bioRxiv preprint doi: https://doi.org/10.1101/2021.08.23.457351; this version posted August 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptional plasticity drives leukemia immune escape Kenneth Eagle1,2*, Taku Harada1,*, Jérémie Kalfon3, Monika W. Perez1, Yaser Heshmati1, Jazmin Ewers1, Jošt Vrabič Koren4, Joshua M. Dempster3, Guillaume Kugener3, Vikram R. Paralkar5, Charles Y. Lin4 , Neekesh V. Dharia1,3, Kimberly Stegmaier1,3, Stuart H. Orkin1,6,† and Maxim Pimkin1,3,† 1. Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA 2. Ken Eagle Consulting, Houston, TX 3. Broad Institute of MIT and Harvard, Cambridge, MA 4. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 5. Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 6. Howard Hughes Medical Institute, Boston, MA * These authors contributed equally † These authors jointly supervised Correspondence to:
[email protected],
[email protected] ABSTRACT Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation (alloSCT) has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHC-II) proteins through unknown mechanisms. We developed CORENODE, a computational algorithm for genome-wide transcription network decomposition, that identified the transcription factors (TFs) IRF8 and MEF2C as positive regulators and MYB and MEIS1 as negative regulators of MHC-II expression in AML cells.