9. Linear Models and Regression Objective
9. Linear models and regression AFM Smith Objective To illustrate the Bayesian approach to fitting normal and generalized linear models. Bayesian Statistics Recommended reading • Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society B, 34, 1–41. • Broemeling, L.D. (1985). Bayesian Analysis of Linear Models, Marcel- Dekker. • Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003). Bayesian Data Analysis, Chapter 8. • Wiper, M.P., Pettit, L.I. and Young, K.D.S. (2000). Bayesian inference for a Lanchester type combat model. Naval Research Logistics, 42, 609–633. Bayesian Statistics Introduction: the multivariate normal distribution Definition 22 T A random variable X = (X1,...,Xk) is said to have a multivariate normal distribution with mean µ and variance / covariance matrix Σ if 1 1 T −1 Rk f(x|µ, Σ) = 1 exp − (x − µ) Σ (x − µ) for x ∈ . (2π)k/2|Σ|2 2 In this case, we write X|µ, Σ ∼ N (µ, Σ). The following properties of the multivariate normal distribution are well known. Bayesian Statistics i. Any subset of X has a (multivariate) normal distribution. Pk ii. Any linear combination i=1 αiXi is normally distributed iii. If Y = a + BX is a linear transformation of X, then Y|µ, Σ ∼ N a + Bµ, BΣBT . X1 µ Σ11 Σ12 iv. If X = µ, Σ ∼ N 1 , then the conditional X2 µ2 Σ21 Σ22 density of X1 given X2 = x2 is −1 −1 X1|x2, µ, Σ ∼ N µ1 + Σ12Σ22 (x2 − µ2), Σ11 − Σ12Σ22 Σ21 Bayesian Statistics The multivariate normal likelihood function Suppose that we observe a sample x = (x1,..., xn) of data from N (µ, Σ).
[Show full text]