4.3.3 Diffusion of Lansoprazole from Surface of Chewing Gums (L Gums)

Total Page:16

File Type:pdf, Size:1020Kb

4.3.3 Diffusion of Lansoprazole from Surface of Chewing Gums (L Gums) University of Huddersfield Repository Bahl, Paul Development of Medicated Chewing Gum Formulations for the Delivery of a Poorly Soluble Drug Original Citation Bahl, Paul (2015) Development of Medicated Chewing Gum Formulations for the Delivery of a Poorly Soluble Drug. Doctoral thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/25435/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ DEVELOPMENT OF MEDICATED CHEWING GUM FORMULATIONS FOR THE DELIVERY OF A POORLY SOLUBLE DRUG PAUL BAHL A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Huddersfield in collaboration with Revolymer® 2015 1 I can do all things through Christ who strengthens me... Philippians IV.XIII 2 Copyright statement i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right to use such copyright for any administrative, promotional, educational and/or teaching purposes. ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made. iii. The ownership of any patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions 3 Dedications and Acknowledgements I would like to dedicate this thesis to my beautiful mother; Kamla Masih Bahl whose continued love, faith, prayers and words of inspiration kept me strong throughout the process and pushed me to succeed. I would like to acknowledge the patience and support of all my family and friends (including my brother Ranjeev, sister Neelam, twin brother Robert and my loyal dog Samson) who have all supported me through my sacrifices. I would like to express my sincere appreciation for the guidance and support of my research supervisors Prof. Barbara Conway and Dr. Vicky Osborne whose expertise, understanding and patience helped me in my academic journey. I also wish to thank my colleagues in the laboratory who supported me in the experimental phases (particularly the technicians), all my university colleagues and all the staff at Revolymer® who showed me support. Lastly I would like to acknowledge the support of the EPSRC and Revolymer® which made it possible for me to complete this work. 4 Abstract The concept of chewing gum for medical purposes provides discrete, convenient administration, the potential for buccal absorption and the avoidance of first pass metabolism or gastrointestinal degradation. This work contributes to the limited information available on the release of poorly soluble drugs from medicated chewing gum formulations. Lansoprazole was chosen as a model drug due to its poor solubility and instability (under acidic conditions), thus a chewing gum formulation would be of particular benefit avoiding gastrointestinal degradation. The solubility and stability of lansoprazole in artificial saliva was found to be dependent on the pH of the solution. An increase in pH caused an increase in solubility with a significant increase between pH 9 and pH 10. At pH 6, concentrations decreased over time confirming the acid instability of lansoprazole. The use of cyclodextrins as solubilisers and stabilisers for lansoprazole were investigated; complexed lansoprazole (with Mβ-CD, 1:1) resulted in a 9 fold increase in solubility compared to free lansoprazole and remained stable at pH 6. Chewing gum formulations incorporating lansoprazole were prepared and the following excipients were investigated: Revolymer‟s® hydrophilic polymer Rev7, buffering excipients and complexed lansoprazole (with Mβ-CD, 1:1). Drug diffusion from gum surfaces was found to be limited, highlighting the need for effective mastication to ensure the timely release of the drug. In vitro release was evaluated using the EP approved masticator. Various parameters were investigated including: the type of dissolution medium, pH, chew rate and sampling and replacement volumes. Significant differences in release after 30 minutes mastication were found for gums containing Rev7 and potassium carbonate (both of which contributed to increasing the hydrophilic capacity of the gum). These gums were also softer than other formulations due to a plasticising effect on the gum base elastomer resulting in softer, less cohesive gums. Complexation was not found to have an impact on in vitro drug release from gums. The study also assessed the buccal absorption of free lansoprazole and complexed lansoprazole (with Mβ-CD, 1:1) using porcine buccal mucosae. The highest partitioning coefficient was observed for free lansoprazole at pH 6.8 due to a lower ionised fraction in combination with a lower molecular weight. Complexed lansoprazole had the highest drug flux but also had the paradoxical effect of decreasing the permeability coefficient. Overall the study contributed to increasing the understanding of factors governing the release of a poorly soluble and unstable API, lansoprazole, from a medicated chewing gum formulation. The optimised formulation would contain lansoprazole, 8 % Rev7 and potassium carbonate to provide the maximum release of drug from the gum and also facilitate buccal absorption. 5 Table of Contents Chapter One: Introduction .......................................................................................... 20 1.1 Oral drug delivery route ................................................................................................... 21 1.1.1 Drug absorption through the oral mucosa ............................................................... 21 1.2 History of chewing gums ................................................................................................. 22 1.3 Chewing gum as a drug delivery system .......................................................................... 23 1.4 Formulation of medicated chewing gums ........................................................................ 24 1.4.1 Conventional/ kettle fusion manufacturing method ................................................ 25 1.4.2 Direct compression method ..................................................................................... 26 1.4.3 Composition of chewing gums ................................................................................ 27 1.5 Additional health benefits with respect to chewing gum ................................................. 28 1.6 Examples of medicated chewing gums ............................................................................ 29 1.6.1 Nicotine replacement gums ..................................................................................... 30 1.6.1.1 Taste masking using buffering excipients ....................................................... 32 1.7 Controlling release from chewing gums .......................................................................... 32 1.7.1 In vitro release from chewing gums ........................................................................ 34 1.7.2 Drug release and absorption from chewing gums ................................................... 35 1.8 Rev7 polymer in chewing gum formulations ................................................................... 37 1.8.1 Structural chemistry of Rev7 polymer ..................................................................... 38 1.8.2 Revolymer® gum base composition ........................................................................ 39 1.9 Lansoprazole .................................................................................................................... 39 1.9.1 Pathophysiology of ulcers ....................................................................................... 42 1.9.2 Epidemiology, prevalence and indications of ulcers ............................................... 42 1.9.3 Mechanism of action of lansoprazole ...................................................................... 43 1.9.4 Pharmacokinetics of lansoprazole ........................................................................... 44 1.9.5 Side effects of
Recommended publications
  • Process for the Preparation of Gum Base for Chewing Gum and a Product Prepared by the Process
    iiililiili^ @ EuroPean Patent Office ^-S Office europeen des brevets (fi) Publication number: 0 494 902 B1 @ EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification : @ Int. CI.5 : A23G 3/30 24.11.93 Bulletin 93/47 (21) Application number : 90914514.6 (22) Date of filing : 12.09.90 @ International application number : PCT/DK90/00234 (87) International publication number : WO 91/03945 04.04.91 Gazette 91/08 (54) PROCESS FOR THE PREPARATION OF GUM BASE FOR CHEWING GUM AND A PRODUCT PREPARED BY THE PROCESS. The file contains technical information @ Proprietor : VECATA A/S submitted after the application was filed and DANDYVEJ 1 not included in this specification DK-7100 Vejle (DK) (30) Priority : 22.09.89 DK 4689/89 (72) Inventor : NIELSEN, Hans, Erik Skolesvinget 31 DK-8700 Horsens (DK) @ Date of publication of application : 22.07.92 Bulletin 92/30 (74) Representative : Zeuthen-Aagaard, Henrik et al (45) Publication of the grant of the patent : Chas. Hude, 33 H.C. Andersens Boulevard 24.11.93 Bulletin 93/47 DK-1553 Copenhagen V (DK) @ Designated Contracting States : AT BE CH DE ES FR GB IT LI LU NL SE @ References cited : WO-A-89/05590 WO-A-90/06689 AU-B- 500 229 DK-A- 71 829 GO US-A- 4 824 680 CM O o> q Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Q. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Formulation and Characterization of Medicated Chewing Gums of Dextromethorphan Hydrobromide Swamy N.G.N.*, Shilpa P., Abbas Z
    FORMULATION AND CHARACTERIZATION OF MEDICATED CHEWING GUMS OF DEXTROMETHORPHAN HYDROBROMIDE Swamy N.G.N.*, Shilpa P., Abbas Z. (Received 01 June 2012) (Accepted 26 November 2012) ABSTRACT Chewing gums are mobile drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via buccal route. Dextromethorphan hydrobromide chewing gum formulations were made employing Pharmagum M as the base with an aim to overcome the first- pass effect, reducing the risk of overdosing, ease of administration and for achieving faster systemic absorption. Dextromethorphan hydrobromide was further transformed into spray dried form and incorporated into Pharmagum M base with the object of solubility enhancement and masking the bitter taste of the drug. The prepared medicated chewing gums were evaluated for various precompression and postcompression parameters. The in vitro drug release profiles were carried out employing Erweka DRT chewing apparatus. It was observed that increasing the chewing gum base concentration resulted in a decreased drug release profile. The drug in the spray dried form revealed improved performance in comparison to the directly contained drug. The drug release data were fitted into various kinetic models. It was observed that the drug release was matrix diffusion controlled and revealed a non-Fickian drug release mechanism. Accelerated stability studies were carried out on select formulations as per ICH guidelines. The formulations were found to be stable in respect to physical parameters and no significant deviations were seen in respect to in vitro drug release characteristics. Keywords : Medicated Chewing gums, Dextrome- gum formulations have been evaluated for several thorphan hydrobromide, Pharmagum M, Spray drying, drugs including aspirin3, 4, verapamil5, nicotine6, 7, Erweka DRT chewing apparatus miconazole8, nystatin9, chlorhexidine gluconate10, promethazine hydrochloride11 and many more.
    [Show full text]
  • ©[2010] Diana Y. Lee ALL RIGHTS RESERVED
    ©[2010] Diana Y. Lee ALL RIGHTS RESERVED EFFECTS OF DRYING METHODS ON THE STABILITY OF 2,4-DECADIENAL ENCAPSULATED IN AN O/W NANOEMULSION By DIANA Y. LEE A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Masters in Science Graduate Program in Food Science Written under the direction of Qingrong Huang and approved by ________________________ ________________________ ________________________ New Brunswick, New Jersey [May, 2010] ABSTRACT OF THE THESIS Effects of drying methods on the stability of 2,4-decadienal encapsulated in an o/w nanoemulsion By DIANA Y. LEE Thesis Director: Qingrong Huang The flavor industry has utilized many encapsulation methods in order to provide customers with stable flavors that maintain their integrity during various processing procedures. Savory flavors in particular have a unique hurdle to overcome, as they are subject to extreme temperature abuse, such as frying, baking, sautéing, and boiling. Highly sensitive compounds such as 2,4-Decadienal, that provide distinct characteristics to savory foods such as french fries and chicken, are particularly susceptible to change during these processes. Using oil in water nanoemulstions of diameters between 20-800 nanometers as well as various drying methods to encapsulate volatile compounds have been an exciting avenue for flavor encapsulation. The present research will focus on the stability of 2,4- Decadienal using oil in water nanoparticles of medium chain triglycerides (Neobee) in addition to multilayer encapsulation; spray drying and freeze drying. ii A slurry of 2,4-decadienal, maltodextrin, gum, Neobee and water were homogenized via high speed at 13,500 rpm and high pressure under 1500 bar to create a stable nanoemulsion.
    [Show full text]
  • CHEWING GUM DIGEST Recommended Year Levels: 5-12
    TEACHERS NOTES CHEWING GUM DIGEST Recommended year levels: 5-12 MYTH Does chewing gum take seven years to digest? OBJECTIVES 1. Investigate the digestive process of humans. 2. Determine whether chewing gum is digestible. BACKGROUND INFORMATION Humans have been chewing gum for thousands of years with archeologists finding gum dating back 9000 years. This early gum was made of black tar and had bite impressions from a child aged between 6 and 15 years old. These days, chewing gum has five basic ingredients including the gum base; softeners (usually vegetable oils); flavours; sweeteners; and corn syrup. Your mouth’s saliva dissolves all of these ingredients except the gum base. The gum base is a mixture of elastomers, resins, fats, emulsifiers and waxes and is pretty much indigestible. Your stomach is unable to break down the gum in the way it would other foods however your digestive system can still cope with it. Suprisingly we eat a few things that can’t be fully digested. The gut just keeps them moving along through the intestines until they come out the other end. There is however a handful of cases whereby gum has caused an obstruction of the gastrointestinal tract in children. In the Journal of Paediatrics Dr David Milov published a paper entitled “Chewing Gum Bezoars of the Gastrointestinal Tract”. This paper indentifies 3 of Dr Milov’s patients (aged 1 ½ to 4 ½) who developed obstruction of the gut from swallowing gum. The 1 ½ year old was a regular user and swallower of gum and had also swallowed four coins. The other two children had a long history of swallowing gum of up to seven pieces a day.
    [Show full text]
  • Chewing Gum Practice Among Dental Students R
    Research Article Chewing gum practice among dental students R. Balaji, Dhanraj Ganapathy, Ashish. R. Jain* ABSTRACT Background: Oral health is an essential component of general health and overall well-being of an individual. Oral cavity and its surrounding structures that are free of any diseases are indicative of good oral health. Chewing gum increases salivary flow, raises the pH of plaque and saliva, reduces oral malodor, and is effective for stain removal. Sugar-free gums are simple, inexpensive, and are readily available. Aim: This study aims to evaluate the chewing gum practice among dental students. Materials and Methods: The study group comprises 100 individuals in the age group of 17–26 from both genders. A questionnaire is pertaining to chewing gum practice among dental students. The age and gender are noted along with the type of chewing gums used, frequency and duration are also taken into account. Results: It was found that 50% of population used sugar free and other used non-sugar-free chewing gums, and the frequency was found to be 20% of people used once a day, 40% used twice, and 40% used more than thrice a day with duration of 20% of the people chewed for 2 min, 40% for 2–5 min, 20% for 5–10 min, and 20% for >10 min. Conclusion: The practice of chewing gum among dental students is moderately prevalent and no preference was observed between sugar-free and non-sugar-free chewing. KEY WORDS: Cariogenic, Chewing gum, Dental plaque, Remineralization INTRODUCTION however, gum chewing stimulates the flow of saliva, thus strengthening its protective properties, that is, The use of non-food items for pleasure has a long its buffering capacity, mineral supersaturation, and history.
    [Show full text]
  • Encapsulation of Gases in Powder Solid Matrices and Their Applications: a Review
    ÔØ ÅÒÙ×Ö ÔØ Encapsulation of gases in powder solid matrices and their applications: a review Thao M. Ho, Tony Howes, Bhesh R. Bhandari PII: S0032-5910(14)00265-4 DOI: doi: 10.1016/j.powtec.2014.03.054 Reference: PTEC 10142 To appear in: Powder Technology Received date: 4 December 2013 Revised date: 18 March 2014 Accepted date: 21 March 2014 Please cite this article as: Thao M. Ho, Tony Howes, Bhesh R. Bhandari, Encapsulation of gases in powder solid matrices and their applications: a review, Powder Technology (2014), doi: 10.1016/j.powtec.2014.03.054 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Encapsulation of gases in powder solid matrices and their applications: a review Thao M. Hoa, Tony Howes b, Bhesh R. Bhandaria * a School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia b School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia * Corresponding author. Address: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia. Tel.: +61 7 33469192; fax: +61 7 33651177. E-mail address: [email protected] (B.R.
    [Show full text]
  • Emulsifiers in Chewing
    Emulsifiers in Chewing Gum Birgitte Mikkelsen Danisco Ingredients he habit of chewing for the sake of chewing is The most well known is the stabilization of water-in-oil Tapparently as old as mankind. Around the world and oil-in-water emulsions by the formation of an emul- there have been several archaeological finds of chewed sifier film at the interface between water and oil. In materials (e.g., pine tree resins) dating back to prehis- emulsion systems the emulsifiers also act as destabiliz- toric time. Modern chewing gum dates back to the 19th ing agents by replacing the protein at the interface.This century and was in the beginning based on either coag- is an important phenomenon in whippable emulsions ulated tree sap or paraffin wax.Today, natural sources such as ice cream and imitation dairy creams. such as chicle and jetulong are rarely used for gum In bakery products the surface active lipids interact base. Instead, synthetic polymers such as styrene-buta- with both the starch and the protein fractions in the flour, diene rubber, polyisobutylene and isobutylene-iso- which results in prolonged shelf life due to retardation prene are used for giving chewing gum the elastic, of the retrogradation of the starch and bigger volume resilient chew characteristics. Making modern chewing due to better entrapment of CO2 in the dough. gum from either synthetic or natural rubbers makes the Addition of emulsifiers to fats modifies the crystal for- emulsifiers a vital ingredient, giving the final gum a mation of fat-containing foodstuff. Examples are pre- softer and more pleasant chew.
    [Show full text]
  • Capiva® C 03 Enables Depositing of Chewing Gum
    CREATING TOMORROW’S SOLUTIONS INFO SHEET I CHEWING GUM I CAPIVA® C 03 CAPIVA® C 03 ENABLES DEPOSITING OF CHEWING GUM Unlimited Shapes: Depositing Technology Enables New Variety of Shapes for Chewing Gum Chewing gum is confectionery made Use of Existing Candy Processes and Production Process by an extrusion process. As a result, Equipment the shapes available on the market CAPIVA® C 03 is compatible with conven- Cooking have not significantly changed in recent tional candy processes and equipment. decades. WACKER has developed a For small-scale production, an open system new compound to deposit chewing using a cooking pot, heating plate and CAPIVA® C 03 gum. Using this technology, it is pos- blade agitator can be used. For larger quan- sible to make an unprecedented variety tities, batch cookers are a good option. of shapes. Plus, it is relatively easy to For continuous cookers, addition of the Mixing, stirring clean the equipment, since CAPIVA® melted premix after the cooking stage is C 03 can be removed by just using hot recommended. Molding techniques can water or a 1% alkaline solution. be used with existing molding equipment, such as mogul lines, which are normally Unlimited Shapes used to produce jellies. Deposition molding CAPIVA® C 03 represents a completely new way to form chewing gum using de- Compatible with Sugar and Sugar-Free positing technology. This novel process Systems increases the creativity of confectionery CAPIVA® C 03 is compatible with sugar- manufacturers to produce innovative and polyol-based (sugar-free) systems. Packaging chewing gum which can be deposited in Detailed guide formulations and step-by- different materials such as starch powder, step instructions are available on request.
    [Show full text]
  • Chewing Gum for Postoperative Recovery of Gastrointestinal Function (Review)
    Cochrane Database of Systematic Reviews Chewing gum for postoperative recovery of gastrointestinal function (Review) Short V, Herbert G, Perry R, Atkinson C, Ness AR, Penfold C, Thomas S, Andersen HK, Lewis SJ Short V, Herbert G, Perry R, Atkinson C, Ness AR, Penfold C, Thomas S, Andersen HK, Lewis SJ. Chewing gum for postoperative recovery of gastrointestinal function. Cochrane Database of Systematic Reviews 2015, Issue 2. Art. No.: CD006506. DOI: 10.1002/14651858.CD006506.pub3. www.cochranelibrary.com Chewing gum for postoperative recovery of gastrointestinal function (Review) Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 6 OBJECTIVES ..................................... 7 METHODS ...................................... 7 Figure1. ..................................... 9 RESULTS....................................... 11 Figure2. ..................................... 13 Figure3. ..................................... 14 Figure4. ..................................... 17 Figure5. ..................................... 18 Figure6. ..................................... 19 Figure7. ..................................... 20 Figure8. ..................................... 21 Figure9. ..................................... 22 Figure10. ....................................
    [Show full text]
  • Medicated Chewing Gum- a Mobile Oral Drug Delivery System Kinjal R
    International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.6, No.1, pp 35-48, Jan-March 2014 Medicated Chewing Gum- A Mobile Oral Drug Delivery System Kinjal R. Shah 1,2 *, Tejal A. Mehta 2 1Department of Pharmaceutics, Arihant School of Pharmacy and BRI, Gandhinagar, Gujarat, India. 2Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India. *Corres. author: [email protected] Contact no.- 09978906747 Abstract: Oral drug delivery system is highly accepted amongst patients. In present era many research and technological advancements are made in novel oral drug delivery. Chewing gum incorporated with various types of active ingredient is one of such example of novel drug delivery. Medicated chewing gum (MCGs) is effective locally as well as systemically in dental caries, smoking cessation, pain, obesity, xerostoma, acidity, allergy, nausea, motion sickness, diabetes, anxiety, dyspepsia, osteoporosis, cough, common cold etc. Medicated chewing gums are used not only for special population groups with swallowing difficulties such as children and the elderly, but also popular amongst the young generation. Thus chewing gum proves to be an excellent drug delivery system for self-medication as it is convenient and can be administered discretely without the aid of water. The present review article has nicely detailed on history, advantages, disadvantages, formulation, manufacturing process, limitation of manufacturing process, factors affecting release of active substance, quality control tests for chewing gum, significance, stability study and future trends, patent filled on MCGs Keywords: Medicated chewing gum, gum base, conventional manufacturing method, dental caries . INTRODUCTION Chewing gum can be used as a convenient modified release drug delivery system.
    [Show full text]
  • The Deferences of Xylitol Chewing Gum and Mouthwash on Xerostomia in Chronic Renal Failure Patients
    Proceedings of the International Conference on Nursing and Health Sciences Volume 1 No 1, November 2020 http://jurnal.globalhealthsciencegroup.com/index.php/PICNHS Global Health Science Group THE DEFERENCES OF XYLITOL CHEWING GUM AND MOUTHWASH ON XEROSTOMIA IN CHRONIC RENAL FAILURE PATIENTS Hendra Adi Prasetya1*, Ratna Sitorus2, Lestari Sukmarini2 1Sekolah Tinggi Ilmu Kesehatan Kendal, Jln Laut 31A Kendal, Jawa Tengah, Indonesia 51311 2Universitas Indonesia, Jl. Margonda Raya, Pondok Cina, Depok, Jawa Barat, Indonesia 16424 *[email protected] ABSTRACT Increased blood urea or uremic levels often experienced by patients with Chronic Renal Failure can lead to decreased salivary secretion and xerostomia. Xerostomia is a common symptom of difficulty in chewing, swallowing, decreased taste, speaking, increased oral mucosal lesions, and limited tolerance of dentures. This problem will have an impact on increasing thirst sensations that affect the patient to increase fluid intake that leads to an increase Interdialytic Weight Gain and lead to decreased Quality of Life patients. The aim of this research was to know the effect of chewing gum xylitol and mouthwash on xerostomia in chronic renal failure patients. The design was quasi experiment involving 30 respondents selected by consecutive sampling technique and divided into two groups. Xerostomia measured four times in each session of hemodialysis. The results of study showed there was no differences in the four xerostomia measurements in both intervention groups with p-value> 0.05. However, it is seen from the patient's development chart that the xylitol gum intervention reduced xerostomia faster than the mouthwash intervention. The conclusion of this research was xylitol chewing gum and mouthwash had same effect to reduce xerostomia in patients with chronic renal failure.
    [Show full text]
  • Synthesis and Properties of Amphiphilic Hyperbranched Poly(Dimethylsiloxane) Possessing Hydrophilic Terminal Group
    Polymer Journal, Vol.34, No. 10, pp 755—760 (2002) Synthesis and Properties of Amphiphilic Hyperbranched Poly(dimethylsiloxane) Possessing Hydrophilic Terminal Group † Kyung-Mee KIM, Mitsutoshi JIKEI, and Masa-aki KAKIMOTO Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152–8552, Japan (Received May 13, 2002; Accepted August 26, 2002) ABSTRACT: The amphiphilic hyperbranched poly(dimethylsiloxane) (HPDMS) bearing dimethylamine groups on the terminal position was synthesized and characterized. The obtained polymer exhibited low viscosity, and good solu- bility in ether, THF, and acidic aqueous solution. In the acidic aqueous polymer solution, UV-vis absorption and photo luminescence of water-insoluble chromic compounds such as diphenylhexatriene were measured in order to investigate solvating power of hyperbranched poly(dimethylsiloxane)s. It has turned out from the UV absorbance data that a HPDMS solubilized about five molecules of 1,6-diphenylhexatriene. KEY WORDS Amphiphilc Polymer / Hyperbranched Polymer / PDMS / Poly(dimethylsiloxane) / Hydrophilic / Hydrophobic / It is well known that silicon-based polymers, partic- of hyperbranched poly(dimethylsiloxane)s (HPDMSs) ularly polysiloxanes, have unique properties that lead from a novel AB2 type monomer, bis(dimethyl- to a wide range of applications in coatings, adhesives, diethylaminosiloxy)methylsiloxydimethylsilanol.24 cosmetics, and surfactants.1–3 Thus, the preparation The HPDMS end-capped with dimethylphenylsilanol of their hyperbranched
    [Show full text]