688) Ceramideβ aactoytraerae-Gaactoyceramidae D609 (potassium salt) (13307) Neacyae Diydroceramide 2-Acetyl-5-tetrahydroxybutyl Imidazole (13222) SP yae Gaactoyioie Diydroceramide eaturae Sphingosine-1-Phosphate (S1P) NP (13858) P-Deoyoirimyci (10010332) Codurito eoide (15216) CAY10621 (13371) Primary Pathways for N,N-Dimethylsphingosine (d18:1) (62575)
    [Show full text]
  • The Role of Reactive Oxygen Species and Autophagy in Safingol-Induced
    Citation: Cell Death and Disease (2011) 2, e129; doi:10.1038/cddis.2011.12 & 2011 Macmillan Publishers Limited All rights reserved 2041-4889/11 www.nature.com/cddis The role of reactive oxygen species and autophagy in safingol-induced cell death L-U Ling1, K-B Tan1, H Lin1 and GNC Chiu*,1 Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin D, collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl-L-cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 lM safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment.
    [Show full text]