Astronomiczny Obserwatorjum Krakowskiego
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhaltsverzeichnis
Nachlass EDUARD SCHÖNFELD (1828-1891) Inhaltsverzeichnis Bearbeitet von Anne Hoffsümmer und Lea Korb Bonn, 2017 – 2018 zuletzt aktualisiert am 09.09.2020 Eduard Schönfeld wurde am 22.12.1828 in Hildburghausen geboren, wo er bis zu seinem Abitur 1847 die Schule besuchte. Er war Kind einer jüdischen Familie, trat jedoch nach seinem Schulabschluss dem evangelischen Glauben bei. Auf Anraten seines Vaters studierte Schönfeld zunächst Bauwesen, entschied sich aber nach kurzer Zeit für die Naturwissenschaften und begann, in Marburg bei dem Gauß-Schüler Christian Ludwig Gerling unter anderem Astronomie zu studieren. Nachdem Schönfeld auf einer Reise nach Bonn Bekanntschaft mit Friedrich Wilhelm August Argelander gemacht hatte, entschloss er sich, das Studium der Astronomie 1852 in Bonn fortzusetzen. Dort erhielt er schon ein Jahr später eine Stelle als Assistent, durch die er die Möglichkeit erhielt, gemeinsam mit Adalbert Krüger an der bekannten „Bonner Durchmusterung“, Argelanders großem Projekt, mitzuwirken. Mit einer Abhandlung über die Bahnelemente des Kleinplaneten Thetis promovierte Schönfeld 1854. Seine Habilitation folgte drei Jahre später. Eduard Schönfeld zog 1859 nach Mannheim, um dort die Stelle als Direktor der Mannheimer Sternwarte anzutreten. In der Mannheimer Zeit widmete er sich unter anderem der Bestimmung der Positionen von Nebelflecken mithilfe des Ringmikrometer. Eduard Schönfeld war Mitbegründer und Vorstandsmitglied der Astronomischen Gesellschaft sowie lange Jahre ihr Schriftführer und Herausgeber der Vierteljahrsschrift. Nach Argelanders Tod im Jahr 1875 übernahm Schönfeld dessen Stelle als Direktor der Bonner Sternwarte und ergänzte die Arbeit zur Bonner Durchmusterung, indem er die Bereiche -2°- -23° der südlichen Deklination erforschte. 1883 wurde er Geheimer Regierungsrat und war 1887/88 Rektor der Universität Bonn. -
The Multi-Periodicity of W Cygni
The multi-periodicity of W Cygni J. J. Howarth The behaviour of the variable star W Cygni has been analysed from the past 89 years of BAA observations. Periods of approximately 131 and 234 days are evident, both being subject to apparently random shifts in phase and amplitude. A report of the Variable Star Section Director: J. E. Isles Introduction BAA observations from 1907 to 1918, in which they deduced periods of 129.6 days of amplitude (half peak The variable star W Cygni, RA 21h 36m 02s, Dec 45° to peak) 0.36 mag, and 243 days of amplitude 0.26 13 22' 29" (2000.0) (GC 30250, HD 205730, SAO 51079) mag. A third possible variation of period 1944 days is has been on the programme of the BAA Variable Star also mentioned. The authors refer to 'halts' in the cyclic Section since 1891. Although analysis has been under variations, which effectively represent sudden phase taken on some of these observations, as described shifts. In 1920 the same authors wrote a second note below, no attempt has been made to study with modern taking into account observations by Sawyer (men techniques the whole span of data which now extends tioned above) over the years 1885-1895. These extra to almost a century. This paper describes the computer observations confirmed the first two periods, but cast 14 isation of the BAA observations of W Cygni and the doubt on the third. Further 'halts' were found. subsequent analysis of the light curve. Dinsmore Alter, in 1929, applied a correlation tech nique to both Turner and Blagg's data and later BAA data.15 The established periods of Turner and Blagg1314 were increased to 132 and 249 days, and a further Background period of about 1100 days was noted. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Basic Astronomy Labs
Astronomy Laboratory Exercise 31 The Magnitude Scale On a dark, clear night far from city lights, the unaided human eye can see on the order of five thousand stars. Some stars are bright, others are barely visible, and still others fall somewhere in between. A telescope reveals hundreds of thousands of stars that are too dim for the unaided eye to see. Most stars appear white to the unaided eye, whose cells for detecting color require more light. But the telescope reveals that stars come in a wide palette of colors. This lab explores the modern magnitude scale as a means of describing the brightness, the distance, and the color of a star. The earliest recorded brightness scale was developed by Hipparchus, a natural philosopher of the second century BCE. He ranked stars into six magnitudes according to brightness. The brightest stars were first magnitude, the second brightest stars were second magnitude, and so on until the dimmest stars he could see, which were sixth magnitude. Modern measurements show that the difference between first and sixth magnitude represents a brightness ratio of 100. That is, a first magnitude star is about 100 times brighter than a sixth magnitude star. Thus, each magnitude is 100115 (or about 2. 512) times brighter than the next larger, integral magnitude. Hipparchus' scale only allows integral magnitudes and does not allow for stars outside this range. With the invention of the telescope, it became obvious that a scale was needed to describe dimmer stars. Also, the scale should be able to describe brighter objects, such as some planets, the Moon, and the Sun. -
7/1954 ***************** OBSAH Co Nového V Astronomii - Dr B
-- ***************** 7/1954 ***************** OBSAH Co nového v astronomii - Dr B. Šternberk: Pulkovská obser vatoř p,ostavena znovu - Dr V. Vanýsek: Za slunečnillTI 'zatmě R . XXXV 7 c. ním v Polsku - Dr M. PIavec: * Pozdní věk meteorických rojů VYŠLO V SRPNU 1954 - B. V. Kukarkin: Proměm.né hvězdy - Dr H. SloUka: Po Vedouc! redaktor: M. MOHR zorování částečného zatmění Slunce 30. VI. 1954. - Zprávy Rídl redakční kruh: L. LANDOVA-STY arp.okyny sekcí - Co, kdy a CHOvA, Dr M. KOPECKý, Dr V. RUML, jak pozorovat - Zprávy našich Dr H. SLOUKA, Dr B. STERNBERK kroužků a hvězdáren Příspěvky do časopisu zasilejte na re dakci, Praha IV-Petřfn, Lidová hvěz CO.D:EPJKAHI1E dárna (tel. číslo 463-05), nebo přímo čle q r o HOBoro B aCTpOHmHLrr nům redakčního kruhu .D:-p B. llhepHóep E: ITyJ1KOB<:K8H oocepBaroplHI é:IWBa, rrocr]l::eEa U-p B. BaHb1:elc Ha6;uoJ,eHH e Na první strwně obálky: 3aHleHlIH COJlHua B ITOJlhlUe .D:-p M. nJlaBeu: TIo3.u-Hllt\ BeJ; Meniskový dalekohled systému Ma M8r eO pWleC"Nm: poeB - B. B. Xy· ksutovova KapKlIH: TIepeMeHHble 3Bě31Ibl .D:-p r. CJloyEa: Ha6mo.ue1-1118 C18 Obraz na čtvrté straně obálky: CTrrQHoro 3anreHHil CO.JTHU8 30. VI. Velký pnkhodní stroj Ertel 1954 T. - CooÓU,C:rlHil ,H yKa3MIHJJ ceE Ulltt - "LIro, jwr,Ja II Kal, Ha6moJaTb - C006me}IHil HaIIl}!, l;p y~Jm @ II o6ccpsaToprri1 RISE HVBzD vychází desetkrát ročně mimo červenec a srpen. Dotazy, objed CONTENTS návky a reklamace týkajíc! se časopisu vyřizuje každý poštovní úřad i doručo Astronomical News - Dr. B. vatel. Rozšiřuje Poš tovní novinová služba Šternberk: Pulkov observatory (PNS). -
Variable Star Section Circular 72
The British Astronomical Association VARIABLE STAR SECTION MAY CIRCULAR 72 1991 ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG VARIABLE STAR SECTION CIRCULAR 72 CONTENTS Director’s Change of Address 1 Appointment of Computer Secretary 1 Electronic mail addresses 1 VSS Centenary Meeting 1 Observing New variables _____ 2 Richard Fleet BAAVSS Computerization 3 Dave Me Adam Unusual Carbon Stars 4 John Isles Symbiotic Stars - New Work for the VSS 4 John Isles Binocular and Telescopic Programmes 1991 5 John Isles Analysis of Observations using Spearman’s Rank Correlation Test 13 Tony Markham VSS Reports 16 AH Draconis: 1980-89 - Light Curves 17 R CrB in 1990 21 Melvyn Taylor Minima of Eclipsing Binaries, 1988 22 John Isles Index of Unpublished BAA Observations of Variable Stars, 1906-89 27 UV Aurigae 36 Pro-Am Liason Committee Newsletter No.3 Centre Pages Castle Printers of Wittering Director’s Change of Address Please note that John Isles has moved. His postal address remains the same, but his telephone/telefax number has altered. He can now also be contacted by telex. The new numbers are given inside the front rover. Appointment of Computer Secretary Following the announcement about computerization in VSSC 69, Dave Me Adam has been appointed Computer Secretary of the VSS. Dave is already well known as the discoverer 0fN0vaPQ And 1988, in which detection he was helped by his computerized index of his photographs of the sky. We are very pleased to welcome Dave to the team and look forward to re-introducing as soon as possible the publication of an annual b∞klet of computer-plotted light curves. -
Download (98Kb)
Kiss L. László Pulzáló vörös óriáscsillagok Az MTA doktora cím megszerzéséért készített értekezés tézisei Sydney, 2006 1. A kutatási téma el˝ozményei és a kit˝uzött feladatok Az asztrofizika egyik kulcsproblémája a csillagok szerkezete és fejl˝odése. Néhány az „örök” kérdések közül: Hogyan zajlik a csillagfejl˝odés? Milyen lesz Napunk jö- v˝oje? Milyen fizikai folyamatok vezérlik a fejl˝odést? Értekezésemben a csillagfejl˝odés azon kései fázisait tanulmányozom, melyekben a vörös óriássá felfúvódott csillagok könnyen megfigyelhet˝orezgéseket végeznek, azaz pulzáló változócsillagokként ész- lelhet˝ok. Annak ellenére, hogy az összes csillag kb. 90%-a átesik a vörösóriás-fázison, a csillagok életében mind a mai napig ez a legbizonytalanabbul ismert szakasz. Kuta- tásaim során a pulzációt mint csillagszerkezeti nyomjelz˝ot használom az alábbi kérdé- sekkel kapcsolatban: • Milyen fizikai tényez˝ok és folyamatok játszanak els˝odleges szerepet a vörös óri- ások pulzációjában? • Milyen módon hat kölcsön a csillagfejl˝odés, a tömegvesztés és a pulzáció a kései fejl˝odési állapotokban? • Hogyan térképezhetjük a lokális Univerzum háromdimenziós szerkezetét pul- záló vörös óriásokkal? A kis és közepes tömeg˝ucsillagok (kb. 0,5–5 M⊙ között) fejl˝odésük során két- szer válnak vörös óriáscsillaggá. Részletes evolúciós modellszámítások alapján tudjuk, hogy amikor a f˝osorozati csillagok magjában kezd elfogyni a hidrogén, az energiater- melés kikerül a héliumból álló magot övez˝ohidrogénhéjba. Ezen héjégetés során a felszabaduló sugárzási teljesítmény több nagyságrenddel megn˝o, aminek eredménye- képpen a csillag az (els˝o) vörös óriáságra (Red Giant Branch, RGB) kerül, ahol az egyre alacsonyabb h˝omérsékletek és egyre nagyobb luminozitások felé fejl˝odik. Egy adott határluminozitást elérve, a megnövekedett tömeg˝uhéliummagban beindulnak a ter- monukleáris reakciók, amit – paradox módon – a luminozitás csökkenése követ. -
General Bibliography
General Bibliography These are selected, recently published books on the history of astronomy (excluding textbooks). Consult them in addition to article, Selected References. Preference is given to those books written in–or translated into–English, the language of this encyclopedia. References to biographies, institutional histories, conference procee- dings, and journal/compendium articles appear in individual entry bibliographies. Ince, Martin. Dictionary of Astronomy. Fitzroy Dearborn, 1997. RENAISSANCE ASTRONOMY GENERAL Crowe, Michael J. Theories of the World from Antiquity to the Copernican Revolu- Abetti, Giorgio. The History of Astronomy. H. Schuman, 1952. tion. Dover Publications, 1990. Berry, Arthur. A Short History of Astronomy from Earliest Times Through the Eleanor-Roos, Anna Marie. Luminaries in the Natural World: The Sun and Moon Nineteenth Century. Dover Publications, 1961. in England, 1400–1720. Peter Lang Publishing, 2001. Clerke, Agnes. A Popular History of Astronomy During the Nineteenth Century. Jervis, Jane. Cometary Theory in Fifteenth-Century Europe. D. Reidel Publishing A. and C. Black, 1902. Company, 1985. DeVorkin, David (editor). Beyond Earth: Mapping the Universe. National Geo- Koyré, Alexander. The Astronomical Revolution: Copernicus – Kepler – Borrelli. graphic Society, 2002. Dover Publications, 1992. Ferris, Timothy. Coming of Age in the Milky Way. William Morrow & Company, Kuhn, Thomas S. The Copernican Revolution: Planetary Astronomy in the 1988. Development of Western Thought. Harvard University Press, 1957. Grant, Robert. History of Physical Astronomy From the Earliest Ages to the Middle Randles, W. G. L. The Unmaking of the Medieval Christian Cosmos, 1500–1760: of the Nineteenth Century. Johnson Reprint Corporation, 1966. From Solid Heavens to Boundless Æther. Ashgate Publishing Company, Hoskin, Michael. -
The Astronomer Magazine Index
The Astronomer Magazine Index The numbers in brackets indicate approx lengths in pages (quarto to 1982 Aug, A4 afterwards) 1964 May p1-2 (1.5) Editorial (Function of CA) p2 (0.3) Retrospective meeting after 2 issues : planned date p3 (1.0) Solar Observations . James Muirden , John Larard p4 (0.9) Domes on the Mare Tranquillitatis . Colin Pither p5 (1.1) Graze Occultation of ZC620 on 1964 Feb 20 . Ken Stocker p6-8 (2.1) Artificial Satellite magnitude estimates : Jan-Apr . Russell Eberst p8-9 (1.0) Notes on Double Stars, Nebulae & Clusters . John Larard & James Muirden p9 (0.1) Venus at half phase . P B Withers p9 (0.1) Observations of Echo I, Echo II and Mercury . John Larard p10 (1.0) Note on the first issue 1964 Jun p1-2 (2.0) Editorial (Poor initial response, Magazine name comments) p3-4 (1.2) Jupiter Observations . Alan Heath p4-5 (1.0) Venus Observations . Alan Heath , Colin Pither p5 (0.7) Remarks on some observations of Venus . Colin Pither p5-6 (0.6) Atlas Coeli corrections (5 stars) . George Alcock p6 (0.6) Telescopic Meteors . George Alcock p7 (0.6) Solar Observations . John Larard p7 (0.3) R Pegasi Observations . John Larard p8 (1.0) Notes on Clusters & Double Stars . John Larard p9 (0.1) LQ Herculis bright . George Alcock p10 (0.1) Observations of 2 fireballs . John Larard 1964 Jly p2 (0.6) List of Members, Associates & Affiliations p3-4 (1.1) Editorial (Need for more members) p4 (0.2) Summary of June 19 meeting p4 (0.5) Exploding Fireball of 1963 Sep 12/13 . -
Multiperiodicity in Semiregular Variables II. Systematic Amplitude
A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 20(08.15.1, 08.16.4) ASTROPHYSICS Multiperiodicity in semiregular variables II. Systematic amplitude variations L.L. Kiss1, K. Szatm´ary1, Gy. Szab´o1, and J.A. Mattei2 1 Department of Experimental Physics and Astronomical Observatory, JATE University, Szeged, D´om t´er 9., H-6720 Hungary 2 American Association of Variable Star Observers (AAVSO), 25 Birch Street, Cambridge MA02138-1205 USA Abstract. We present a detailed lightcurve analysis for a attribute “semiregular” refers to the complexity of their sample of bright semiregular variables based on long-term light curves, which has been usually interpreted as be- (70–90 years) visual magnitude estimates carried out by ing caused by cycle-to-cycle variations in a relatively sim- amateur astronomers. Fundamental changes of the physi- ple pulsating environment. There has been an increasing cal state (amplitude and/or frequency modulations, mode amount of empirical evidence that multiperiodicity occurs change and switching) are studied with the conventional is some stars (Mattei et al. 1998, Kiss et al. 1999 – Paper Fourier- and wavelet analysis. I), which suggests the existence of many simultaneously The light curve of the carbon Mira Y Per showing a excited modes of pulsation. Lebzelter (1999) and Lebzel- gradual amplitude decrease has been re-analysed after col- ter et al. (2000) presented radial velocity measurements lecting and adding current data to earlier ones. The time and their comparison with simulteneous light curves for scales of the sudden change and convection are compared several bright semiregular variables, which confirmed that and their similar order of magnitude is interpreted to be main periodicities are most likely due to pulsation and a possible hint for strong coupling between pulsation and partly due to large-scale motions in the extended atmo- convection. -
{TEXTBOOK} Corvus Ebook, Epub
CORVUS PDF, EPUB, EBOOK Paul Kearney | 459 pages | 26 Oct 2010 | Rebellion | 9781906735777 | English | Oxford, United Kingdom Corvus (constellation) - Wikipedia London: Christopher Helm. National Geographic. Retrieved 6 February PBS video. New research indicates that crows are among the brightest animals in the world. National Geographic News. NG Society. Retrieved 24 June Emery and Clayton write, "These studies have found that some corvids are not only superior in intelligence to birds of other avian species perhaps with the exception of some parrots , but also rival many nonhuman primates. Proceedings of the National Academy of Sciences. Bibcode : PNAS.. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata in Latin. Laurentii Salvii. Archived from the original on 19 March Cassell's Latin Dictionary 5 ed. London: Cassell Ltd. Avian ecology and conservation in an urbanizing world. Boston: Kluwer Academic Publishers. The Auk, 4 , The Auk. Oxford University Press. Numbers Are Us. Keeok Park. BBC News. Archived from the original on 19 December Retrieved 19 December PLOS Biology. Archived from the original on 31 March Retrieved 13 March New York, New York: Springer. The New York Times. Behavioral Ecology and Sociobiology. American Crow. Heiss, R. Ecological Applications , 19 4 , Fish and Wildlife Service". Sodhi, B. Brook, and M. Soh Journal of Tropical Ecology. The Journal of Wildlife Management. Crow meat comes back—boost sexual potency? Internet Center for Wildlife Management. International Journal of Pest Management. Retrieved 17 March Australian Journal of Experimental Agriculture. Crows of the World. Morning Edition. National Public Radio. -
Kandidátusi Értekezés
József Attila Tudományegyetem VÁLTOZÓCSILLAGOK PERIÓDUS-ANALÍZISE AZ IDŐ ÉS A FREKVENCIA TARTOMÁNYBAN kandidátusi értekezés írta SZATMÁRY KÁROLY tudományos munkatárs Szeged 1994 Tartalomjegyzék Bevezetés..................................................................................................................3 I. A csillagok fényváltozása.....................................................................................4 I.1. A változócsillagok fontosabb típusai………………………….............4 I.2. Delta Scuti csillagok..............................................................................7 I.3. Félszabályos változócsillagok............................................................... 9 I.4. Fedési kettős és pulzáló csillagok O-C diagramja…………….…......10 II. Periódus meghatározó módszerek.....................................................................11 II.1. Fourier analízis...................................................................................12 II.2. A CLEAN-algoritmus........................................................................21 II.3. Wavelet analízis.................................................................................24 II.3.1. Matematikai alapok.............................................................25 II.3.2. Diszkrét Wavelet Transzformáció......................................27 II.3.3. Wavelet térkép....................................................................28 III. A wavelet analízis tulajdonságainak vizsgálata teszt adatsorokkal.................30 III.1. Tesztek..............................................................................................30