Deepwater Welding and Intervention Technology

Total Page:16

File Type:pdf, Size:1020Kb

Deepwater Welding and Intervention Technology Underwater Technology Deepwater Welding and Intervention Technology by J. H. NIXON* and I. M. RICHARDSON*t Abstract by SubSea International (OTTO, [1]), Comex (THOR Within the next few years, the offshore oil industry 1 and 2, [2]) and Statoil (PRS, [3]), they have many will be seeking to exploit hydrocarbon reserves at similarities. All use so me form of tractor, controlled depths inaccessible to saturation divers, and at which from the surface, crawling round a track installed the welding processes currently in offshore use will not on the pipe, and upon which is mounted a welding operate. Alternative processes exist for the water depth torch and manipulator, consumable feed unit, and range 500 to 1000 met res, and these have been shown weId pool viewing system. All utilise the GT A welding to be viable in laboratory trials. Further work is process; with filler addition. The task of the saturation required to bring them to full operational status, and diver is to install and remove these systems, and to to integrate them with the wide range of other equip- replace consumable spools and tungsten electrodes as ment required to carry out a complete underwater required. Such systems have been used for the past fabrication procedure without diver intervention. ten years, generally successfully, and are currently Although alternative fabrication techniques exist, it is being considered for operations at shallower depths, generally agreed that if hyperbaric welding can be and for an increasingly wide range of pipeline materials shown to be reliable, and to produce acceptable joints, [4]. it will continue to be used by the offshore industry. Although the pace of development of offshore At present, no facilities exist for hyperbaric welding hydrocarbon reserves has been irregular, and greatly research at depths significantly greater than 1000 influenced by the low price of crude oil, it is generally metres. Cranfield is currently commissioning a 250 bar agreed within the industry that significant reserves research facility, which can be used for undertaking exist in areas where the seabed is at water depths of studies into the performance and properties of arc 1 km and greater [5], and that these will be exploited welding at pressures equivalent to a water depth of during the early years of the next century. In order to 2.5 km. accomplish this, however, it will be necessary to modify current underwater welding practice greatly. Once one considers welding operations at depths t. Introduction significantly greater than 500 m, two problems occur. In general, most of the fabrication and repair of It is generally recognised that the viable limit for underwater pipelines takes place in Continental Shelf saturation diving must be in the 500 to 750 m depth water depths, which are usually less than 200 metres. region. The increasing effects of high press ure nervous For these situations, manual welding techniques are syndrome (HPNS), and the extensive decompression used, with gas tungsten arc welding (GT AW) for root times required, make deep saturation diving progress- welds and hot passes, shielded metal arc welding ively less attractive as depth increases. Additional data (SMA W) being employed to fill the bulk of the on the long-term effects of deep diving, wh ich have weid. led the Norwegian Government to declare operations In the early 1980s, a requirement arose to provide at depths greater than 180 m as especially hazardous, arepair capability for pipelines being laid across the only strengthen this argument (see Table 1, [3]). Norwegian Trench, an area of the North Sea in which In addition, welding process research has shown the water depth can approach 400 metres. It was appreciated that the physical capabilities of saturation Table 1 Depth ranges for diving and welding divers became more limited as depth increased, and Depth msw Diving Welding welding, as a skill requiring long term dexterity and concentration, was particularly vulnerable to this 50 Limit for air diving Manual effect. It seemed unlikely that conventional manual welding welding techniques would produce consistently accept- 180 Norwegian operations able results at the increased depth of the Norwegian hazard limit Trench. 300 Mixed gas saturation For the relatively simple weid geometries required diving GTAW to join pipes, automated orbital welding systems were 400 orbital systems developed. Although several of these exist, developed Limit for 500 saturation *The Marille Techllology Celltre, Cralljield University, diving Limit of GTAW Cralljield, Bedfordshire, MK43 OAL, UK 600 t This paper was presented at all SU T cOllference, SU BTECH Diverless GMAW '95, held 7-9 November 1995, Aberdeen. Proceedings are systems plasma 1000 available.from SUT. (Report Q{meeting Oll p. 28.) 3 Volume 21 Number 3 UndcrII'lItcr Tcchnology that the GT AWare beeomes progressively less stable 3. Alternatives to are welding for deepwater operations as the environmental pressure is inereased, and at If arc welding is not used as the pipe joining technique, about 500 m deep, it will become unacceptably a number of alternatives exist. Several varieties of unstable for operational use. The exact depth will mechanical connector have been developed for trans- depend on a variety of factors, such as the operating mission pipelines, and although bulky and expensive, eurrent, shielding gas composition and weid prepar- could be utilised in deepwater situations. Being purely ation geometry [6]. Shielded metal are welding is not mechanical, their operation is little affected by water espeeially suitable for robotie operation, because of depth. Recent studies have suggested that for maximum thc high lcvels of manipulative dexterity required, and reliability, metal to metal sealing techniques, based on the low metal deposition rate [7]. cold forging technology, should be used [3]. Thus, at depths greater than about 500 m, both the Alternatively, a solid phase welding technique, such capability for diver intervention, and the welding as explosive welding (highenergy bonding) could be processes with which the offshore industry has the used. A complete HEB pipe joining system was most experience, w.illcease to be operable. Alternatives developed by British Underwater Pipelines Engineer- to arc welded fabrieation techniques exist, such as solid ing, of Barrow in Furness, in the late 1970s. This phase welding, mechanical connectors, grouting, and consisted of aseries of engineering packages, deployed the like. However, a general consensus within the by submersible, to cut pipes, remove the weightcoat, industry suggests that if arc welding ean be shown to and prepare the surface of the pipe for bonding. bc viable, it will continue to be used, because of its Although only capable of lap configuration joints, the high joint effieiency, low weight and good operational system was shown to be feasible [10]. The development record. Because of the high probability that so me form of effective arc welding techniques, possibly combined of subsca completion will be used in these water with reservations concerning the use of explosives depths, welding system development to date has adjacent to offshore structures, and the inspection of concentrated on pipeline joining systems, with their the solid phase welds, inhibited further development, simpler and more predictable weid geometry. but the technology could be revived for deepwater operations. Although more speculative, the use of high perform- 2. Non-wclding deepwater intervention teehnology ance adhesive joining techniques might be considered Thc Norwegian objeetive, of minimising all diving for deepwater situations. Adhesives are now utilised operations at depths greater than 180 m, has resulted in many demanding applications, such as the fabrication in an EU R EKA research programme to upgrade the of automotive and aerospace components, and although engineering specification of current diver-deployed the cost of such adhesives is high, the quantities orbital welding systems to enable them to operate required would be relatively smal!. Tt may be that a witllOut diver assistance [8]. Because mechanical hybrid joining technique, using adhesives to enhance systems are relatively depth insensitive, this pro- the performance of a mechanical connector, might gramme will provide valuable experience for the prove effective in these situations. construction of welding systems to operate at greater depths, provided it can be demonstrated that effective 4. Are welding technology for depths of 500 to 1000 m welding processes are available. Over the past few years, research into hyperbaric Even when conducting underwater welding oper- welding technology in the depth range 500 to 1000 m ations, the vast majority of underwater activity is not has been carried out at several research organisations, directly concerned with the welding process. For a principally GKSS and the Universität der Bundeswehr typical pipeline repair operation, the pipe must be in Germany, STNTEF in Norway, and Cranfield located and the worksite surveyed to ensure that the repair equipment can be safely deployed. It may be necessary to uneover buried pipe, or to lift the line sufliciently to permit full equipment access. Any wcightcoat or protectivc covcring must then bc rcmovcd, and thc pipc c\caned and prepared, usually by machining, for the welding operation. Aftcr welding is complete, the weld must be inspected, so me form of protection applied, the equipment recovered to thc surface, and the worksite
Recommended publications
  • Hyperbaric Testing Testing and Trials for the Subsea Industry
    Hyperbaric Testing Testing and trials for the subsea industry jfdglobal.com About JFD Our vision is to be the unrivalled, first choice partner to commercial operators and global defence forces within the hyperbaric industry and we will continue to support our clients core operations by offering market leading technology solutions and provide world class support. JFD is at the forefront of hyperbaric rescue and is the leading supplier of commercial diving equipment and saturation systems. JFD’s products and services have been delivered globally for over 35 years and continues to set new standard for safety, quality and reliability, whilst being at the forefront on innovation. 02 | About JFD JFD offers complete capability, from design and manufacture through to operation, maintenance and training. Design Manufacture Installation Maintenance Training After sales support NHC testing NHC testing offers a comprehensive range of services for research, development, testing and demonstration of high and low pressure applications. Our operating procedures, test equipment, recording and monitoring are regularly audited and re-approved to ensure the highest standards. Considerable investments in the variety and capacity of test vessels within NHC testing have been made over the past 5 years, making our facilities amongst the biggest in the world. All our test equipment and chambers can be precisely controlled and monitored giving incredibly accurate test results. The variety of chambers mean we can pressure test a wide range of equipment of all shapes and sizes such as subsea control modules, umbilicals, valves, actuators, ROV and submersible vehicles, buoyancy control devices and underwater housings. We have full instrumentation and logging facilities on site as well as craneage.
    [Show full text]
  • Water Robot Repair Welding: a Technical Note Leilei WANG
    ISIJ International, Vol. 57 (2017),ISIJ International,No. 1 Vol. 57 (2017), No. 1, pp. 203–205 underwater wet welds are inherently inferior to welds made Note in air.6) There are three major drawbacks of underwater wet welding. Drawback I. Defects caused by the rapid cooling rate in the water environment: bubbles cannot be released from the welding pool, so they are trapped in the solidifying metal, Innovative Methodology and Database for Under- resulting in porosity, low ductility7) and a brittle martensite water Robot Repair Welding: A Technical Note phase.8) Drawback II. Defects caused by the high oxygen and hydrogen content in the water environment: hydrogen Leilei WANG, Fangxiang XIE, Yunliang FENG and embrittlement,9) hydrogen cracking,10) porosity and oxide Zhenmin WANG* inclusions.11) Drawback III. Defects caused by the unstable School of Mechanical and Automotive Engineering, South China arc and metal transfer in the water environment: bead University of Technology, 381 Wushan Road, Guangzhou, irregularity, craters and spatter. These issues are seldom Guangdong, 510641 P. R. China. mentioned, but the authors believe them to be more severe (Received on July 19, 2016; accepted on September 12, 2016; than Drawback I and Drawback II. J-STAGE Advance published date: November 30, 2016) Underwater wet welds are appropriate for temporary repair and salvage applications, but it is difficult to satisfy the requirements of nuclear power plant repair welding. Underwater local dry welding is a modified wet welding The current research status and main drawbacks of underwater welding are briefly summarized. A novel welding torch is proposed process, in which the arc combusts in a small movable to overcome the problems and issues.
    [Show full text]
  • ANSI/ACDE-01-2015 National Training Standard
    ANSI/ACDE-01-2015 for Divers – Commercial Diver Training – Minimum Standard 2015 - 01 - ANSI/ACDE American National Standard National American ANSI/ACDE-01-2015 American National Standard for Divers – Commercial Diver Training – Minimum Standards Secretariat Association of Commercial Diving Educators Approved January 7, 2015 American National Standards Institute, Inc. American Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have National been met by the standards developer. Standard Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made towards their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard. CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time.
    [Show full text]
  • Review Paper on Under Water Welding
    International Journal of Mechanical and Production Engineering, ISSN(p): 2320-2092, ISSN(e): 2321-2071 Volume- 7, Issue-6, Jun.-2019, http://iraj.in REVIEW PAPER ON UNDER WATER WELDING 1PIYUSH SEHGAL, 2NEERAJ KUMAR 1Student, Rayat Bahra University, Kharar, Punjab, India 2Asstt. Professor, Rayat Bahra University, Kharar, Punjab, Indi E-mail: [email protected] Abstract - Welding in offshore and marine application is an area of research and understanding where, many problems are still unsolved. In the present paper, a brief classification of underwater welding is made, the principals involved and the advantages and disadvantages of the various types of underwater welding are described. Finally, the scope of further research has been recommended. In the present paper, a brief description of the different commercial underwater techniques has been made. The problems in underwater welding have also been discussed in context to the existing welding techniques. Detailed description of a few advanced welding techniques has also been made. Finally, the scope of further research has been recommended. Keywords - Welding Techniques; Marine Application. I. INTRODUCTION are needed. These include lighting, staging and hand tools. The fact that electric arc could operate was known for There are advantages to wet welding. The underwater over a 100 years. The first ever underwater welding welder can work freely on any portion of complex was carried out by British Admiralty – Dockyard for structures or on sections with restricted access, sealing leaking ship rivets below the water line. whereas other underwater techniques may encounter Underwater welding is an important tool for difficulties. Patching can be performed faster and at underwater fabrication works.
    [Show full text]
  • The Underwater Welder Free
    FREE THE UNDERWATER WELDER PDF Jeff Lemire | 224 pages | 07 Aug 2012 | Top Shelf Productions | 9781603090742 | English | Georgia, United States Underwater Welding - A Dangerous Occupation? | IE Goodreads helps The Underwater Welder keep track of books you want to read. Want to Read saving…. Want to Read Currently Reading Read. Other editions. Enlarge cover. Error rating book. Refresh and try again. Open Preview See a Problem? Details if other :. Thanks for telling us about the problem. Return to Book Page. The Underwater Welder by Jeff Lemire. Steve Wands Goodreads Author Letterer. As an underwater welder on an oilrig off the coast of Nova Scotia, Jack Joseph is used to the immense pressures of deep-sea work — but not the pressures of impending fatherhood. While Jack dives deeper and deeper, he seems to pull further and further away from his young wife and their unborn son. Then one night, deep in the icy solitude of the ocean floor, Jack has a myste As an underwater welder on an The Underwater Welder off the coast of Nova The Underwater Welder, Jack Joseph is used to the immense pressures of deep-sea work — but not the pressures of impending fatherhood. Then one night, deep in The Underwater Welder icy solitude of the ocean floor, Jack has a mysterious and supernatural encounter that will change the course of his life forever. Equal parts blue-collar character study and mind-bending mystery, The Underwater Welder is a graphic novel about fathers and sons, birth and death, memory and reality, and the treasures we all bury deep below the surface.
    [Show full text]
  • Burnaby Mountain Tunnel Option CER File OF-Fac-Oil-T260-2013
    Trans Mountain Expansion Project Email: [email protected] | Phone: 1.866.514.6700 | Website: www.transmountain.com | @TransMtn VIA ELECTRONIC SUBMISSION March 9, 2020 Canada Energy Regulator Suite 210, 517 Tenth Avenue S.W. Calgary, Alberta T2R 0A8 To: Ms. Louise George, Secretary of the Commission Dear Ms. George: Re: Trans Mountain Pipeline ULC (“Trans Mountain”) Trans Mountain Expansion Project - Certificate OC-65 Condition 26: Burnaby Mountain Tunnel Option Revised Response to Information Request No. 20.2 (“IR No. 20.2”) CER File OF-Fac-Oil-T260-2013-03 61 In response to the CER’s IR No. 20 [C04160] with respect to its prior submissions concerning Condition 26 (Burnaby Mountain Tunnel Option), Trans Mountain filed a submission on February 7, 2020 [C04607]. Upon further review, Trans Mountain became aware that there were inconsistencies in Trans Mountain’s IR No. 20.2 response concerning a previously filed document, namely the Lower Mainland Project-Specific Safety Plan (PSSP) that was filed on June 23, 2017 [A84570]. Trans Mountain realized that its IR 20.2 response referenced a revised and updated version of the PSSP that had not been submitted to the CER. On March 6, 2020, Trans Mountain filed this revised PSSP [C05072]. Having made some minor revisions to its prior response to address the inconsistencies noted above, Trans Mountain resubmits its response to IR No. 20.2, with changes shown in blackline. Suite 2700, 300 – 5 Avenue SW Calgary, Alberta, T2P 5J2 CANADA Should you have any questions or wish to discuss this matter further, please contact the the undersigned at [email protected] or (403) 514-6400.
    [Show full text]
  • A Review on Under Water Welding Process
    International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.81.035 A Review on Under Water Welding Process C Sundarapandiyan Assistant Professor, Department of mechanical Engineering Ganesh College of Engineering, Salem – 636 111, Tamil Nadu, India. A Balamurugan Assistant Professor, Department of mechanical Engineering Ganesh College of Engineering, Salem – 636 111, Tamil Nadu, India. M Mohan Assistant Professor, Department of mechanical Engineering Ganesh College of Engineering, Salem – 636 111, Tamil Nadu, India. Abstract— Welding in offshore and marine application is an area of research and understanding where, many problems are still unsolved. In the present paper, a brief classification of underwater welding is made, the principals involved and the advantages and disadvantages of the various types of underwater welding are described. Further discussion is made over the present conventional and some advanced techniques used. Finally, the scope of further research has been recommended. Welding in offshore and marine application is an area of research and understanding where, many problems are still unsolved. In the present paper, a brief description of the different commercial underwater techniques has been made. The problems in underwater welding have also been discussed in context to the existing welding techniques. Detailed description of a few advanced welding techniques has also been made. Finally, the scope of further research has been recommended. Keywords: Welding techniques; Marine application. I. INTRODUCTION The fact that electric arc could operate was known for over a 100 years. The first ever underwater welding was carried out by British Admiralty – Dockyard for sealing leaking ship rivets below the water line.
    [Show full text]
  • Chapter 6 Arc Welding
    Revised Edition: 2016 ISBN 978-1-283-49257-7 © All rights reserved. Published by: Research World 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: [email protected] Table of Contents Chapter 1 - Welding Chapter 2 - Fabrication (Metal) Chapter 3 - Electron Beam Welding and Friction Welding Chapter 4 - Oxy-Fuel Welding and Cutting Chapter 5 - Electric Resistance Welding Chapter 6 - Arc Welding Chapter 7 - Plastic Welding Chapter 8 - Nondestructive Testing Chapter 9 - Ultrasonic Welding Chapter 10 - Welding Defect Chapter 11 - Hyperbaric Welding and Orbital Welding Chapter 12 - Friction Stud Welding Chapter 13 WT- Welding Joints ________________________WORLD TECHNOLOGIES________________________ Chapter 1 Welding WT Gas metal arc welding ________________________WORLD TECHNOLOGIES________________________ Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces. Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, under water and in outer space. Regardless of location, welding remains dangerous, and precautions are taken to avoid burns, electric shock, eye damage, poisonous fumes, and overexposure to ultraviolet light.
    [Show full text]
  • Scrutinize Research on Underwater Welding Process: a Review
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 5 Ver. VI (Sep. - Oct. 2016), PP 74-78 www.iosrjournals.org Scrutinize Research on Underwater Welding Process: A Review Mayank Chandra Joshi , Deepak Singh Rautela , Rajat Chauhan , Sumit Suyal. Tulas institute dhoolkhot dehradun. Abstract: The paper describes principles of underwater welding and recent trends in research works undertaken for enhance welding technology and properties of underwater welds.Welding in offshore and marine application is an area of research and understanding where, many problems are still unsolved. In the present paper, a brief classification of underwater welding is made, the principals involved and the advantages and disadvantages of the various types of underwater welding are described.The paper discusses various topics including temperature histories and microstructural transformation, optimum welding current and speed, optimum weld bead shape, and optimum hardness profiles.The entire program covered various subjects including the heat transfer and flow during underwater welding, the mechanisms of metal transfer and arc bubble formation, and the effects of water environment on the metallurgical structures and the properties of underwater welds. Keywords: underwaterwelding, microstructural transformation, metallurgical structure. I. Introduction Welding process can be defined as the metallurgically joining two pieces of metals by fusion to produce essentially a single piece of metal. welding technology is more then 2500 years old. with the advancements that have taken place in the welding technology,almost all metals are weldable provided that the proper process and technique are used. by using proper techniques,it is possible to weld even plastic and glasses.the welding process joins two pieces of metal by applying intense heat or pressure or both to melt the edges of the metal so that they fuse permanentally.
    [Show full text]
  • Ansi/Acde 01-2009
    ANSI/ACDE-01-2009 for Divers – Commercial Diver Training – Minimum Standard ANSI/ACDE-01-2009 American National StandardAmerican National ANSI/ACDE-01-2009 American National Standard for Divers – Commercial Diver Training – Minimum Standards Secretariat Association of Commercial Diving Educators Approved April 13, 2009 American National Standards Institute, Inc. Approval of an American National Standard requires review by ANSI that the American requirements for due process, consensus, and other criteria for approval have National been met by the standards developer. Consensus is esta blished wh en, in the jud gement of th e ANSI Boar d of Standard Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views an d objections be considered, and that a co ncerted effort be made towards their resolution. The use of Amer ican Nation al Stan dards is comp letely vo luntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circ umstances give an inte rpretation of any A merican National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Sta ndards Institute. Re quests for interpretations should be addressed to the secretariat or spon sor whose na me ap pears on the title page of this standard.
    [Show full text]
  • SUT Presentation CRA Hyperbaric Welding
    HYPERBARIC WELDING FOR CORROSION RESISTANT ALLOY PIPELINE REPAIR Sophie Yin | SUT INTRODUCTION Disclaimer and important notice This presentation contains forward looking statements that are subject to risk factors associated with oil and gas businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to: price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimates, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory developments, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates. References to “Woodside” may be references to Woodside Petroleum Ltd. or its applicable subsidiaries. 2 Overview Topics Answer the following questions 1. Manual Corrosion Resistant 1. Why investigate hyperbaric welding for CRA Alloy (CRA) hyperbaric welding pipeline repair? 2. Pipeline repair strategy 2. How is a manual hyperbaric CRA weld executed? 3. Hyperbaric welding procedure qualification Summary / Conclusions Questions 3 Why investigate hyperbaric welding for CRA pipeline repair CRA Clad and Lined Linepipe + Both have 3 mm CRA layer inside carbon steel + Metallurgically bonded (clad) • CRA plate metallurgically bonded to CS plate • Plate to
    [Show full text]
  • Underwater Welding Techniques
    Esam F. Alajmi et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 2, ( Part -3) February 2017, pp.14-17 RESEARCH ARTICLE OPEN ACCESS Underwater Welding Techniques Esam F. Alajmi *, Ahmad A. Alqenaei ** *( The Public Authority for Applied Education and Training , Email: [email protected] ) ** (The Public Authority for Applied Education and Training, Email: [email protected] ) ABSTRACT Welding demand in offshore and marine applications is increased with the increasing in oil and gas activities as well as increasing in the marine transportation and industrial applications. Applications of underwater welding well be increased in Kuwait in the coming years due to the strategic directive of the country toward starting the offshore oil and gas exploration and production, and the increase in marine transportation projects. Therefore, there is a need to understand the concept of underwater welding and different techniques used in the market. In this paper, a brief description of the different commercial underwater techniques will be presented taking into account showing detailed description of a few advanced welding techniques. I. INTRODUCTION because of electrical safety and difficulty in The increasing demand for oil and gas has maintaining an arc underwater. led to increase the offshore oil and gas activities and to move the exploration into the deep water. Classification of Underwater Welding The desire to build, maintain and repair offshore Underwater welding can be divided into two main structures has brought the need for underwater types: welding. Underwater welding is the process of 1. Wet Welding welding at elevated pressures, normally 2.
    [Show full text]