Relevance of Proteins C and S, Antithrombin III, Von Willebrand

Total Page:16

File Type:pdf, Size:1020Kb

Relevance of Proteins C and S, Antithrombin III, Von Willebrand Bone Marrow Transplantation, (1998) 22, 883–888 1998 Stockton Press All rights reserved 0268–3369/98 $12.00 http://www.stockton-press.co.uk/bmt Relevance of proteins C and S, antithrombin III, von Willebrand factor, and factor VIII for the development of hepatic veno-occlusive disease in patients undergoing allogeneic bone marrow transplantation: a prospective study J-H Lee1, K-H Lee1, S Kim1, J-S Lee1, W-K Kim1, C-J Park2, H-S Chi2 and S-H Kim1 Division of Oncology-Hematology, Departments of 1Medicine and 2Clinical Pathology, Asan Medical Center, University of Ulsan, Seoul, Korea Summary: ted venules. Factors that enhance hypercoagulability fol- lowing BMT may have a pathogenetic role in the Factors that enhance hypercoagulability following BMT development of VOD.4 In fact, a decrease in the natural may have a pathogenetic role in VOD. To investigate anticoagulants such as protein C,5,6 protein S5 and the relevance of hemostatic parameters for the develop- antithrombin III (AT III)6 as well as an increase in plasma ment of VOD, we prospectively measured protein C, fibrinogen4 and von Willebrand factor (vWF)7 have been protein S, antithrombin III (AT III), von Willebrand observed after BMT. Several investigators have reported factor, and factor VIII in 50 consecutive patients that these hemostatic derangements may have pathogenetic undergoing allogeneic BMT. Each parameter was relevance for the occurrence of VOD.8–10 determined before conditioning, on day 0 of BMT and In this study, we prospectively measured the levels of weekly for 3 weeks, and patients were monitored pro- protein C, protein S (total and free), AT III, vWF and factor spectively for the occurrence of VOD. VOD occurred in VIII in 50 consecutive patients undergoing allogeneic -patients at median post-BMT day 8.5 (range, day ؊2 BMT. We investigated the predictive value of these hemo 26 to 17). Thirteen patients had mild, 10 had moderate and static parameters for the development of VOD after allo- three had severe VOD. No coagulation parameters were geneic BMT. Changes in the hemostatic parameters were significantly different at the baseline or on day 0 of correlated with subsequent clinical course particularly with BMT between patients with no/mild VOD and moderate regard to the development and severity of VOD. to severe VOD. On day 7 and thereafter, levels of pro- tein C and AT III were significantly lower in patients with moderate to severe VOD when compared to Patients and methods patients with no/mild VOD. Levels of protein C and AT III decreased before the clinical onset of VOD in Patients patients with moderate to severe VOD. Early post-BMT reduction of these parameters may indicate the develop- All patients who underwent allogeneic BMT in the Asan ment of moderate to severe VOD. Medical Center from October 1995 to February 1998 were Keywords: BMT; VOD; coagulation parameters enrolled into the study. The following preparative regimens were used: BUCY (busulfan 16 mg/kg and cyclophospham- ide 120 mg/kg) for leukemia/MDS, BUCY plus etoposide for CML in blastic phase, BUCY plus melphalan for neuro- Veno-occlusive disease (VOD) of the liver is a major early blastoma, and CY-ATG (cyclophosphamide 200 mg/kg and complication of bone marrow transplantation (BMT).1,2 antithymocyte globulin 90 mg/kg) for SAA. All patients Typical clinical features of VOD include hyperbilirubin- received cyclosporine and methotrexate for prophylaxis of emia, painful hepatomegaly and fluid retention. Histologi- graft-versus-host disease (GVHD). For the prevention of cally, VOD is characterized by deposition of factor VIII VOD, heparin was administered to those patients who and fibrinogen in the subenthothelial zones of affected ven- received the BUCY-based regimen, at a rate of 100 ules and by necrosis of hepatocytes in zone 3 of the liver units/kg/day from day Ϫ7 to day 30. Heparin was discon- acinus.3 Endothelial damage induced by high-dose chemo- tinued if there was clinically significant bleeding or the PTT radiation therapy is believed to be the key event in the exceeded 1.2 times the upper limit of control. pathogenesis of VOD. This endothelial injury triggers the coagulation cascade, induces thrombosis of the hepatic ven- ules and eventually leads to fibrous obliteration of the affec- Diagnosis of hepatic VOD All enrolled patients were monitored prospectively for the Correspondence: J-H Lee, Department of Medicine, Asan Medical Center, occurrence of VOD. A diagnosis of VOD was made accord- 11 388-1 Poongnap-dong, Songpa-ku, Seoul 138-040, Korea ing to clinical criteria, as having two of the following Received 3 April 1998; accepted 20 June 1998 before day 20 post-transplant: (1) hyperbilirubinemia Coagulation parameters in VOD after allogeneic BMT J-H Lee et al 884 (bilirubin у2.0 mg/dl or 34.2 ␮mol/l), (2) painful hepato- in one. At the time of BMT 13 patients had high-risk fea- megaly, and (3) unexplained weight gain (Ͼ2% from tures: AML in second remission (two patients), CML in baseline), no other explanation for these signs and symp- blastic phase (one patient), refractory anemia of excess toms being present at the time of diagnosis. Severity of blasts (RAEB) (two patients), RAEB in transformation (one VOD was classified into mild, moderate or severe.1 Patients patient), chemotherapy-resistant neuroblastoma (one who met the criteria for VOD, but who were not treated patient), and heavily transfused SAA (six patients). Forty- and whose illness was self-limited, were considered to have seven patients received allogeneic marrow grafts from mild VOD. Those whose VOD resolved but who received HLA-identical siblings, one patient from an HLA-mis- treatment such as diuretics for fluid retention or narcotic matched sibling, and two from HLA-phenotypically ident- analgesics for painful hepatomegaly, were considered to ical unrelated donors. Heparin was administered for have moderate VOD. Patients who died of VOD or whose prophylaxis of VOD in 40 patients. In 24 patients, heparin VOD did not resolve by 100 days post-transplant were con- was discontinued before day 10 post-transplant because of sidered to have severe VOD. Onset of VOD was defined PTT prolongation and/or evidence of bleeding. as the day on which total serum bilirubin exceeded 2.0 Of the 50 patients enrolled, 26 developed VOD (52.0%). mg/dl (34.2 ␮mol/l) or body weight increased more than Table 1 illustrates the patient characteristics which were 2% above the baseline. putative risk factors for the development of VOD. In univa- riate analysis, male sex (P = 0.049) and a larger amount of red cell transfusion prior to BMT (P = 0.048) were signifi- Assays of hemostatic parameters cant risk factors for VOD. However, these factors lost their Changes in protein C, protein S (total and free), AT III, significance after multivariate analysis using a multiple vWF antigen and factor VIII were monitored in all enrolled logistic regression model (P = 0.054 for male sex, P = patients. Each hemostatic parameter was determined before 0.390 for red cell transfusion). preparative chemotherapy, on the day of marrow infusion (day 0), and on days 7, 14 and 21. Protein C was measured Clinical features of the patients with VOD by a commercially available enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies (Asserachrom- Of 26 patients with VOD, 13 (50.0%) had mild, 10 (38.0%) Protein C; Stago, Asnie`res, France). Protein S (total and had moderate and three (12.0%) had severe VOD. Seven- free) and vWF antigen were also determined by a commer- teen patients (65.4%) satisfied all three clinical criteria for cially available ELISA using monoclonal antibodies VOD. The frequencies of clinical features associated with (Asserachrom-Total Protein S, Asserachrom-Free Protein VOD were as follows: unexplained weight gain in 25 S, Asserachrom-vWF; Stago). Antithrombin III was meas- (96.2%), hyperbilirubinemia in 23 (88.5%), painful hepato- ured by chromogenic assay (Stachrome-AT III; Stago). megaly in 21 (80.8%), ascites in 13 (50%), peripheral Factor VIII was measured using Stago-Deficient VIII edema in four (15.4%) and azotemia in four (15.4%). The (Stago). median onset of VOD was day 8.5 (range, day Ϫ2today 17) in all patients with VOD, day 11 (range, day 1 to day 17) in patients with mild VOD, and day 8 (range, day Ϫ2 Statistical analysis to day 13) in patients with moderate to severe VOD. The Individual characteristics were analyzed using the ␹2 test median duration of VOD was 27 days (range, 10 to 103 for association with development of VOD. The multiple days). All patients with VOD received supportive care only, logistic regression model was used for subsequent multi- without specific treatment such as recombinant tissue plas- variate analysis. The one-way ANOVA test was used to minogen activator. Clinical outcomes according to the analyze differences in the values of each hemostatic para- occurrence and severity of VOD were analyzed in terms meter at different times between patients with no VOD, of engraftment probabilities, transfusion requirements, and mild VOD and moderate to severe VOD. Changes of each mortality at day 100 post-transplant (Table 2). Platelet hemostatic parameter from the baseline values were ana- engraftment, which was defined as a platelet count of over lyzed using the paired t-test. Probabilities of engraftment 20 × 106/l without platelet transfusions, was significantly and survival were calculated using the Kaplan–Meier slower in patients with VOD and severity of VOD corre- method and compared by log-rank analysis. lated with degree of delay in platelet engraftment (P = 0.005). Patients with VOD also required a larger amount of platelet transfusion (P = 0.011).
Recommended publications
  • MONONINE (“Difficulty ® Monoclonal Antibody Purified in Concentrating”; Subject Recovered)
    CSL Behring IU/kg (n=38), 0.98 ± 0.45 K at doses >95-115 IU/kg (n=21), 0.70 ± 0.38 K at doses >115-135 IU/kg (n=2), 0.67 K at doses >135-155 IU/kg (n=1), and 0.73 ± 0.34 K at doses >155 IU/kg (n=5). Among the 36 subjects who received these high doses, only one (2.8%) Coagulation Factor IX (Human) reported an adverse experience with a possible relationship to MONONINE (“difficulty ® Monoclonal Antibody Purified in concentrating”; subject recovered). In no subjects were thrombo genic complications MONONINE observed or reported.4 only The manufacturing procedure for MONONINE includes multiple processing steps that DESCRIPTION have been designed to reduce the risk of virus transmission. Validation studies of the Coagulation Factor IX (Human), MONONINE® is a sterile, stable, lyophilized concentrate monoclonal antibody (MAb) immunoaffinity chromatography/chemical treatment step and of Factor IX prepared from pooled human plasma and is intended for use in therapy nanofiltration step used in the production of MONONINE doc ument the virus reduction of Factor IX deficiency, known as Hemophilia B or Christmas disease. MONONINE is capacity of the processes employed. These studies were conducted using the rel evant purified of extraneous plasma-derived proteins, including Factors II, VII and X, by use of enveloped and non-enveloped viruses. The results of these virus validation studies utilizing immunoaffinity chromatography. A murine monoclonal antibody to Factor IX is used as an a wide range of viruses with different physicochemical properties are summarized in Table affinity ligand to isolate Factor IX from the source material.
    [Show full text]
  • Urokinase, a Promising Candidate for Fibrinolytic Therapy for Intracerebral Hemorrhage
    LABORATORY INVESTIGATION J Neurosurg 126:548–557, 2017 Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage *Qiang Tan, MD,1 Qianwei Chen, MD1 Yin Niu, MD,1 Zhou Feng, MD,1 Lin Li, MD,1 Yihao Tao, MD,1 Jun Tang, MD,1 Liming Yang, MD,1 Jing Guo, MD,2 Hua Feng, MD, PhD,1 Gang Zhu, MD, PhD,1 and Zhi Chen, MD, PhD1 1Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and 2Department of Neurosurgery, 211st Hospital of PLA, Harbin, People’s Republic of China OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fi- brinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH. RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH.
    [Show full text]
  • Protein C Deficiency
    Protein C deficiency Description Protein C deficiency is a disorder that increases the risk of developing abnormal blood clots; the condition can be mild or severe. Individuals with mild protein C deficiency are at risk of a type of blood clot known as a deep vein thrombosis (DVT). These clots occur in the deep veins of the arms or legs, away from the surface of the skin. A DVT can travel through the bloodstream and lodge in the lungs, causing a life-threatening blockage of blood flow known as a pulmonary embolism (PE). While most people with mild protein C deficiency never develop abnormal blood clots, certain factors can add to the risk of their development. These factors include increased age, surgery, inactivity, or pregnancy. Having another inherited disorder of blood clotting in addition to protein C deficiency can also influence the risk of abnormal blood clotting. In severe cases of protein C deficiency, infants develop a life-threatening blood clotting disorder called purpura fulminans soon after birth. Purpura fulminans is characterized by the formation of blood clots in the small blood vessels throughout the body. These blood clots block normal blood flow and can lead to localized death of body tissue ( necrosis). Widespread blood clotting uses up all available blood clotting proteins. As a result, abnormal bleeding occurs in various parts of the body, which can cause large, purple patches on the skin. Individuals who survive the newborn period may experience recurrent episodes of purpura fulminans. Frequency Mild protein C deficiency affects approximately 1 in 500 individuals. Severe protein C deficiency is rare and occurs in an estimated 1 in 4 million newborns.
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • Cutaneous Findings in Patients on Anticoagulants Caleb Creswell, MD Dermatology Specialists Disclosure Information
    Cutaneous findings in patients on Anticoagulants Caleb Creswell, MD Dermatology Specialists Disclosure Information • I have no financial relationships to disclose Objectives 1) Identify underlying causes of actinic or senile purpura 2) Recognize coumadin skin necrosis and understand proper treatment 3) Recognize heparin skin necrosis and understand that underlying HIT is often present Actinic (Senile) Purpura • Common on forearms of elderly individuals • Most important factor is chronic sun exposure – Thins dermal collagen and blood vessel walls • Anticoagulants may exacerbate but are rarely the main culprit Actinic Purpura Actinic Purpura Leukocytoclastic Vasculitis • Don’t mistake LCV for actinic purpura Ecchymoses • No topical agents have been shown to speed resorption of RBCs and hemosiderin • Pulsed-dye Laser can help Coumadin Induced Skin Necrosis • Coumadin: Occurs between 3-5 days after initiating therapy – Due to transient protein C deficiency – Increased risk with intrinsic protein C deficiency – Occurs in areas with significant adipose tissue – Treatment: Heparinize and continue coumadin Coumadin Induced Skin Necrosis Other Coumadin Skin Reactions • Extremely rare cause of morbilliform drug rash • Can cause leukocytoclastic vasculitis – Can occur weeks to months after starting medication Photo of Morbilliform CADR Leukocytoclastic Vasculitis Heparin Induced Skin Necrosis • Heparin: Occurs 1-14 days after starting – Often starts at injection site and spreads – Due to HIT Type II (Thrombocytopenia will be present) Heparin Induced
    [Show full text]
  • A Guide for People Living with Von Willebrand Disorder CONTENTS
    A guide for people living with von Willebrand disorder CONTENTS What is von Willebrand disorder (VWD)?................................... 3 Symptoms............................................................................................... 5 Types of VWD...................................................................................... 6 How do you get VWD?...................................................................... 7 VWD and blood clotting.................................................................... 11 Diagnosis................................................................................................. 13 Treatment............................................................................................... 15 Taking care of yourself or your child.............................................. 19 (Education, information, first aid/medical emergencies, medication to avoid) Living well with VWD......................................................................... 26 (Sport, travel, school, telling others, work) Special issues for women and girls.................................................. 33 Connecting with others..................................................................... 36 Can I live a normal life with von Willebrand disorder?............. 37 More information................................................................................. 38 2 WHAT IS VON WILLEBRAND DISORDER (VWD)? Von Willebrand disorder (VWD) is an inherited bleeding disorder. People with VWD have a problem with a protein
    [Show full text]
  • Fibrin Induces Release of Von Willebrand Factor from Endothelial Cells
    Fibrin induces release of von Willebrand factor from endothelial cells. J A Ribes, … , C W Francis, D D Wagner J Clin Invest. 1987;79(1):117-123. https://doi.org/10.1172/JCI112771. Research Article Addition of fibrinogen to human umbilical vein endothelial cells in culture resulted in release of von Willebrand factor (vWf) from Weibel-Palade bodies that was temporally related to formation of fibrin in the medium. Whereas no release occurred before gelation, the formation of fibrin was associated with disappearance of Weibel-Palade bodies and development of extracellular patches of immunofluorescence typical of vWf release. Release also occurred within 10 min of exposure to preformed fibrin but did not occur after exposure to washed red cells, clot liquor, or structurally different fibrin prepared with reptilase. Metabolically labeled vWf was immunopurified from the medium after release by fibrin and shown to consist of highly processed protein lacking pro-vWf subunits. The contribution of residual thrombin to release stimulated by fibrin was minimized by preparing fibrin clots with nonstimulatory concentrations of thrombin and by inhibiting residual thrombin with hirudin or heating. We conclude that fibrin formed at sites of vessel injury may function as a physiologic secretagogue for endothelial cells causing rapid release of stored vWf. Find the latest version: https://jci.me/112771/pdf Fibrin Induces Release of von Willebrand Factor from Endothelial Cells Julie A. Ribes, Charles W. Francis, and Denisa D. Wagner Hematology Unit, Department ofMedicine, University ofRochester School ofMedicine and Dentistry, Rochester, New York 14642 Abstract erogeneous and can be separated by sodium dodecyl sulfate (SDS) electrophoresis into a series of disulfide-bonded multimers Addition of fibrinogen to human umbilical vein endothelial cells with molecular masses from 500,000 to as high as 20,000,000 in culture resulted in release of von Willebrand factor (vWf) D (8).
    [Show full text]
  • Plasma Levels of Plasminogen Activator Inhibitor Type 1, Factor VIII
    Plasma Levels of Plasminogen Activator Inhibitor Type 1, Factor VIII, Prothrombin ,Activation Fragment 1؉2, Anticardiolipin and Antiprothrombin Antibodies are Risk Factors for Thrombosis in Hemodialysis Patients Daniela Molino,*,†,‡ Natale G. De Santo,* Rosa Marotta,*,†,§ Pietro Anastasio,* Mahrokh Mosavat,† and Domenico De Lucia† Patients with end-stage renal disease are prone to hemorrhagic complications and simul- taneously are at risk for a variety of thrombotic complications such as thrombosis of dialysis blood access, the subclavian vein, coronary arteries, cerebral vessel, and retinal veins, as well as priapism. The study was devised for the following purposes: (1) to identify the markers of thrombophilia in hemodialyzed patients, (2) to establish a role for antiphos- pholipid antibodies in thrombosis of the vascular access, (3) to characterize phospholipid antibodies in hemodialysis patients, and (4) to study the effects of dialysis on coagulation cascade. A group of 20 hemodialysis patients with no thrombotic complications (NTC) and 20 hemodialysis patients with thrombotic complications (TC) were studied along with 400 volunteer blood donors. Patients with systemic lupus erythematosus and those with nephrotic syndrome were excluded. All patients underwent a screening prothrombin time, activated partial thromboplastin time, fibrinogen (Fg), coagulation factors of the intrinsic and extrinsic pathways, antithrombin III (AT-III), protein C (PC), protein S (PS), resistance to activated protein C, prothrombin activation fragment 1؉2 (F1؉2), plasminogen, tissue type plasminogen activator (t-PA), plasminogen tissue activator inhibitor type-1 (PAI-1), anticardiolipin antibodies type M and G (ACA-IgM and ACA-IgG), lupus anticoagulant antibodies, and antiprothrombin antibodies type M and G (aPT-IgM and aPT-IgG).
    [Show full text]
  • Recommended Abbreviations for Von Willebrand Factor and Its Activities
    RECOMMENDED ABBREVIATIONS FOR VON WILLEBRAND FACTOR AND ITS ACTIVITIES On behalf of the von Willebrand Factor Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis Claudine Mazurier and Francesco Rodeghiero Previous official recommendations concerning the abbreviations for von Willebrand Factor (and factor VIII) are 15 years old and were limited to "vWf" for the protein and "vWf:Ag" for the antigen (1). Nowadays, the various properties of von Willebrand Factor (ristocetin cofactor activity and capacity to bind to either collagen or factor VIII) are better defined and may warrant specific abbreviations. Furthermore, the protein synthesized by the von Willebrand factor gene is now abbreviated as pre-pro-VWF (2). Accordingly, the subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the ISTH has recommended new abbreviations for von Willebrand Factor antigen and its various activities, currently measured by immunologic or functional assays (Table I). It is hoped that a uniform application of the abbreviations recommended here will improve communication among scientists and clinicians, especially for those who are less familiar with the field. Table 1: Recommended abbreviations for von Willebrand Factor and its activities Attribute Recommended abbreviations Mature protein VWF Antigen VWF:Ag Ristocetin cofactor activity VWF:RCo Collagen binding capacity VWF:CB Factor VIII binding capacity VWF:FVIIIB REFERENCES: 1 – Marder VJ, Mannucci PM, Firkin BG, Hoyer LW and Meyer D. Standard nomenclature for factor VIII and von Willebrand factor: a recommendation by the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 1985, 54, 871-2. 2 – Goodeve AC, Eikenboom JCJ, Ginsburg D, Hilbert L, Mazurier C, Peake IR, Sadler JE, Rodeghiero F on behalf of the ISTH SSC subcommittee on von Willebrand Factor.
    [Show full text]
  • Biomechanical Thrombosis: the Dark Side of Force and Dawn of Mechano-­ Medicine
    Open access Review Stroke Vasc Neurol: first published as 10.1136/svn-2019-000302 on 15 December 2019. Downloaded from Biomechanical thrombosis: the dark side of force and dawn of mechano- medicine Yunfeng Chen ,1 Lining Arnold Ju 2 To cite: Chen Y, Ju LA. ABSTRACT P2Y12 receptor antagonists (clopidogrel, pras- Biomechanical thrombosis: the Arterial thrombosis is in part contributed by excessive ugrel, ticagrelor), inhibitors of thromboxane dark side of force and dawn platelet aggregation, which can lead to blood clotting and A2 (TxA2) generation (aspirin, triflusal) or of mechano- medicine. Stroke subsequent heart attack and stroke. Platelets are sensitive & Vascular Neurology 2019;0. protease- activated receptor 1 (PAR1) antag- to the haemodynamic environment. Rapid haemodynamcis 1 doi:10.1136/svn-2019-000302 onists (vorapaxar). Increasing the dose of and disturbed blood flow, which occur in vessels with these agents, especially aspirin and clopi- growing thrombi and atherosclerotic plaques or is caused YC and LAJ contributed equally. dogrel, has been employed to dampen the by medical device implantation and intervention, promotes Received 12 November 2019 platelet thrombotic functions. However, this platelet aggregation and thrombus formation. In such 4 Accepted 14 November 2019 situations, conventional antiplatelet drugs often have also increases the risk of excessive bleeding. suboptimal efficacy and a serious side effect of excessive It has long been recognized that arterial bleeding. Investigating the mechanisms of platelet thrombosis
    [Show full text]
  • Protein C Product Monograph 1995 COAMATIC® Protein C Protein C
    Protein C Product Monograph 1995 COAMATIC® Protein C Protein C Protein C, Product Monograph 1995 Frank Axelsson, Product Information Manager Copyright © 1995 Chromogenix AB. Version 1.1 Taljegårdsgatan 3, S-431 53 Mölndal, Sweden. Tel: +46 31 706 20 00, Fax: +46 31 86 46 26, E-mail: [email protected], Internet: www.chromogenix.se COAMATIC® Protein C Protein C Contents Page Preface 2 Introduction 4 Determination of protein C activity with 4 snake venom and S-2366 Biochemistry 6 Protein C biochemistry 6 Clinical Aspects 10 Protein C deficiency 10 Assay Methods 13 Protein C assays 13 Laboratory aspects 16 Products 17 Diagnostic kits from Chromogenix 17 General assay procedure 18 COAMATIC® Protein C 19 References 20 Glossary 23 3 Protein C, version 1.1 Preface The blood coagulation system is carefully controlled in vivo by several anticoagulant mechanisms, which ensure that clot propagation does not lead to occlusion of the vasculature. The protein C pathway is one of these anticoagulant systems. During the last few years it has been found that inherited defects of the protein C system are underlying risk factors in a majority of cases with familial thrombophilia. The factor V gene mutation recently identified in conjunction with APC resistance is such a defect which, in combination with protein C deficiency, increases the thrombosis risk considerably. The Chromogenix Monographs [Protein C and APC-resistance] give a didactic and illustrated picture of the protein C environment by presenting a general view of medical as well as technical matters. They serve as an excellent introduction and survey to everyone who wishes to learn quickly about this field of medicine.
    [Show full text]
  • PROTEIN C DEFICIENCY 1215 Adulthood and a Large Number of Children and Adults with Protein C Mutations [6,13]
    Haemophilia (2008), 14, 1214–1221 DOI: 10.1111/j.1365-2516.2008.01838.x ORIGINAL ARTICLE Protein C deficiency N. A. GOLDENBERG* and M. J. MANCO-JOHNSON* *Hemophilia & Thrombosis Center, Section of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Colorado Denver and The ChildrenÕs Hospital, Aurora, CO; and Division of Hematology/ Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO, USA Summary. Severe protein C deficiency (i.e. protein C ment of acute thrombotic events in severe protein C ) activity <1 IU dL 1) is a rare autosomal recessive deficiency typically requires replacement with pro- disorder that usually presents in the neonatal period tein C concentrate while maintaining therapeutic with purpura fulminans (PF) and severe disseminated anticoagulation; protein C replacement is also used intravascular coagulation (DIC), often with concom- for prevention of these complications around sur- itant venous thromboembolism (VTE). Recurrent gery. Long-term management in severe protein C thrombotic episodes (PF, DIC, or VTE) are common. deficiency involves anticoagulation with or without a Homozygotes and compound heterozygotes often protein C replacement regimen. Although many possess a similar phenotype of severe protein C patients with severe protein C deficiency are born deficiency. Mild (i.e. simple heterozygous) protein C with evidence of in utero thrombosis and experience deficiency, by contrast, is often asymptomatic but multiple further events, intensive treatment and may involve recurrent VTE episodes, most often monitoring can enable these individuals to thrive. triggered by clinical risk factors. The coagulopathy in Further research is needed to better delineate optimal protein C deficiency is caused by impaired inactiva- preventive and therapeutic strategies.
    [Show full text]