University Microfilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms International 300 N INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" lor pages apparently lacking from the document photographed is "Missing Pagets)". If it was possible to obtain the missing pagets) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image o f the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning” the material has been followed. It is customary to begin filming at the upper left hand com er o f a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Departm ent. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University M icro film s International 300 N Zeeb Road Ann Arbor.MI 48106 8300376 Walker, Gregory Paul THE DISPERSION AND ABUNDANCE OF THE POTATO APHID (MACROSIPHUM EUPHORBIAE (THOMAS)) ON TOMATO (LYCOPERSICON ESCULENTUM MILL.) The Ohio Slate University PH.D. 1982 University Microfilms International 300 N. Zeeb Reed, Ann Arbor. MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V i . Glossy photographs or pages_______ 2 Colored illustrations, paper or print______ 3. Photographs with dark background ______ 4. Illustrations are poor copy _______ 5. Pages with black marks, not original copy _______ 6. Print shows through as there is text on both sides of page _______ 7. Indistinct, broken or small print on several pages ______ 8. Print exceeds margin requirements ^ ' 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print _______ 11. P a g e (s )_____________ lacking when material received, and not available from school or author. 12. P a g e (s )_____________ seem to be missing in numbering only as text follows. 13. Tw o pages n u m b ered_____________. Text follows. 14. Curling and wrinkled pages_______ 15. O ther_________________________________ ._________________ University Microfilms Internationa! THE DISPERSION AND ABUNDANCE OF THE POTATO APHID (MACROSIPHUM EUPH0R3IAE (THOMAS)) ON TOMATO (LYCOPERSICON ESCULENTUM MILL,) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Paul Walker, B.A. , M.Sc. * * * * The Ohio State University 1982 Reading Committee: Approved By Dr. Lowell R. Nault Dr. David J. Horn Dr. Richard K. Lindquist Adviser Department of Entomology This dissertation is dedicated to my w ife, Eileen, whose loving support and hard work were invaluable throughout my many years in graduate school. i i ACKNOWLEDGMENTS I would like to thank Drs, Lowell R. Nault, Donald E. Simonet, William L. Rubink and Lawrence V. Madden for th eir invaluable assistance throughout the course of my dissertation research. Ron Myers and the Wooster OARDC farm crew as well as Chuck W ilier and the Fremont OARDC farm crew helped enormously with fie ld plot maintenance and have my sincerest gratitude. I would also like to express my thanks to my wife, Eileen, for endless hours at the word processor, typing the drafts of this dissertation, and to Brenda Davenport whose technical assistance was instrumental in collecting the data in this study. Finally, I would like to extend my thanks to Drs. D. L . Goleman and R. E Treece and The Ohio State University Department of Entomology for the financial assistance without which this dissertation never would have been, and to Mabel Swartzwalder, Maxine Johnson and Chrissy Reynolds for typing many tables and letters over the years. i i 1 VITA January 9, 1953............................. Born - New York, New York 1975 .................................................... B.A., Miami University Oxford, Ohio 1976-1978 .......................................... Teaching Associate, Department of Entomology, The Ohio State University, Columbus, Ohio 1979 .................................................... M.Sc., The Ohio State University Columbus, Ohio 1979-1980 .......................................... Survey Entomologist, Ohio Agricultural Research and Development Center, Wooster, Ohio 1980-198 2 ......................................... Research Associate, Ohio Agricultural Research and Development Center, Wooster, Ohio PUBLICATIONS "Juvenile Hormone and Moulting Hormone Titers in Diapause and Non-Diapause Destined Flesh F lie s ." 0. Insect Physiol. 26:661-664. "Insect Control on Tomatoes." 1980 Insecticide and Acaricide Tests. 6 : 101- 102. "Laboratory Bioassay of Systemic Insecticide Treated Tomato Foliage on Colorado Potato Beetle," submitted to Insecticide and Acaricide Tests. FIELDS OF STUDY Major Field: Entomology Studies in Insect Physiology. Professor David L. Denlinger Studies in Insect Ecology and Applied Entomology. Professors Donald E. Simonet and Lowell R. Nault iv TABLE OF CONTENTS Page DEDICATION................................................................................................................ ii ACKNOWLEDGMENTS....................................................................................................... i i i VITA............................................................................................................................. iv LIST OF TABLES.......................................................................................................... vi LIST OF FIGURES......................................................................................................vi i i Chapter I. INTRODUCTION............................................................................................. 1 I I . SPATIAL DISPERSION AND SEQUENTIAL SAMPLING OF THE POTATO APHID IN PROCESSING TOMATO FIELDS............................... 11 I I I . DEVELOPMENT, FECUNDITY AND LONGEVITY OF THE POTATO APHID ON TOMATO.................................................................................... 38 IV. NATURAL FACTORS REDUCING POTATO APHID INTENSITY IN PROCESSING TOMATO FIELDS IN OHIO................................................ 68 V. GENERAL DISCUSSION............................................................................... 99 APPENDIXES A. Insecticide applications in 1980 .................................................. 112 B. Duration o f development of Aphidius nigripes and Praon sp. parasitizing Macrosiphum euphorbiae at ca. 22°C and ca. 15.5°C. Photoperiod = 16:8 L:D ............. 113 BIBLIOGRAPHY.............................................................................................................. 114 v LIST OF TABLES Table Page 1.1 Food plants of Macrosi phum euphorbiae (=so1anifo1i i ) 3 reported i n Patch (1938). ........................................................... 1.2 A lis t of plant viruses vectored by Macrosiphum euphorbiae (from Kennedy <^t al_. , 19621.................................. 1 2.1 Regression equations of log variance vs. log mean and mean crowding vs. mean for d ifferen t aphid and leaf strata categories................................................................... 22 2.2 Comparisons of log variance - log mean regressions between data grouping, sample methods, years, and fields for different aphid and leaf strata categories. 28 2.3 Comparison of log variance - log mean regression lines among leaf strata.............................................................................. 31 3.1 Regression equations of developmental rate (Y) on temperature (X ), developmental threshold temperatures, and Celsius degree days (CDD) required for development of apterate pink potato aphids on tomato in test 1 .... 46 3.2 Comparison of the mean duration (days) of aphid stages, fecundity, and percent alatism between tests 1 and 2 at six temperatures......................................................................... 50 3.3 Mean duration of prereproductive period (days) and outdoor solar radiation for aphids reared on leaf discs from d ifferen t experiments at 22.2 °C 16:8 L:D where the parent generation was reared on leaf discs at 22 .2°C 16:8 L:D ............................................................................... 52 3.4 Comparison of developmental time and fecundity between apterate
Recommended publications
  • Sequence Analysis of the Potato Aphid Macrosiphum Euphorbiae Transcriptome Identified Two New Viruses Marcella A
    Chapman University Chapman University Digital Commons Biology, Chemistry, and Environmental Sciences Science and Technology Faculty Articles and Faculty Articles and Research Research 3-29-2018 Sequence Analysis of the Potato Aphid Macrosiphum euphorbiae Transcriptome Identified Two New Viruses Marcella A. Texeira University of California, Riverside Noa Sela Volcani Center, Bet Dagan, Israel Hagop S. Atamian Chapman University, [email protected] Ergude Bao University of California, Riverside Rita Chaudhury University of California, Riverside See next page for additional authors Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Biosecurity Commons, Entomology Commons, Parasitology Commons, and the Virus Diseases Commons Recommended Citation Teixeira MA, Sela N, Atamian HS, Bao E, Chaudhary R, MacWilliams J, et al. (2018) Sequence analysis of the potato aphid Macrosiphum euphorbiae transcriptome identified two new viruses. PLoS ONE 13(3): e0193239. https://doi.org/10.1371/ journal.pone.0193239 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Biology, Chemistry, and Environmental Sciences Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Sequence Analysis of the Potato Aphid Macrosiphum
    [Show full text]
  • Mating Behaviour of Aphidius Ervi (Hymenoptera: Braconidae): The
    Eur. J. Entomol. 99: 451-456, 2002 ISSN 1210-5759 Mating behaviourAphidius of ervi (Hymenoptera: Braconidae): The role of antennae Donatella BATTAGLIA1, Nunzio ISIDORO2, Roberto ROMANI3, F erdinando BIN3 and F rancesco PENNACCHIO1* 1Dipartimento di Biología, Difesa e Biotecnologie Agro-Forestali, Universita della Basilicata, Macchia Romana, 85100 Potenza, Italy. 2Dipartimento di Biotecnologie Agrarie ed Ambientali, Universita di Ancona, via Brecce Bianche, 60100 Ancona, Italy. 3Dipartimento di Arboricoltura e Protezione delle Piante, Universita di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy. Key words. Mating behaviour, ultrastructure, parasitoid, pheromone, functional anatomy, antennal glands, sensilla,Aphidius ervi, Aphidiinae Abstract. In the mating behaviour ofAphidius ervi Haliday the antennae play a pivotal role in partner recognition and acceptance. Mating failure was always observed when antennal contact was experimentally prevented. The maleA. of ervi has filiform antennae, consisting of scape, pedicel and 18-20 cylindrical antennomeres (flagellar segments), which bear numerous types of sensory struc­ tures and, interspersed among the multiporous plate sensilla, especially on the 1th and 2nd flagellar segments, scattered pores. A secretion oozes from these pores in virgin males exposed to conspecific females. Transmission electron microscopy revealed that these pores are the external openings of integumentary glands. Behavioural and morpho-functional observations indicated that a double step sex recognition mechanism is present in A. ervi, as in other parasitic Hymenoptera. Basically, female recognition by males appears to be mediated by a volatile sex pheromone, that triggers the behavioural sequence leading to mounting. Then, the female recognizes and accepts the male after antennal contact. This is mediated by the secretion that oozes from the male antennal glands, which acts as a contact pheromone.
    [Show full text]
  • Aphid-Parasitoid (Insecta) Diversity and Trophic Interactions in South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) 83 APHID-PARASITOID (INSECTA) DIVERSITY AND TROPHIC INTERACTIONS IN SOUTH DAKOTA Abigail P. Martens* and Paul J. Johnson Insect Biodiversity Lab South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Parasitoid wasps of the subfamily Aphidiinae (Hymenoptera: Braconidae) specialize on aphids (Hemiptera: Aphididae) as hosts. The diversity of known and probable aphidiine wasps from South Dakota is itemized, with represen- tation by 13 genera and 42 species, 43% of which are probably adventitious. The wasps and aphids are central to various combinations of multitrophic relationships involving host plants and secondary parasitoids. Selected native and introduced aphid host taxa were quantitatively and qualitatively collected from diverse native and crop host plants in eastern South Dakota and western Iowa. Wasps were reared to confirm plant association, host aphid association, taxonomic diversity, and native or introduced status of the wasps. Acanthocaudus tissoti (Smith) and Aphidius (Aphidius) ohioensis (Smith) were found together on the native aphid Uroleucon (Uroleucon) nigrotuberculatum (Olive), a new host aphid species for both wasps on Solidago canadensis L. (Asterales: Asteraceae). The native waspLysiphlebus testaceipes (Cresson) was repeatedly reared in mas- sive numbers from mummies of invasive Aphis glycines Matsumura on soybean, Glycine max (L.) Merr. This wasp was also reared from the non-nativeAphis nerii Boyer de Fonscolombe and the native Aphis asclepiadis Fitch, both on Asclepias syriaca L. The introduced wasp Binodoxys communis (Gahan) was not recovered from any Aphis glycines population. Hyperparasitoids from the genus Dendrocerus Ratzeburg (Hymenoptera: Megaspilidae), and the pteromalid (Hymenoptera: Pteromalidae) genera Asaphes Walker, and Pachyneuron Walker were reared from mummies of Uroleucon (Uroleucon) nigrotuberculatum parasitized by either Acanthocaudus tissoti or Aphidius (Aphidius) ohioensis.
    [Show full text]
  • A Check List of the Aphi Ds of Tasmania and Their Recorded Host Plants
    PAPERS ANI) PROCF,EDINGS OF THS ROYAL SOClmy 0>' TASMANIA, VOLUliUil 97 A CHECK LIST OF THE APHI DS OF TASMANIA AND THEIR RECORDED HOST PLANTS By E .•1. MARTYN and L. W. MILLER Entomology Division, Department 'OJ Agriculture, Hobart ABSTRACT identity have been omitted. The only exception In this first check list of the aphids occurring in is for some of the aphid trap records where the Tasmania, 69 species are recorded. Of these 4:ol la.rge bulk of common species has not been retained. have been recorded from bO'th host plants and The information is complete to December 31st, 1961. aphid traps, 12 on host plants only and 15 solely Later records have been included only in exceptional from traps. The host plant list comprises 148 instances. species from 46 botanical famiUes. LIST OF APHID SPECIES INTRODUCTION L Acyrthosiphon pelargonii (Kalt.) s.str. Although various species of aphids have been recorded from time to time by previous Government Host: Erodium 'moschatum (L.) Ait. Entomologists (Thompson, 1892 and 1895; Lea, 1908; Localities: Grove, New Town, Triabunna. Evans, 1943) no check list of the aphids occurring Collection Dates: Oct., Nov. in Tasmania has ever been published. When one of Trap Records: April, June, July, Sept.-Dec. us (L,W.M.) initiated a study of the aphid fauna of Tasmania in 1944 there was virtually a complete 2. Acyrthosiphon pisum (Ha.rris) ssp, spartii lack of specimens, identified or not, in the col­ (Koch). lection of the Tasmanian Department of Agricul­ Hosts: Cytisus 'monspessulanus L, Lathyrus ture. This was unfortunate as it prevented a sp.
    [Show full text]
  • Narcissus Narcissus Crop Walkers’ Guide
    Crop Walkers’ Guide Narcissus Narcissus Crop Walkers’ Guide Introduction Narcissus growers can encounter a range of problems that can impact on both the quality and yield of flowers and bulbs unless they are identified and dealt with. Often, such problems are linked to pests and diseases, but a range of physiological and cultural disorders may also be encountered. This AHDB Horticulture Crop Walkers’ Guide has been created to assist growers and agronomists in the vital task of monitoring crops in the fields and bulbs post-lifting. It is designed for use directly in the field to help with the accurate identification of pests, diseases and disorders of narcissus. Images of the key stages of each pest or pathogen, along with typical plant symptoms produced have been included, together with succinct bullet point comments to assist with identification. As it is impossible to show all symptoms of every pest, disease or disorder, growers are advised to familiarise themselves with the range of symptoms that can be expressed and be aware of new problems that may occasionally arise. For other bulb and cut flower crops, see the AHDB Horticulture Cut Flower Crop Walkers’ Guide. This guide does not attempt to offer advice on available control measures as these frequently change. Instead, having identified a particular pest, disease or disorder, growers should refer to other AHDB Horticulture publications which contain information on currently available control measures. Nathalie Key Knowledge Exchange Manager (Narcissus) AHDB Horticulture Introduction
    [Show full text]
  • Diapause Expression in a Québec, Canada Population of the Parasitoid Aphidius Ervi (Hymenoptera: Braconidae)
    345 Diapause expression in a Québec, Canada population of the parasitoid Aphidius ervi (Hymenoptera: Braconidae) Kévin Tougeron1 , Joan van Baaren, Cécile Le Lann, and Jacques Brodeur Abstract—Aphidius ervi Haliday (Hymenoptera: Braconidae) is a major natural enemy of several agricultural pests in North America. Yet little is known about its overwintering strategy, especially concerning the plastic response to photoperiod and temperature that induce diapause. Information on parasitoid overwintering patterns is of great importance if we aim to predict their phenology and better inform pest outbreak control. Moreover, there is increasing evidence of plastic and genetic changes in overwintering strategies in insect from temperate areas following climate change. We set up a laboratory approach to better understand the factors acting on diapause induction in A. ervi.We studied the diapause incidence in a population from Québec, Canada, using the combination of two temperatures (14 °C and 20 °C) and three photoperiod treatments (10:14, 12:12, 14:10 [light:dark] hours). We found an effect of both factors on diapause incidence; A. ervi expressed close to 95% of diapause at the most fall-like conditions (14 °C, 10:14 [light:dark] hours) and almost no diapause (3.5%) at the most summer-like conditions tested (20 °C, 14:10 [light:dark] hours). This parasitoid species does have the potential to enter diapause in Québec before lethal frosts, despite a recent introduction from France (1960s), where mild winter occurs compared with Québec. Résumé—Aphidius ervi Haliday (Hymenoptera: Braconidae) est un des principaux ennemis naturels de plusieurs ravageurs agricoles en Amérique du Nord.
    [Show full text]
  • Survey of Internal Parasites of Potato-Infesting Aphids in Northeastern Maine, 1963 Through 1969
    SURVEY OF INTERNAL PARASITES OF POTATO-INFESTING APHIDS IN NORTHEASTERN MAINE, 1963 THROUGH 1969 W. A. Shands, Geddes W. Simpson, and Corinne C. Gordon A Cooperative Publication of the Life Sciences and Agriculture Experiment Station, University of Maine at Orono, and the Entomology Research Service, United States Department of Agriculture University of Maine at Orono TECHNICAL BULLETIN 60 AUGUST, 1972 CONTENTS Acknowledgment 2 Introduction 3 Procedure 4 Role of parasites in control of aphids on potato plants not treated with insecticides 5 Abundance of parasitized aphids on field-growing potatoes 5 Seasonal variation in abundance of the parasitized aphids 6 Average seasonal abundance of mummified potato- infesting aphids of three species 8 The parasites . 8 Parasites reared from the potato aphid 10 Parasites reared from the green peach aphid 11 Parasites reared from the buckthorn aphid 12 Parasites reared from the foxglove aphid 13 Summary and conclusions 14 References cited 1? ACKNOWLEDGMENT We are grateful to several entomologists of the Insect Identification and Parasite Introduction Branch, of the former Entomology Research Division, Agricultural Research Service, U. S. Department of Agricul­ ture, for assistance during the present study. These include P. M. Marsh, who identified the adult primary parasites in the family Braconidae, and adult hyperparasites in the family Ceraphronidae; B. D. Burks and W. A. Crawford, who identified the adult hyperparasites in the families Pteromalidae and Cynipidae; and R. I. Sailer, Chief of the Branch, who lent his support and encouragement. Research reported herein was supported in part by Hatch funds. Survey of Internal Parasites of Potato-Infesting Aphids in Northeastern Maine, 1963 through 1969 \V.
    [Show full text]
  • Effect of Diapause on Cold-Resistance in Different Life-Stages of an Aphid Parasitoid Wasp
    bioRxiv preprint doi: https://doi.org/10.1101/489427; this version posted December 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Effect of diapause on cold-resistance in different life-stages of an aphid parasitoid wasp Authors and affiliations: Tougeron K.1, 2, Blanchet L.1, van Baaren J.1, Le Lann C.1 & Brodeur J.2 1 UMR 6553 Ecobio, Université de Rennes, Centre National de la Recherche Scientifique, 263 avenue du général Leclerc, 35042 Rennes, France. 2 Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal (QC), Canada H1X 2B2. Corresponding author: [email protected] This article is a preprint and has not been peer-reviewed Abstract To overwinter, insects from mild temperate areas can either enter diapause or remain active. Both strategies involve costs and benefits depending on the environment. In the first case, the emerging individuals will resist winter but have a reduced fitness because diapause entails physiological and ecological costs. In the second case, individuals need to be cold-resistant enough to withstand winter temperatures during their immature and adult stages, but could avoid diapause-associated costs. In mild temperate areas, the cost-benefit balance between the diapause and the non-diapause strategy would likely change in response to climate warming. A trade-off between these two strategies should lead to reduction of diapause expression in some populations.
    [Show full text]
  • Seasonal Phenology of the Major Insect Pests of Quinoa
    agriculture Article Seasonal Phenology of the Major Insect Pests of Quinoa (Chenopodium quinoa Willd.) and Their Natural Enemies in a Traditional Zone and Two New Production Zones of Peru Luis Cruces 1,2,*, Eduardo de la Peña 3 and Patrick De Clercq 2 1 Department of Entomology, Faculty of Agronomy, Universidad Nacional Agraria La Molina, Lima 12-056, Peru 2 Department of Plants & Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; [email protected] 3 Department of Biology, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +051-999-448427 Received: 30 November 2020; Accepted: 14 December 2020; Published: 18 December 2020 Abstract: Over the last decade, the sown area of quinoa (Chenopodium quinoa Willd.) has been increasingly expanding in Peru, and new production fields have emerged, stretching from the Andes to coastal areas. The fields at low altitudes have the potential to produce higher yields than those in the highlands. This study investigated the occurrence of insect pests and the natural enemies of quinoa in a traditional production zone, San Lorenzo (in the Andes), and in two new zones at lower altitudes, La Molina (on the coast) and Majes (in the “Maritime Yunga” ecoregion), by plant sampling and pitfall trapping. Our data indicated that the pest pressure in quinoa was higher at lower elevations than in the highlands. The major insect pest infesting quinoa at high densities in San Lorenzo was Eurysacca melanocampta; in La Molina, the major pests were E. melanocampta, Macrosiphum euphorbiae and Liriomyza huidobrensis; and in Majes, Frankliniella occidentalis was the most abundant pest.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids
    insects Perspective Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids Hugh D. Loxdale School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; [email protected] Received: 10 September 2018; Accepted: 26 October 2018; Published: 1 November 2018 Abstract: Since the advent and widespread use of high-resolution molecular markers in the late 1970s, it is now well established that natural populations of insects are not necessarily homogeneous genetically and show variations at different spatial scales due to a variety of reasons, including hybridization/introgression events. In a similar vein, populations of insects are not necessarily homogenous in time, either over the course of seasons or even within a single season. This of course has profound consequences for surveys examining, for whatever reason/s, the temporal population patterns of insects, especially flying insects as mostly discussed here. In the present article, the topics covered include climate and climate change; changes in ecological niches due to changes in available hosts, i.e., essentially, adaptation events; hybridization influencing behaviour–host shifts; infection by pathogens and parasites/parasitoids; habituation to light, sound and pheromone lures; chromosomal/genetic changes affecting physiology and behaviour; and insecticide resistance. If such phenomena—i.e., aspects and pitfalls—are not considered during spatio-temporal study programmes, which is even more true in the light of the recent discovery of morphologically similar/identical cryptic species, then the conclusions drawn in terms of the efforts to combat pest insects or conserve rare and endangered species may be in error and hence end in failure.
    [Show full text]
  • Detection and Molecular Characterization of the Iris Severe Mosaic Virus-Ir Isolate from Iran
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 3 (2015) DOI: 10.1515/jppr-2015-0032 Detection and molecular characterization of the Iris severe mosaic virus-Ir isolate from Iran Masoud Nateqi, Mina Koohi Habibi, Akbar Dizadji*, Shirin Parizad Department of Plant Protection, Faculty of Agricultural Sciences and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran Received: January 28, 2015 Accepted: June 26, 2015 Abstract: Iris belongs to the Iridaceae family. It is one of the most important pharmaceutical and ornamental plants in the world. To assess the potyvirus incidence in natural resources of iris plants in Iran, Antigen Coated-Plate ELISA (ACP-ELISA) was performed on 490 symptomatic rhizomatous iris leaf samples, which detected the potyvirus in 36.7% of the samples. Genomic 3’ end of one mechanically non-transmitted potyvirus isolate, comprising a 3’ untranslated region (390 bp) and C-terminus of the coat protein (CP) gene (459 bp), was amplified by reverse transcription polymerase chain reaction (RT-PCR), which was ligated into pTG19-T vector. The nucleotide sequence of amplicons was compared with related sequences, using Blastn software available at NCBI GenBank, and showed the highest similarity with Iris severe mosaic virus (ISMV) isolates. The nucleotide and deduced amino acid sequence of the CP C-terminus region was more than 83% identical with other ISMV isolates, therefore this isolate was designated as ISMV-Ir. This new ISMV isolate is closely related to the Chinese ISMV-PHz in phylogenetic analysis, based on the partial nucleotide and deduced amino acid sequence of the CP region.
    [Show full text]