<<

New Jersey Institute of Technology Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2009

Thermochemistry and bond energies of nitro -, -, -carbonyls and corresponding nitrites

Surawee Snitsiriwat New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Environmental Sciences Commons

Recommended Citation Snitsiriwat, Surawee, "Thermochemistry and bond energies of nitro -alkanes, -alkenes, -carbonyls and corresponding nitrites" (2009). Theses. 305. https://digitalcommons.njit.edu/theses/305

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Cprht Wrnn & trtn

h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl.

Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt,

h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l.

l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn

rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. ASAC

EMOCEMISY A O EEGIES O IO -AKAES -AKEES -CAOYS A COESOIG IIES

b Sr Sntrt

nt fntnl nd b nt thr bd lltn r prfrd n r f

ntr -ln -ln rbnl nd rrpndn ntrt rprntn lr-l prr ndr nd trtr ntr pnd nd thr rdl rltn fr th l

f ltl hdrn t Gtr vbrtn frn nd thrhl

prprt Af°9 S °( nd C°p( (1K 5 5K r lltd t th ndvdl

3Y/-31G(dp 3Y /-31+G(dp nd pt CS-Q3 lvl tntl

nr brrr fr th ntrnl rttn hv bn ptd t th 3Y/-3lG(dp

lvl f thr nd th lr brrr ntrbtn r nrprtd nt ntrp nd ht

pt dt h tndrd nthlp f frtn t 9 K r vltd n

d rtn h th vrl r rtn fr h p ndd

vl drvd fr th t tbl nfrr f rptv ntr- nd ntrt r

nld -3 nd - l l fr n-prpn- -339 nd -33 l l-¹ ¹ fr iso-

prpn- - nd -1 l l-¹ fr trt-btn-ntr pnd nd ntrt

rptvl Entrp nd ht pt vl r l rprtd fr th lr

hl ntrthn ntrthn nd rrpndn ntrt C— bnd nr

r drd b 5 l l lph t th ntr r ntrt rp nd nrd b 5

l l bt t th ntr nd ntrt rp ndd vl fr nthlp f frtn f th t tbl nfrr

f ntrtn tntrt ntrtt nd tl ntrt r -51 l l -¹ -51

l l-¹¹ -5 l l nd -5 l l rptvl h lltd Af°9 fr ntrthln 7 l l -¹ nd fr vnl ntrt 7 l l h rbnl nd

lfn rp rtn th jr nfln n th C- bnd nr dl n rbn

djnt t ntrt (COO rp d nt xt; th dt t th rrpndn

rbnl (C=O + O th 3 l l xthr nd n pprnt brrr h rlt fr frtn f th trn rbnl (t bnd l l th dtn

f th O—O bnd (-3 l l THERMOCHEMISTRY AND BOND ENERGIES OF NITRO -ALKANES, -ALKENES, -CARBONYLS AND CORRESPONDING NITRITES

by Suarwee Snitsiriwat

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science

New Jersey Institute of Technology and Rutgers, The State University of New Jersey — Newark

January 2009

APPROVAL PAGE

THERMOCHEMISTRY AND BOND ENERGIES OF NITRO -ALKANES, -ALKENES, -CARBONYLS AND CORRESPONDING NITRITES

Suarwee Snitsiriwat

r. Jos; ph W. Bozzelli, Thesis Advisor Date istinguished Professor of and Environmental Science, NJIT

Dr. Carol A. Venanzi, Committee Member Date Distinguished Professor of Chemistry and Environmental Science, NJIT

Dr. Tamara M. Gund, Committee Member Date Professor of Chemistry and Environmental Science, NJIT BIOGRAPHICAL SKETCH

Author: Suarwee Sntrt

Degree: Mtr f Sn

Date: nr 9

Undergraduate and Graduate Education:

• Mtr f Sn n Envrnntl Sn r Inttt f hnl r 9

• hlr f Sn n Chtr Chllnrn Unvrt n hlnd 3

Major: Envrnntl Sn Wr l dnt nd n v l v nvr bn hrt Sn f n n n hr And dn l n n thn Anonymous

It t tnt r t n vrnht Eddie Cantor

hr r n rl f rhttr fr tl n th ld G. K. Chesterton

Y b dppntd f fl bt r dd f dnt tr Beverly Sills ACKOWEGME

I ld l t rtfll nd nrl thn rf ph W zzll dvr fr h dn ptn nd t prtntl h frndln drn rdt td

t I

Spl thn r vn t ll th br n r Cpttnl Chtr

rh Grp r b Atrn r nl Old nd Anjn Gntr ll f

h r thr bt frnd nd ll hrn th t rbl hr nd hppn bnd hllnn lbrtr-rn nvrnnt

M nr pprtn xtndd t rf Crl A nnz ll rf

r M Gnd fr rvn n tt hr nt prvdd vlbl npt fr rrh

I rtfll nld pprt fr th US Ar rh ff ndr

prvn f r brt Sh

hnfln xprd t th Mthll fl fr rntn n pprtnt t lt Arn ltr nd bn fl n USA

t bt nt lt I ld l t xpr prfnd rttd t prnt

bln nd frnd n ttbrh A nd hlnd fr nplnn ptn prnnl pprt nd nr nrnt drn t n USA

v AE O COES

Chptr 1 EMOCEMICA OEIES O OY ISO-OY A E-UY IOAKAES A AKY IIE 1 11 Objtv 1 1 rnd Infrtn 13 Cpttnl Mthd 1 lt nd dn 5 11 Cnfrtn f trt 5 1 Cnfrtn f tr Aln 13 Enthlp f rtn 1 nd tn Enr 15 15 Intrnl ttn tntl 1 1 Entrp nd t Cpt t 3 17 Grp Addtvt 15 Cnln 1 EMOCEMICA OEIES O A SEIES O IOCAOYS IOOEIS 3 1 Ovrv 3 rnd Infrtn 3 Cpttnl Mthd 5 lt nd n 1 Enthlp f rtn 7 nd tn Enr - 5 3 Intrnl ttn tntl 5

v TABLE OF CONTENTS (continued)

Chapter Page

Entrp nd t Cpt t 7

5 Grp Addtvt 75

5 Cnln 7

AEI A COMAISO EMOCEMISY AA 7

AEI IAIO EQUECIES A OIMIE GEOMEY O IOAKAES AKY IIE A EI AICAS 79

AEI C IAIO EQUECIES A OIMIE GEOMEY O IOCAOYS IOOEIS COESOIG IIES A EI AICAS 97

EEECES 113

viii LIST OF TABLES

Table Page

11 Stndrd Enthlp f rtn f frn 1 Clltd tn Enthlp t nd Evltd Enthlp f rtn f rt Mll 11 13 rtn Enthlp fr Sr f tr nd trt Cpnd 13 1 tn Enthlp fr dl Clltd Enthlp f rtn nd nd Enr 17 15 Sr f rtn Enthlp nd nd tn Enr 1 Idl G-ph hrdn rprt vs. prtr 3 17 Grp hrhl l 1 1 h Stndrd Enthlp f rtn f frn Sp Clltd tn Enthlp nd Evltd Enthlp f rtn f rt Mll 5 3 rtn Enthlp fr Sr f trrbnl trlfn 5 tn Enthlp fr dl Clltd Enthlp f rtn nd nd Enr 55

5 Sr f AfH298 nd nd Enr l fr trrbnl nd trlfn nd thr Crbn dl 5 Idl G-ph hrdn rprt vs prtr 7 7 Grp hrhl l 7 A1l Cpr th nthlp ntrp nd ht pt dt fr th td th rrpndn dt fr Ahrft nd Grn 7

11 brtn rn 79

ix LIST OF TABLES (continued)

Table Page

1 Gtr rtr f tr-n-rpn 1 13 Gtr rtr f trt n-prpn 1 Gtr rtr f tr--rpn 3 15 Gtr rtr f trt--prpn B 1.6 Gtr rtr f tr trtr btn 5 17 Gtr rtr f trt trtr btn 1 Gtr rtr f CCCO 7 11 Gtr rtr f C3CCO

11 Gtr rtr f C3CCO 9 111 Gtr rtr f CCCOO 9 B 1.12 Gtr rtr f C3CCOO 91

113 Gtr rtr f CC (OC3 9

11 Gtr rtr f C3C(OC3 93 115 Gtr rtr f CC(OOC3 9

11 Gtr rtr f CC(C3(O 95

117 Gtr rtr f C C(C3(OO 9 C1 brtn rn 97 C Gtr rtr f trtn 99 C3 Gtr rtr f rpnn ntrt 1 C Gtr rtr f trthln 11 C5 Gtr rtr f nl ntrt 1 C Gtr rtr f trtt 13 LIST OF TABLES (continued)

Table Page

C7 Gtr rtr f Atl ntrt 1

C Gtr rtr f CC(=CO 15 C9 Gtr rtr f C3C(=OCO 1 C1 Gtr rtr f CC(=OCOO 17

C11 Gtr rtr f C=CO 1 C1 Gtr rtr f C=CO 19 C13 Gtr rtr f C=COO 11 C1 Gtr rtr f CC(=OO 111 C15 Gtr rtr f CC(=OOO 11

xi LIST OF FIGURES

Figure Page

11 Gtr f th ll nd rrpndn bbrvtd nltr 7 1 Gtr f rdl nd nnltr 1 l31 tntl Enr rfl fr Intrnl ttn n tr-n-prpn l3 tntl Enr rfl fr Intrnl ttn n n-prpl ntrt 133 tntl Enr rfl fr Intrnl ttn n tr--prpn 3 13 tntl Enr rfl fr Intrnl ttn n prpl ntrt 3 l35 tntl Enr rfl fr Intrnl ttn n tr-trt-btn l3 tntl Enr rfl fr Intrnl ttn n trt-btl ntrt 137 tntl Enr rfl fr Intrnl ttn n C•CCO 5 l3 tntl Enr rfl fr Intrnl ttn n C3C•CO 139 tntl nr prfl fr ntrnl rttn n C3CC•O 7 131 tntl Enr rfl fr Intrnl ttn n C•CCOO 1311 tntl Enr rfl fr Intrnl ttn n C3C•COO 9 l31 tntl Enr rfl fr Intrnl ttn n C•C(OC3 3 1313 tntl Enr rfl fr Intrnl ttn n C3C• (OC3 31 l31 tntl Enr rfl fr Intrnl ttn n C•C(OOC3 3 1315 tntl Enr rfl fr Intrnl ttn n C•C(CO 33 131 tntl Enr rfl fr Intrnl ttn n C•C(C 3 1 Gtr f th trt ll nd bbrvtd nnltr 7 Strtr nd d nnltr f rdl 5

3l tntl Enr rfl fr Intrnl ttn n trtn

x IS O IGUES (ntnd

r

3 tntl Enr rfl fr Intrnl ttn n prpnn ntrt 33 tntl Enr rfl fr Intrnl ttn n trthln 1 3 tntl Enr rfl fr Intrnl ttn n nl ntrt 1 35 tntl Enr rfl fr Intrnl ttn n trtt 3 tntl Enr rfl fr Intrnl ttn n Atl ntrt

37 tntl Enr rfl fr Intrnl ttn n j(n2 3

3 tntl Enr rfl fr Intrnl ttn n (jn2

39 tntl nr prfl fr ntrnl rttn n j(n 5

31 tntl Enr fr Intrnl ttn n jn2

311 tntl Enr fr Intrnl ttn n jn2 7

31 tntl Enr fr Intrnl ttn n jn

313 tntl Enr fr Intrnl ttn n j(n2 9

31 tntl Enr fr Intrnl ttn n j(n 7 CAE 1

EMOCEMICA OEIES O -OY ISOOY A E-UY IOAKAES A AKY IIE

11 Objtv

Density functional theory based calculations are performed on a series of alkyl nitrites and nitroalkanes representing large-scale primary, secondary and tertiary nitro compounds and their radicals resulting from the loss of skeletal hydrogen .

Geometries, vibration frequencies and thermochemical properties, AfH°298, S °(T) and

C° p(T) (10K < T < 5000K) are calculated at the individual B3LYP/6-31G(d,p), B3LYP

/6-31+G(2d,2p) and composite CBS-QB3 levels. Potential energy barriers for the internal rotation have been computed at the B3LYP/6-31G(d,p) level of theory and the lower barrier contributions are incorporated into and capacity data. The standard of formation at 298 K are evaluated using isodesmic reaction schemes with several work reactions for each species. Recommended values derived from the most stable conformers of respective nitro- and nitrite isomers include: -30.57 and -28.44 kcal moi l for n-propane-, -33.89 and -32.32 kcal moi l for iso-propane-, -42.78 and -41.36 kcal moi l for tert-butane-nitro compounds and nitrites, respectively. Entropy and values are also reported for the lower homologues: nitromethane, nitroethane and corresponding nitrites.

1 2

2 rnd Infrtn

Art frtn nthlp Af°9 fr th plt ntr nd ntrt ll r rrd n rdr t ndrtnd rtn pth nd t n th dvlpnt f dtld

hl nt hn In trn th hn n b ppld t dl th frtn nd dtrtn f ntrn p n vrt f nvrnnt prtlrl fr tphr nd btn htr Sn l thn % f nn rn

p hv hd thr ht f frtn r th ppltn f drn nt

htr thd fr th dt f vl prvdd tht rnbl r n b

btnd h tblhnt f th b vl ll l d n th dtrntn f th thrhl prprt f hhr hl v f d rtn th

rp nrvtn (tn rtn h td ntn dvlpnt nd

vltn f thrhl prprt n plt ntr- nd ntrt pnd fr

r prv nl 23

tr (O nd ntrt (OO drvtv f hdrrbn ndr thrl dptn t rltvl l tprtr nd hn hv ptntl bth prpllnt nd nrt trl th rtn brrr fr bnd lv f -O

(ll ntr pnd nd O-O (rrpndn ntrt r . 1 nd l l -

1 rptvl - h ntr ln nd lll ntrt n rl O nd O nd hn

n rv tlt n xdtn f hdrrbn 9-11 In th rrd ntr pnd hv bn dl tdd b bth xprntl nd thrtl thd 4-8 1-33 nvrthl th thrhl dt r rprnl ltd

ptn f th plt ntr ln prttp dl fr lrr

nprpllnt h bn th bjt f nr td 1 -" 13-17 1- r ntrthn 3 th nrtd lntn f OO via fv-ntrd ntrdt th lt nr dptn hnnl rdn t th AC-M nd 3Y/- 311+G(3dfp

lltn 1 Ettd brrr fr ntrthn nd -ntrprpn ( nd 39

l l rptvl r prbl t th xprntl tvtn nr dt f

nn nd -rr f 3 nd l l -¹²

Cnfrtnl pt f ll ntr pnd n prtlr syn-anti

lbr hv bn tdd b vrl rrhr 1 ¹9 h rlt h tht -

ltl rp nl dtblz trll fvrd syn nfrr h ntd f th tr fr h bn hn t rrlt th rltv tblt dt fr 1 M

n prr ll ntrt r -ll ntrt th rvr rdr btnd t

xptd hrtl dl l nfr th tblt f syn nfrr ¹ ¹9

In th prnt r hv vltd th frtn nthlp f vrl n-ll ntr pnd brn —OO (ntrt nd -O² (ntr- t n tpl prr

ndr nd trtr ptn bd n thr t tbl rttn nfrr n

ltlvl nd ndvdl pttnl htr thd W d bth plt b t nd Gn pt lltn thd h thd pl vrt

f dffrnt tr frn dtrntn nd hhr rdr nr rrtn

(vide infra). h r f th thd h bn dntrtd n r prv

td n OO r ² nd thl nd thl ntr nd ntrt pnd

Ahrft nd Grn t l 9 hv rntl rprtd thrhl prprt nd

rp vl fr vrl ntrn-ntnn tbl ll n th td th CS-

Q3 bd tztn thd th nldd pn-rbt nd ddtvt rrtn

(AC p rltd t th td nld tr-n-prpn -9 l l n-rpl 4 ntrt -79 l l l tr--prpn -33 l l nd tr-trt-btn -

l l t l d 3Y/-31G(d bd tztn nr lltn

nd t rrtn t prdt nthlp f frtn f vrl nrt trl n-prpl ntrt -1 l l trt-ntrbtn -15 l l nd trt-btl ntrt

-37 l l rptvl Ont t 1 5 prfrd lr lltn t

3Y/-31G(dp lvl n ntr n-prpn (-331 l l -¹ -ntrprpn (-359

l 1 -¹ nd trt-ntrbtn (-3 l l -¹ rptvl h ht f frtn

f n-prpl ntrt nd trt-btl ntrt btnd fr d rtn t th

3/-31G(d lvl b t l r -59 l l nd -33 l l-¹ rptvl In nrl AfH°298 vl r n d rnt th prv vltd ltrtr (ISI dt th th xptn f -ntrprpn hh h vrl l

l-¹ dffrn hr t th n lltd vl

Cpttnl Mthd

h rltv tblt f OO nd O r hlt bnd dtn nr

nd th ht f frtn f rdl nd ll btnd fr d rtn hv bn lltd n 3Y hbrd dnt fntnl thr thd n

njntn th th -31G(dp nd -31+G(dp b t ll th plt b

t-Q3 pt thd CS-Q3 ltlvl dl htr tht bn th rlt f vrl b nt nd ndvdl thd nd prl tr t prdt

llr nr th hh r nd rltvl l pttnl t h rrd ltrn trtr lltn r tlnd fll ( 3Y/-

311G(ddp lvl tr nd frn; ( M/-311G(3dfdfp nr nd 5

CS xtrpltn; ( M-(SQ/-31G(d(fp nr; (v CCS(/-31+G(d

nr rrtn All nt hl lltn hv bn prfrd thn th

Gn-3 t f prr 7

vlt ht f frtn f th ttld t d vrt f hd nd d r rtn hr th bndn nvrnnt r lr

n prdt nd rnt A hd rtn hpthtl rtn hr th nbr nd tp f bnd (hbrdztn f rrpndn t r nrvd n bth

d f th rtn An d rtn n hr th nbr f bnd f h tp nrvd n h d f th r rtn

4 lt nd n

4 Cnfrtn f trt

h ptzd tr t th CS-Q3 pt lvl f thr viz., 3Y/-

311(ddp lltn fr th trt ll nd rrpndn bbrvtd nnltr r prntd n r 11

h trnl ptntl f rdl (vide infra) h tht rrpndn cis nd

trans- r rptv t th C-O--O dhdrl nl hv lr nr n th

prpllrn-l nr nd -prpl ntrt h trt-btl ntrt h nr 3 l

fr th trans nfrtn h cis ptn f n-prpl ntrt h th trnl xn

hh dtnt fr t hdrn t t 51 A hl th cis nfrr f

-prpl ntrt h th trnl xn t t A dtn fr hdrn h

cis nfrtn n n-prpl ntrt 3 l l lr n nr thn

rrpndn trans nfrtn r -prpl ntrt nd trt-btl ntrt th trans

nfrtn r 3 nd 37 l l lr thn cis nfrtn rptvl

1 Cnfrtn f tr Aln

h xn t n th ntrprpn r ltd t nr h ptn (t 39 nd

91 A dtn rltv t th t n th djnt rbn t In -ntrprpn

n xn lpd th th hdrn t n th ntrl rbn t In -ntr--

thl prpn n xn lpd th rbn t Strtr r lltrtd n

r 11

13 Enthlp f rtn

Enthlp f frtn (Δf°9 r vltd n lltd ltrn nr zr pnt vbrtn nr rrtn (E nd thrl ntrbtn (t 9 K fr h

f p n th r rtn 3 brtn frn r ld b 9 fr CS-

Q3 lvl lltn

Clltd rtn nthlp Arxn°9 r d t fnd Δf° 9 f th trt

ll

Δrxn°9 = E Hf (prdt — E Hf (rtnt

Whr th t prdt nd n rtnt r th thr rfrn ll;

th vltd ltrtr thrdn prprt fr th thr rfrn p h

tndrd nthlp f frtn t 915 K fr th rfrn p d n th rtn r rzd n bl 11 CC2C2O2 (n2 CC2C2OO (n CC(O2C (n2 Nitro-n-propane n-Propyl nitrite Nitro-iso-propane

CC(OOC (n CC(C2O2 ((2n2 CC(C2OO ((2n Iso-propyl nitrite Nitro-tert-butane Tert-butyl nitrite

Figure 1.1 Geometry of the lowest energy conformers of the titled and corresponding abbreviated nomenclatures (see appendix A, Table A1.1, for more details). 8

bl Stndrd Enthlp f rtn t 915 K f frn Sp d n r rtn fr nthlp f frtn

A n xpl th flln tn d t tt Δf°9 fr C CCO

CCCO + C C + CCO

Δf°9 ( l l¹- rt -2004 -202 -206

Sn nthlp f frtn f th thr rfrn pnd (vl bv n bld r ll tblhd n th ltrtr h ht f rtn Δrxn°9 lltd

nd th nthlp f frtn f th trt ll CCCO btnd -

3 l-l-¹ fr l 9

h thd f d r hd r rtn rl n th lrt f bndn nvrnnt n th rtnt nd prdt tht ld t th nlltn f

tt rrr n th b nt nd dnt fntnl thr lltn h zr pnt nr r ld b 9 fr 3Y/-31G(dp lltn rndd b Stt t 14¹ h rtn nthlp nd th nthlp f frtn f th ll ntr

nd ntrt btnd fr th f th rtn h r hn n bl 1

In r prv td lltd th thrhtr f thl nd thl ntr

nd ntrt pnd nd fnd tht ntr ln r r tbl thn th

rrpndn ntrt r b l 1 fr OO vr O 3 l

l-¹ fr CO vr COO nd 1 l l-¹ fr CCO vr

CCOO n th dffrn n Δ(°9 btn O nd OO xptd t b bt 17 l l W d nt brv nfnt hn n th O vs OO fr prr vs. ndr vs. trtr btttd ntr r ntrt pnd hr thht trnd r d t dffrn n ltrn prprt Cprn f th

lltd nd vltd xprntl dt h tht th vl ptd t CS-Q3

pt lvl t xptd r nfntl lr t th xprntl dt; th

rnt xllnt hl prn th IS dt b vl ( Sh 1

Sh 1 rtn nthlp (l l fr r f tr nd trt pnd lltd t CS-Q3 lvl f thr n prn th rrpndn IS dt

IS Sp h td rfrn CCCOO - - CC(OOC -32.3 -319 CC(CO - -3 CC(COO -1 -1 1

W nt tht thr r n vr 3 l l-¹ dffrn n 3Y/-3 1G(dp rlt btn Δf °9 vl vltd n th td vr th lltd b Ont

t 15 rpn r jdd t rlt fr dffrn n n d rtn

nl n r td vr f th ptzd t f tztn nvrn vl drvd fr th lbrtn nt vn ltd xO pnd n Ont t l

r5 Crrpndn dffrn fr n-ntrprpn -ntrprpn nd tert- ntrbtn r 31 l l 33 l l-¹ nd l l-¹ rptvl bl 2 Calculated Reaction Enthalpies at 298 K and Evaluated Enthalpies of Formation of Target Molecules'

( Reaction enthalpies include thermal correction and zero-point energy.) Table 1.2 (Continued) 13

Table 1.3 Formation Enthalpies for a Series of Nitro and Nitrite Compounds Calculated at Evaluated at Different Levels of Theory (Recommended Values are in Bold)

C2C2C2O2 (jn2 CCC2O2 (jn2 CC2CO2 (jn2 C2C2C2OO (jn CCC2OO (jn C2C(O2C (jn2

C C(O2C (jn2 CC(OOCM (jn C2C(C2O2 (j(2n2

C2C(C20O (j(2n

r 1 Illustrations of the lowest energy conformers of radicals corresponding to the loss of a hydrogen from parent molecules (see Table B1.2-B1.17, appendix B, for details) and nomenclature.

44 nd tn Enr

nd nr r drvd fr Ar°9 f prnt ll nd thr rdl

rrpndn t th l f hdrn t r th tndrd nthlp f hdrn t

t 915 K d 513 l 1 -1 h rltd bnd dtn nthlp

ptd fr d nthlp f frtn r vn n bl 1

W pr th bnd nr nt lr bnd nr n ln W hv

d flln vl prr 111 l 1 -1 ndr 95 l l nd trtr

95 l l-1 fr C— bnd nr n ln h C— bnd n th rbn n

lph ptn t th O/OO rp h th lrt dvtn (dr n bnd

nr f vrl l l h bnd nr fr jn2 nd j(n2 rdl t

r 9 l l nd 9 l l rptvl h d t th rnn f th rdl ntr th th ltrntv O rp Kntz t l 7 hv rprtd trn

rrltn btn ntrnl rtr brrr nd rnn n C— t fr d W

lr rrltn n C— bndd t ntr-rbn rdl t

h jn nd j(n rdl d nt xt b th O—O bnd t 3

l l h r thn th rbnl -bnd (— l 1 frd n prpnl

C3CC(=O nd th tn C3C(=OC 3 ll th ptntl prdt f th bt n f rrpndn CjO—O bnd In fft th rdl frd b l

f hdrn t n th C–OO bndd rbn dt v bt n t

rbnl + O dtl pn rdl frtn ptv C— bnd nr n

jn2 (n-prpl ntrt ttd t 95 l l fr ltrtr (trntn tt

lltn 1

h dtn nr fr prr thl rbn—hdrn bnd n ntr n prpn nd n-prpl ntrt r th th prr C— bnd nr n

ln

h prr rbn-hdrn bnd nr n ntr nd ntrt drvtv f prpn nd trt-btn r 1 l l hh 1 l 1 hhr thn tht n

ln h rdl ntr r ltd t bt ptn t th ltrntv O„

rp prtd b n p rbn brn prtl ptv hr W ntrprt th

nrd bnd nr d t plrztn fft C— bnd f ndr rbn

t n ntr-n-prpn nd n-prpl ntrt r –5 l l trnr thn rptv bnd n ln (– 99 l l ; th l rlt thrh plrztn fr th

djnt (lph ptn rbn t bndd t th OO r O rp bl 4 Reaction Enthalpies at 298 K for Radicals, Calculated Enthalpies of Formation and Bond Energya Table 1.4 (Continued) bl 4 (Cntnd

tn nthlp nld thrl rrtn nd zr-pnt nr 20

bl Sr f rtn Enthlp (Af9 nd nd tn Enr (E fr trln nd All trt Mll nd thr Crbn dl (n l

dl r rprntd b bbrvtd frl fr plt; j rprnt rdl t 2

4 Intrnl ttn tntl

Enr prfl fr ntrnl rttn bt th C-C C- C-O C—OO nd -O bnd n th ntrln nd ll ntrt r lltd t dtrn nr f th rttnl nfrr nd ntrnvrn brrr btn r rnl ptntl

r thn d t vlt ntrbtn t th ntrp nd ht pt vl fr th l brrr (bl 5 l 1 -1 rtr h ttl nr fntn f th

rrpndn dhdrl nl r ptd t th 3Y/-31G(dp lvl f thr b nnn th trn nl btn ° nd 3° n tp f 15° hl ll rnn

rdnt r fll ptzd All ptntl r r-nnd hn lr nr

nfrr rltv t th ntl l nr nfrr fnd h ttl nr f th

rrpndn t tbl llr nfrr rbtrrl t t zr nd th d

rfrn pnt t plt th ptntl brrr h rltn ptntl nr brrr fr ntrnl rttn n th tbl nn-rdl nd rdl ll r hn n

131-131 hdrl nl btnd fr th ptzd lt nr trtr r

hn n prnth

h lltd rttnl brrr f thl rp n 1-ntrprpn - ntrprpn nd -ntr--thl prpn ( 131 133 nd 135 h th thr- fld tr th th brrr f 3 l 1 -1 hh lr t th thl rtr ptntl n n-hdrrbn h C-O rtr n 1-ntr nd -ntr prpn xhbtd l -fld tr brrr f 15 nd l 1 hht rptvl hl th ptntl fr -ntr--thl prpn hd -fld tr th brrr f 3 l

O--O ntrnl rtr ll h tr -fld brrr f 1 t1 l l hht 22

Hindered Rotation for cccno2

Figure 1.3.1 Potential Energy Profiles for Internal Rotations in Nitro-n-propane.

Figure 1.3.2 Potential Energy Profiles for Internal Rotations in n-propyl nitrite. 23

Hindered Rotation of cc(no2)c

Figure 1.3.3 Potential Energy Profiles for Internal Rotations in Nitro-iso-propane.

Figure 1.3.4 Potential Energy Profiles for Internal Rotations in iso-propyl nitrite

Hindered Rotation of cc(c2)no2

r 135 Potential Energy Profiles for Internal Rotations in Nitro-tert-butane

r 13 Potential Energy Profiles for Internal Rotations in tert-butyl nitrite 5

•1-1CCO rbn rdl f ntrprpn, cjccno2.

The rotation barrier of the methyl group jn2 is reduced to 0.15 kcal moll , nearly a free rotor, where the corresponding potential is six-fold and similar to that in a normal hydrocarbon. Instead, the jn2 rotor has a three-fold potential with one barrier located at 4.9 and two barriers at 2.6 kcal mol l . The jn2 rotor is similar to the non- radical nitropropane (parent ) with two-fold barriers at 1.25 kcal moll.

r 137 Potential Energy Profiles for Internal Rotations in C•1 -12CH2CH2NO2 Radical (jn2 26

CH3C•HCH2NO2, /3-carbon radical of nitropropane, ccjcno2

There are significant differences in all three internal rotor potentials in the ccjcno2

(nitropropane -2y1) radical and the parent molecule. The c--cjcno2 methyl rotor is a three- fold one, but with extremely low barrier at 0.65 kcal moi l . For the ccj--cno2 rotor, there is a two-fold potential with barriers of 3.39 and 1.65 kcal mol l , respectively. The ccjc-- no2 rotor has a four-fold potential with alternating 0.6 and 0.2 kcal mol I barriers.

Figure 1.3.8 Potential Energy Profiles for Internal Rotations in CH3C•FICH2NO2 Radical (ccjcno2) 27

CH3CH2•HNO2, a-carbon radical of nitropropane, cccjno2

The methyl rotor c--ccjno2 is similar to a normal as well as in the parent molecule.

The potential foldness in the ethyl rotor cc-cjno2 is similar to the parent molecule, but the barriers are reduced by near one half. The barrier for the -NO2 rotor between nitrogen atom and the radical carbon site in cccj--no2 is significantly high (9.5 kcal moi l ). The barrier increase (8.25 kcal mo1 -1 ) suggests a high degree of resonance between the carbon radical and the NO2 group; this was also observed by Kemnitz et 7 (see also bond energy discussion above).

Figure 1.3.9 Potential energy profiles for internal rotations in CH 3CHC•HNO Radical (cccjno2) 28

C•2C2C2OO rbn rdl f prpl ntrt, jn

The jn the internal rotors are similar to those in the parent propyl nitrite, with the exception of the methyl rotor jn, which has the barrier reduced from 3.0 to less than 0.5 kcal mol l . The 2-fold very high barrier (14.5 kcal mol -1 ) in the jn rotor is similar to that in the parent molecule.

r 0 Potential Energy Profiles for Internal Rotation in C•1 -12CH2CH2ONO Radical (jn 9

C3C•1COO /3-carbon radical of propyl nitrite, ccjcono

rrr fr th thl nd thl rtr n ccjcono r drd rltv t brrr n th prnt ll nd th ccjc--ono brrr l drd fr 95 l l l n th prnt t ca l l l n th rdl t h t-fld ccjco--no rtr rtn th hh brrr (15 l l l hh lr t tht n th prnt ll h

C3C•1-1O rdl (cccjono) nt tbl; t ndr rpd xthr dtn t prpnl pl O pn frtn f th rbn rdl bndn t th

OO rp h lph rbn rdl dtl ntt frtn f trn n-bnd

( l ll n th rbnl nd lvn th (3 l l l —O bnd dd bv

r 1311 tntl Enr rfl fr Intrnl ttn n C3C•C OO dl (ccjcono) 3

C•C(OC3 primary carbon radical of nitro-iso-propane, j(n2.

The cjc(--no2)c rotor exhibits the same barriers as in the parent molecule with some distortion of the symmetric 2-fold potential of the parent, while the barrier of the methyl rotor is decreased from 3 to 1.4 kcal mola I

r 131 Potential Energy Profiles for Internal Rotation in C•1-12CH2(NO2)CH3 Radical (cjc(no2)c). 31

CH3C•(NO2)CH3 , trtr rbn rdl f ntrprpn, ccj(no2)c

The j(n2 rotor is reduced to less than 0.1 kcal mol l , while the j(n2 rotor is increased from 0.5 in 2 nitropropane to 11 kcal moi l in this radical, this is reflects in the

6 to 8 kcal moi l resonance, as determined from the decreased bond energy relative to a normal tertiary or secondary alkyl radical respectively, on this central carbon radical with the NO group.

Figure 1.3.13 Potential Energy Profiles for Internal Rotation in CH 3C•F1 (NO)CH3 Radical (j(n2 3

•1-1C(OC3 prr rbn rdl f prpl ntrt, j(n

There are significant differences in two internal rotor potentials between j(n radicals (trn configurations) and the parent (cis-configuration). The j(n rotor has 3-folds with barrier of 9.1, 5.6 and 0.7 kcal mo1 -1 while the methyl radical rotor barrier is decreased from 3 to 1.4 kcal ma i and has a distorted two fold potential. The parent has a three fold potential. The j(—n rotor is similar to that in the parent with a two fold potential and very high barrier (14 kcal mo1-1).

r 131 Potential Energy Profiles for Internal Rotation in C•112CH2(0NO)CH3 Radical (cjc(ono)c) 33

02C2(C22O2 , prr rbn rdl f ntrbtn, j(2n2

h O2 rotor in j(2n2 shows a six fold barrier, four barriers at 0.28 kcal mol l and two barriers at 0.12 kcal mol l . The CH2• has an internal rotor barrier that is approximately one half that of the methyl in 2-nitro-2-methyl propane and is now a distorted two fold potential compared to three fold for the parent. The two methyl (CH3-) rotor profiles are similar to that of the CH3 rotors on parent molecule and are not illustrated in Fig 1.3.15.

r 1315 Potential Energy Profiles for Internal Rotation in C•H2CH2(CH2) 2NO2 Radical (j(2n2 34

C•112CH2(CH2)20NO, primary carbon radical of iso-butyl nitrite, cjc(c2)no2

The methyl radical rotor has a two fold potential with barriers at 1.1 kcal mo1 -1 . The R--

ONO rotor, cjc(c2)--ono, and the RO—NO rotor, cj-- c(c2)o-no, are similar to the corresponding rotors in the closed-shell parents. The two methyl rotors are similar to those in the parent molecules and are not illustrated.

Hindered rotation of cjc(c2)ono

Figure 1.3.16 Potential Energy Profiles for Internal Rotation in C•H2CH2(CH2) 20N0 Radical (cjc(c2)ono)

1.4.6 Entropy and Heat Capacity Data

Entropy and heat capacity contributions as a function of temperature are determined from

the calculated structures, moments of inertia, vibration frequencies, symmetry, electron

degeneracy, number of optical isomers and the known mass of each molecule. The

calculations use standard formulas from statistical mechanics for the contributions of

translation, external rotation and vibrations using the "SMCPS" program. 42 This program

utilizes the rigid-rotor-harmonic oscillator approximation from the frequencies along with 35

nt f nrt fr th ptzd CS-Q3 trtr viz. 3Y/-3 1 1 G(ddp lvl Cntrbtn fr ntrnl rtr (I n bl 1 n tzr-Gnn frl5 r btttd fr ntrbtn fr ntrnl rtr trn frn

hr brrr r dtrnd t b bl 5 l 1-1 h ntrp nd ht

pt dt r ndd t dtrn dpndn f th nthlp ntrp Gbb Enr

nd lbr ntnt th tprtr Entrp nd ht pt lltn r prfrd n plt b t -Q3 dtrnd tr nd hrn frn rzd n bl 1

h ntrp nd ht pt vl f th td r prd th th rntl pblhd dt f Ahrft nd Grn9 fr th tbl ntr ln ll nd th

lltrtd n bl Appndx A11 h vl f ntrp nd ht pt r ll thn

n l thn l l K-1 th th xptn f prpn ntrt hh h vl

f ht pt vrn b p t l l K-1 nd n ntrp dffrn rrpndn t

ln(3 6

bl 6 Idl G-ph hrdn rprt vs. prtr

bl 6 (Cntnd 8

bl 6 (Continued)

bl 6 (Cntnd

hrdn prprt r rfrrd t tndrd tt f n dl t 1 t S°( nd C°p( r n l l-1 K-1 b Str nbr d fr lltn f S°( r n prnth

17 Grp l fr n th Grp Addtvt Mthd fr Ettn f hrhl prprt

Grp ddtvt 3 trhtfrrd nd rnbl rt lltn thd t

tt thrdn prprt f hdrrbn nd xntd hdrrbn ; t

prtlrl fl fr ppltn t lrr ll fr n d r dtb fr th ttn f thrhl prprt n rtn hn nrtn In th ppr tt x ntrln ll ntrt nd th tn rrpndn rbn

ntrd rdl rp b n th thrdn prprt dt dvlpd n th

td pl th ll-hdrrbn rp n th ltrtr h xtn rp r ltd n th bl 17 ln th tndrd hdrrbn rp d

Cprn f rp ddtvt dt fr thr rp —th th dt f Ahrft

nd Grn9 (tprtr f 3 t 15 K r lltrtd n bl Appndx A11 h

Ahrft nd Grn dt r ntntl f tnth f l 1 ICI hhr thn th dt n th td; f th prbbl d t thr trtnt f ll ntrnl rtr rtr hl trt nl rtr tht hv brrr bl 5 l l -1 4

bl Grp hrhl l vlpd n th Std

tr nbr ( tn nt nt (S =S t -ln

Cnln

hrhl prprt nthlp f frtn r brvd t fll th trnd

f prv vl f thl nd thl ntrt nd ntr pnd Or thrhtr

9 dt Af°9 S °( nd C°p( r n d rnt th dt fr Grn tl

lltd b CS-Q3 th bnd rrtn h nthlp f frtn f ntr ln r fnd t b lhtl ( 1- l l r tbl (lr

nthlp thn th rrpndn ntrt th th dffrn n Af°9 btn O

nd OO rnn nr ntnt t bt 17 l l l Crbn -- hdrn bnd

nr n th ntr-btttd rbn r brvd t dr b 5 t l l -1 rltv t C- bnd n rrpndn ln In ntrt th rbn - hdrn bnd

nr r brvd t nr b - 1 l 1 -1 fr rbn t ltd n bt ptn t th rbn bndd t th ltrntv ntr / ntrt rp C— bnd n

rbn t t th ntr r ntrt rp pprd t b dntl t th n

rrpndn t n ln thn lltn rrr br vl f hdrn

t fr th rbn bndd t th ntrt (OO rp rltd n xthr rtn

th lttl r n brrr t fr rbnl pl O Enthlp f frtn ntrp

S°( nd ht pt C° p( vl r rprtd ln th bnd nr nd

rrpndn thrhl prprt fr 1 nd ntr -prpn nd -ntr -thl prpn nd rdl rrpndn t l f hdrn t fr th rbn t h

ptd nthlp f frtn v d r rtn nd bnd dtn

nr fr ntrln nd ll ntrt r n tftr rnt th th ltd

xprntl dt vlbl Grp fr n rp ddtvt r dvlpd CAE

EMOCEMICA OEIES O A SEIES O IOCAOYS IOOEIS

1 Ovrv

Structures, (AfH°298), entropy (S°298), and heat capacity (C p(T)) are determined for a series of nitrocarbonyls, nitroolefins, corresponding nitrites and their carbon centered radicals using the density functional B3LYP and composite CBS-QB3 calculations. Enthalpies of formation (AfH°298) are determined at the B3LYP/6-31G(d,p),

B3LYP /6-31+G(2d,2p) and composite CBS-QB3 levels using several work reactions for each species. Entropy (S) and heat capacity (Cp(7)) values from vibration, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic- oscillator approximation based on the vibration frequencies and structures obtained from the density functional studies. Contribution to AfH (7), S, and C p(T) from analysis on the internal rotors is included. Recommended values for enthalpies of formation of the most stable conformers of nitroacetone, 2 propane nitrite, nitroacetate and acetyl nitrite are -

51.58 kcal mol -1 , -51.26 kcal moF 1 , -45.36 kcal ma i and -58.17 kcal moi l , respectively.

The calculated AfH°298for nitroethylene is 7.59 kcal ma i and for Vinyl nitrite is 7.23 kcal mo1-1 .

3 44

22 rnd Infrtn

Art frtn nthlp Af°9 fr ntr nd ntrt ll r rrd n

rdr t ndrtnd rtn pth nd t n th dvlpnt f dtld hl

nt hn hh n b ppld t dl th frtn nd dtrtn f ntrn p n vrt f nvrnnt prtlrl fr tphr nd

btn htr Sn l thn % f nn rn p hv hd thr ht f frtn r th ppltn f nt htr thd fr th dt

f vl prvdd tht rnbl r n b btnd h tblhnt f th vl ll l d n th dtrntn f th thrhl prprt f hhr hl via f d rtn th rp nrvtn (tn rtn h td ntn dvlpnt nd vltn f thrhl prprt n plt ntr- nd ntrt pnd fr r prv nl 3

tr (O nd ntrt (OO drvtv f hdrrbn ndr thrl dptn t rltvl l tprtr nd hn hv ptntl bth prpllnt nd nrt trl th rtn brrr fr bnd lv f -O

(ll ntr pnd nd O-O (rrpndn ntrt r ca. 1 nd l l -

1 rptvl" h ntr ln nd lll ntrt n rl O nd O nd hn

n rv tlt n xdtn f hdrrbn 9-11 In th rrd ntr pnd

- 1-33 hv bn dl tdd b bth xprntl nd thrtl thd nvrthl th thrhl dt r rprnl ltd

h trtr ht f frtn bnd dtn nr t f ntr nd ntrt ll hv bn th bjt f n xprntl nd thrtl

nvttn Sh5° d rp ddtvt t prdt Af°9 n ntrthln t 1 4

l l nd r7 prfrd MIO/3 lltn th 17 l 1 -1 xn 12 rprtd ht f frtn b CCS( lltn n nrt trl th 95 l

ll fr ntrthln hl nn 51 l td 9 l l l Grn t l 49 prfr thrhl prprt nd rp vl fr ntrn-ntnn ll th CS-

Q3 bd tztn thd th pn-rbt nd ddtvt rrtn (AC

Af°9 f vnl ntrt nd ntrthln r 5 l l l nd 9 l l l rptvl

In th prnt r hv vltd th frtn nthlp f vrl ntrrbnl ntrlfn rrpndn ntrt nd thr rbn ntrd rdl bd n thr t tbl rttn nfrr n ltlvl nd ndvdl

pttnl htr thd W d bth plt b t nd Gn

pt lltn thd h thd pl vrt f dffrnt tr frn dtrntn nd hhr rdr nr rrtn (vd nfr. h r

f th thd h bn dntrtd n r prv td n OG r nd

thl nd thl ntr nd ntrt pnd 3

2 Cpttnl Mthd

h rltv tblt f OO nd O r hlt bnd dtn nr

nd th ht f frtn f rdl nd ll btnd fr d rtn hv bn prfrd n 3Y hbrd dnt fntnl thr thd n

njntn th th -3 1 G(dp nd -3 1+G(dp b t ll th plt b

t - Q3 pt thd CS-Q3 ltlvl dl htr tht bn th rlt f vrl b nt nd ndvdl thd nd prl tr t prdt 46

llr nr th hh r nd rltvl l pttnl t h rrd ltrn trtr lltn r tlnd fll ( 3Y/-

311G(ddp lvl tr nd frn; ( M/-311G(3dfdfp nr nd

CS xtrpltn; ( M-(SQ/-31G(d(fp nr; (v CCS(/-31G nr

rrtn All nt hl lltn hv bn prfrd thn th

Gn-3 t f prr 3

W d vrt f hd nd d r rtn hr th bndn

nvrnnt r lr n prdt nd rtnt A hd rtn hpthtl rtn hr th nbr nd tp f bnd (rdn t th tt f hbrdztn r nrvd n bth d f th rtn An d rtn n

hr th nbr f bnd f h tp r nrvd n h d f th r rtn

24 lt nd n

h ptzd tr t th CS-Q3 pt lvl f thr (viz., 3Y/-

311(ddp lltn fr th trt ll nd rrpndn bbrvtd nnltr r prntd n r 1 h trans nfrtn rptv t C-O--O dhdrl nl n prpn ntrt vnl ntrt nd tl ntrt r tbl thn

rrpndn cis r b 1 l l 17 l l-1 nd 39 l 1 -1 rptvl In ntrtn nd prpn ntrt ntr nd ntrt rp r n trans

nfrtn t rbnl xn On xn n ntrthln nd ntrn n vnl ntrt lpd th hdrn t n th frt rbn hl n xn n ntrtt

nd ntrn n tl ntrt lpd th rbnl xn 7

CC(OC2O2 CC(OC2OO C2CO2 ((n2 ((n (n2 trtn rpnn ntrt trthln

C=COO C3C(=O C3C(=O (n ((n2 ((n nl ntrt trtt Atl ntrt

r 1 Gtr f th lt nr nfrr f th trt ll nd bbrvtd nnltr ( ppndx C bl C-C15 fr r dtl

1 Enthlp f rtn

Enr fr th CS-Q3 pt lvl r d th r f d

rtn hvn bnd nrvtn t tt th nthlp f frtn (Af°9 fr

trt ll h ttl nr r rrtd b zr--pnt vbrtn nr

(E hh r ld b 97 rndd b Stt nd d 1 hrl

rrtn -915 K lltd t tt Af°9 t 915 K W th

lltd A x-°9 n th frl t find AfH°298 f th trt rtnt 48

ArxnH°28 E Hf prdt — E Hf rtnt

Whr th t prdt nd n rtnt r th thr rfrn ll

th vltd ltrtr thrdn prprt fr th thr rfrn p h

tndrd nthlp f frtn t 915 K f th rfrn p d n th rtn r rzd n bl 1

bl 2 h Stndrd Enthlp f rtn t 915 K f frn Sp 4

A n xpl th flln tn d t tt Af°9 fr C=CO

(C=CO + (C 4 (CH2=CHCH) + (CHNO2)

AfH°298 ( l l -:rt -2004 488 -6

Sn nthlp f frtn f th thr rfrn pnd (n bld bv

r ll tblhd n th ltrtr th A„° 9 lltd nd th nthlp f frtn f th trt ll C=CO btnd fr l

h thd f d rtn tlz lrt n th bndn

nvrnnt fr rtnt nd prdt t n r rtn t fft nlltn f

tt rrr n th ab initio r dnt fntnl lltn h b rrnt

f n d rtn tht th nbr f h tp f bnd nrvd n th rtn h zr pnt nr r ld b 9 rndd b Stt t 1 1 fr 3Y/-31G(dp nd thrl rrtn t 915K Clltn r prfrd n

h p n thr r rtn fr h ll h rtn nthlp nd th

nthlp f frtn f th trt ll btnd fr th f th rtn

h r hn n bl bl 22 Calculated Reaction Enthalpies at 298 K and Evaluated Enthalpies of Formation of Target Moleculesa bl 22 (continued) 52

Table 2.3 rtn Enthlp fr Sr f trrbnl trlfn Cpnd Clltd t Evltd t ffrnt vl f hr (ndd l r n ld

t nr nfrtn trtr f th rdl r lltrtd n r

2.4.2 Bond Dissociation Energies

nd nr r rprtd fr th lltd th Ar°9 f th prnt ll nd t rdl rrpndn t l f hdrn t hr th nthlp f prnt ll

nd prdt p r lltd n th td n njntn th th vl f 51

l l fr ; th dt rrpnd t th tndrd tprtr f 915 K h

ndvdl bnd dtn nthlp vl ptd fr d nthlp f frtn r vn n bl

W pr th bnd nr nt lr bnd nr n tn; nd fr prp f prn vlt nd th C-- bnd nr n tn 95

l l h bnd dtn nr fr --CC(=OCO nd H--

CH2C(=O)CH2ONO r th bnd nr n tn h bnd nr fr

(jn2 rdl t r 95 l l ; —5 l l nr fr bnd nr

n ndr rbn n thl thl tn (MEK h d t rnn f th 53 rdl btn th lph rbn nd th rbnl rbn Kntz t l 7 l fnd

rrltn btn th ntrnl rtr brrr nd rnn n C-- t fr d

tr nd ntrt rp btttn fr hdrn t n th rbnl rbn n

tldhd nrd bnd nr - 1 l l n --CC(=OO (959 l l

nd - l l fr -CC(=O (93 l Y 1 -l

h C-- bnd nr n ntrthln -C=CO 115 l 1 -1

nd vnl ntrt --C=COO 113 l l -1 hh - l 1 hhr thn tht n thln h C-- bnd nr n C=C(--O (115 l 1-1

nrd - l 1 prd t th ndr bnd nr n prpln h rlt fr th O OO (ltrn thdrn rp drn n ltrn thrh th p bnd n th C rbn r ltrphl (rbn t r ptv nd

bntl th C=C-- bnd trnr

h (jn nd jn ll d nt xt b th O—O bnd

t 3 l 1 h r thn th rbnl n bnd (- l l bn frd

n C3C(=OC(=O nd tn C=C= h ll th th rdl t

djnt t th n rp dt t fr rbnl nd O rdl dtl

pn thr frtn

5

C2 C(OC2O2 CH3C(=O)CHNO2 C2C(OC2OO

(j(n2 ((jn2 (j(n

CH=CHNO CH2=CNO2 C=COO

(cj=cno2) (jn2 (jn

C2 C(0O 2 CH2C(=O)ONO

(j(n2 (j(n

r Structures and used nomenclature of th lowest energy conformers of radicals corresponding to the loss of a hydrogen atom from parent molecules (see Table C2.2-C2.15, appendix C, for details). bl 24 Reaction Enthalpies at 298 K for Radicals, Calculated Enthalpies of Formation and Bond Energy' bl 24 (Continued) bl 24 (Cntnd

tn nthlp nld thrl rrtn nd zr-pnt nr 58

Table 2.5 Sr f AfH298 nd nd Enr l fr trrbnl nd trlfn nd thr Crbn dl a (n l ld

a dl r rprntd b bbrvtd frl fr plt; j rprnt rdl t

2.4.3 Internal Rotation Potentials

ttn bt th C-C C- C-O C-OO nd -O bnd n th trt ll

r tdd Enr prfl fr ntrnl rttn r lltd t dtrn nr f th rttnl nfrr nd ntrnvrn brrr ln th ntrbtn t th 59

ntrp nd ht pt fr th l brrr (bl 5 l 1 rtr rn

lltd b th Gn d r xnd b vn th vbrtn d vnt; th ntrbtn fr frn rrpndn t ntrnl rttn r xldd fr th ntrp nd ht pt nd rpld th r rt tt f S nd Cp(T) fr th ntrnl rtr ntrbtn h ttl nr fntn f th dhdrl

nl r ptd t th 3Y/-31G(dp lvl f thr b nnn th trn

nl btn ° nd 3° n tp f 15° hl ll rnn rdnt r fll

ptzd All ptntl r r-nnd hn lr nr nfrr fnd rltv t th ntl l nr nfrr h ttl nr rrpndn t th t

tbl llr nfrr rbtrrl t t zr nd th d rfrn pnt t plt th ptntl brrr h rltn ptntl nr brrr fr ntrnl rttn

n th tbl nn-rdl nd rdl ll r hn n 31-31 hdrl

nl d n ptz trtr r hn n prnth

h lltd rttnl brrr f thl rp ll h th trl thr-fld tr th th brrr btn 1 nd 15 l 1 hh lttl bt lr pr t tpl ll thl rttn hh rnn btn 7 nd 3 l

l h C-O rtr n ntrtn nd ntrtt xhbtd l -fld tr brrr f 1 nd l l hht rptvl hl th ptntl fr ntrthln hd -fld tr th brrr f 5 l l O--O ntrnl rtr n prpn ntrt nd vnl ntrt h tr -fld hh brrr f 13 l

l hl th ptntl n tl ntrt hd -fld brrr f 3 nd 5 l l 60

Potential energy for ntrnl rttn n Nitro ace tone

Figure 2.3.1 Potential Energy Profiles for Internal Rotations in Nitroacetone.

Figure 2.3.2 Potential Energy Profiles for Internal Rotations in 2 propanone nitrite. 1

r 33 Potential Energy Profiles for Internal Rotations in Nitroethylene.

r 3 Potential Energy Profiles for Internal Rotations in Vinyl nitrite. 62

Potential energy for internal rotation in Nitroacetate

Figure 2.3.5 Potential Energy Profiles for Internal Rotations in Nitroacetate.

Figure 2.3.6 Potential Energy Profiles for Internal Rotations in Acetyl nitrite. 3

•112C(.0)CH2NO2 cjc(=o)--cno2 rotor and --NO2 rotor barrier are similar to that in the parent cjc(=o)cno2.

The barrier for the cj--c(=o)cno2 rotor of the methyl radical site is significantly increased

(to 13 kcal mol ) and distorted two potential compared to a 3-fold barrier for the parent.

This barrier increase (11.6 kcal moi l ) suggests a high degree of resonance between the carbon radical and the carbonyl oxygen; this is interpreted as the difference between the barrier of the parent and was also abserved by Kemnitz et a1 7 .

r 37 Potential Energy Profiles for Internal Rotations in cjc(=o)cno2 64

CC(=0•-O2

The --NO2 rotor in (jn2 is increased from 2.1 kcal mor l in nitroacetone to 8 kcal moi l in radical, this is reflected in the 6 kcal moi l resonance. The (jn2 rotor has a 2-fold potential with the barrier at 3.1 kcal moi l while the methyl rotor is similar to that in the parent.

tntl nr fr ntrnl rttn n (jn2

r 28 Potential Energy Profiles for Internal Rotations in (jn2 5

•1-1C(COO

hr r nfnt dffrn n ntrnl rtr ptntl btn th j(n rdl( nfrtn nd th prnt (trn nfrn h j(n rtr h -fld brrr th th brrr f 9 nd 3 l l l hl th j(n rtr h

dtrtd n ptntl t 35 l l l h prnt h t fld ptntl h

j(n rtr lr t tht n th prnt th t fld ptntl nd vr hh brrr (13 l l l h brrr fr th j(n rtr f th thl rdl t

nrd fr 15 l l l n th prnt t 1 l l l n th rdl h rfltd n th 15 l l l rnn

r 39 tntl nr prfl fr ntrnl rttn n j(n 66

C•FI=CHNO2

The --NO2 rotor in cj=cno2 has a 2-fold barrier with the barriers at 5 kcal ma compared to the parent with a 2-fold barrier at 6.5 kcal moll

Figure 2.3.10 Potential Energy for Internal Rotation in cj=cno2 67

CH2=C•NO2

The --NO2 rotor exhibits a 2-fold barrier with some distortion of the symmetric 2-fold potential of the parent and the barriers is decreased from 6.5 kcal mo1 -1 in the parent to

2.5 kcal mol 1 in this radical.

5

Figure 2.3.11 Potential Energy for Internal Rotation in c=cjno2

•1-1=COO

All internal rotor in jn are similar to those in the parent vinyl nitrite. The jn rotor is similar to that in the parent with a two fold potential and very high barrier (13.5 kcal mol I ) while the j—n rotor has a three fold potential with one at barrier at 2 kcal moi l and two barriers at 4 kcal ma' .

r 31 Potential Energy for Internal Rotation in jn 9

C•11C(=O

h brrr fr th j(n2 rtr f th thl rdl t nfntl nrd

(t 1 l l nd dtrtd t ptntl prd t th thr fld fr th prnt

h brrr nr (11 l l t hh dr f rnn btn th

rbn rdl nd th rbnl xn h j(—n2 rtr h -fld brrr th th brrr f l l

r 313 tntl Enr fr Intrnl ttn n j(n2 0

C•2C(=00O

The barrier for the cj--c(=o)ono rotor of the methyl radical site is significantly increased

(to 9 kcal mol -1 ) and distorted two potential compared to three fold for the parent. This barrier increase (8.5 kcal ma i ) suggests a high degree of resonance between the carbon radical and the carbonyl oxygen. The cjc(=o)--ono and cjc(=o)o--no rotor barriers increase -1 kcal moi l with two fold compare to that in the parent.

r 24 Potential Energy for Internal Rotation in cjc(=o)ono

244 Entrp nd t Cpt t

Entropy and heat capacity contributions as a function of temperature are determined from

the calculated structures, moments of inertia, vibration frequencies, symmetry, electron

degeneracy, number of optical isomers and the known mass of each molecule. The

calculations use standard formulas from statistical mechanics for the contributions of

translation, external rotation and vibrations using the "SMCPS" program. 42 This program

utilizes the rigid-rotor-harmonic oscillator approximation from the frequencies along with 71

nt f nrt fr th ptzd CS-Q3 trtr viz. 3Y/-311G(ddp lvl Cntrbtn fr ntrnl rtr ( I n bl n th tzr-Gnn frl5 46 r btttd fr ntrbtn fr ntrnl rtr trn frn

hr brrr r dtrnd t b bl 5 l l h ntrp nd ht

pt dt r ndd t dtrn dpndn f th nthlp ntrp Gbb Enr

nd lbr ntnt th tprtr Entrp nd ht pt lltn r prfrd n plt b t -Q3 dtrnd tr nd hrn frn rzd n bl 7

bl Idl G-ph hrdn rprt vs prtr 73

bl (Cntnd 4

bl 26 (Cntnd

hrdn prprt r rfrrd t tndrd tt f n dl t 1 t S°( nd C°p( r n l l 1C 1 b Str nbr d fr lltn f S°( r n prnth

24 Grp l fr n th Grp Addtvt Mthd fr Ettn f hrhl prprt

Grp ddtvt3 trhtfrrd nd rnbl rt lltn thd t

tt thrdn prprt f hdrrbn nd xntd hdrrbn"; t prtlrl fl fr ppltn t lrr ll nd fr n d r dtb fr th ttn f thrhl prprt n rtn hn nrtn In th ppr tt x ntrrbnl ntrlfn rrpndn ntrt nd ht

rbn ntrd rdl rp b n th thrdn prprt dt dvlpd n th td pl th ll-hdrrbn rp n th ltrtr h frtn rp r ltd n th bl 7 ln th tndrd hdrrbn rp d 6

bl 2 Grp hrhl l

tr nbr ( tn nt nt (S =S nt -ln

2 Cnln

hrdn prprt (Af°9 S°95 nd Cp(T), (5 T < 5 K fr ntrrbnl ntrlfn nd rrpndn ntrt r rprtd Stndrd nthlp

f frtn Af°9 r lltd n dnt fntnl thr nd d rtn h nthlp f frtn f tl ntrt r fnd t b -1 l l

r tbl (lr nthlp thn th rrpndn ntr hl Af°9 f ntrtn

3 l l r tbl thn th rrpndn ntrt h Af°9 f vnl ntrt

3 l l r tbl thn th rrpndn ntr h trn nfrtn rptv t C--- dhdrl nl n prpn ntrt vnl ntrt nd tl ntrt

r r tbl thn rrpndn r Enthlp f frtn ntrp S°(

nd ht pt C° p( vl r rprtd ln th bnd nr nd

rrpndn thrhl prprt fr rdl rrpndn t l f hdrn t fr th rbn t h bnd dtn nr n ll p r

brvd t nr fr 5 t l l ttnl brrr ptntl r rprtd fr ntrnl rtr nd hndrd ntrnl rtr ntrbtn fr Af°99 S°9 nd C p(

r lltd Grp fr n rp ddtvt r dvlpd AEI A

COMAISO EMOCEMISY AA

bl A11 pr th nthlp ntrp nd ht pt dt fr th td fr ntrprpn ntrprpn nd ntr thl prpn th rrpndn dt fr Ahrft nd Grd°

I — h td A-G Ahrft nd Grn frn 9

7 AEI

IAIO EQUECIES A OIMIE GEOMEY O IOAKAES AKY IIE A EI AICAS

bl 11 Clltd t CS-Q3 pt viz. 3Y/-311G(ddp vl brtn rn

79 80

bl (Continued) 1

bl 1 Gtr rtr f tr-n-rpn C3CCO (cccno2) Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cccno2: 77 79 nd 55

bl 13 Gtr rtr f trt n-prpn C3CCOO (cccono) Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cccono: 195 11155 nd 19 8

bl 4 Gtr rtr f tr--rpn C3C(OC3 ((n2 Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr (n2: 3519 775 nd 719

bl 15 Geometry Parameters of Nitrite-iso-propane CH 3CH(ONO)CH 3 (cc(ono)c) Optimized at CBS-QB3 Composite, viz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for cc(ono)c: 242.06, 861.77 and 1015.70 5

bl 1 Gtr rtr f tr trtr btn C3C(C3(O ((nOptzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr (2n2: 5353 7551 nd 591 86

Table B1.7 Geometry Parameters of Nitrite tertiary butane CH3C(CH3)2(ONO) (cc(c2)ono) Optimized at CBS-QB3 Composite, viz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for cc(c2)ono: 412.35, 1052.39 and 1060.89 7

bl 1 Gtr rtr f C CCO (cjccno2) Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjccno2: 597 7315 nd 79

bl 19 Gtr rtr f C 3CCO (jn2 Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr jn2: 15 799 nd 9197 8

bl 0 Gtr rtr f C3CCO (jn2 Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr jn2: 5 7 nd 9

bl 111 Gtr rtr f CCCOO (cjccono) Optzd t CS- Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjccono: 13715 1755 nd 119 91

bl 11 Geometry Parameters of CH3 CHCH2ONO (ccjcono) Optimized at CBS- QB3 Composite, vz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for ccjcono: 155.99, 1030.21 and 1076.89 2

bl Geometry Parameters of CH2CH (NO2)CH3 (cjc(no2)c) Optimized at CBS- QB3 Composite, viz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for cjc(no2)c: 341.80, 579.54 and 701.28 93

bl 11 Gtr rtr f C3C(OC3 (ccj(no2)c) Optzd t CS- Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr ccj(no2)c: 3 73 nd 15 9

bl 115 Gtr rtr f CC(OOC3 (cjc(ono)c) Optzd t CS- Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjc(ono)c: 1 nd 95

bl 11 Gtr rtr f CC(C3(O (j(2n2 Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr j(2n2: 5 71 nd 5 9

bl 117 Gtr rtr f CC(C3(OO (cjc(c2)ono) Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjc(c2)ono: 3997 19 nd 17 AEI C

IAIO EQUECIES A OIMIE GEOMEY O IOCAOYS IOOEIS COESOIG IIES A EI CAO CEEE AICAS

bl C1 Clltd t CS-Q3 pt viz. 3Y/-311G(ddp vl brtn rn

97 8

bl C2 (continued) 99

bl C Gtr rtr f trtn C3C(=OC O ((n2 Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr (n2: 351 119 nd 19 100

Table C3 Geometry Parameters of 2 Propanone nitrite CH 3C(=O)CHONO (cc(=o)ono) Optimized at CBS-QB3 Composite, viz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for cc(=o)ono: 254.56, 1311.02 and 1483.46 11

bl C Gtr rtr f trthln C=CO (c=cno2) Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr c=cno2: 1531 33 nd 533 1

bl C5 Gtr rtr f nl ntrt C=COO (n Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr n: 5 939 nd 7315 13

bl C Geometry Parameters of Nitroacetate CH3C(=0)NO2 ((n2 Optimized at CBS-QB3 Composite, viz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for (n2: 313.64, 488.55 and 791.17 1

bl C7 Geometry Parameters of Acetyl nitrite CH3C(=0)NO2 ((n Optimized at CBS-QB3 Composite, vz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for (n: 183.21, 809.92 and 981.98 15

bl C Gtr rtr f C C(=OCO (j(n2 Optzd t CS-Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr j(n2: 311 931 nd 1151 1

bl C9 Gtr rtr f C3C(=OCO (cc(=o)cjno2) Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjc(=o)cno2: 391 9755 nd 13995 17

bl C1 Gtr rtr f C C(=OCOO (j(n Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr j(n: 35 1359 nd 1 1

bl C11 Gtr rtr f C=CO (jn2 Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr jn2: 17 3737 nd 5 19

bl C1 Geometry Parameters of CH2=CNO2 (jn2 Optimized at CBS-QB3 Composite, vz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for jn2: 140.09, 394.99 and 535.09 11

bl C13 Gtr rtr f C=COO (jn Optzd t CS-Q3 Cpt vz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr jn: 319 715 nd 7777 111

bl C1 Geometry Parameters of CH2C(=O)NO2 (j(n2 Optimized at CBS- QB3 Composite, vz. B3LYP/6-311G(2d,d,p) Level

Moments of Inertia (amu unit) for j(n2: 296.03, 469.70 and 765.73 11

bl C15 Gtr rtr f C C(=OOO (cjc(=o)ono) Optzd t CS- Q3 Cpt viz. 3Y/-311G(ddp vl

Mnt f Inrt ( nt fr cjc(=o)ono: 17 75 nd 99 EEECES

1 Y Handbook of Bond Dissociation Energies in Organic Compounds; CC r tn 3 Atrn ; zzll W; S M Int. J. Chem. Kinet. 200 39, 37-39 3 Atrn ; zzll W; S M J. Phys. Chem. A 2008 112, 317-315 n A M; zzll W Cbtn Chtr f trn In Gas-Phase Combustion Chemistry; Grdnr W C r; Sprnr Yr 1999; pp 15-31 5 ( Alxndr M ; dn ; x M E; Klb C E; Ml C Prog. Energy Combust. Sci. 17, 3-9 (b rll In Chemistry and Physics of Energetic Materials; l S Ed; Klr Ad bl rdrht h thrlnd 199; p 77 ( K K K; Srfld M Fundamentals of Solid Propellant Combustion, Progress in Astronautics and Aeronautics; AIAA In Yr 19 p 9 (d Mnl G ; zn G M; btv Y I Strnn A Thermal decomposition and combustion of explosives and propellants; M 199 (n n ( hx C; rh A Oxidat. Commun. 8 3, 77-7 (f Gr ; S Y; n ; Orn E Combust. Flame 8 61, 51- ( rt C; rh A; n M Combust. Flame 8 40, 9-91 (h Ctrll ; Grh ; d Trans. Farad. Soc. 7 5-59 Sprt rv f dn t l (dn ; rntn E hpn ll th vrv f Andrn t l (Andrn W ntjn A In Advanced Series in 16. Overview of Recent Research on Energetic Materials; Sh W rll hpn Ed; Wrld S bl Snpr 5 7 r M S; th ; Altr J. Org. Chem. 8 50, 131-13 rr K J. Org. Chem. 88 53, 377-3779 9 C n K Wrd K -hnn Glrbr Int J Chem Kinet. 2008 7 3-1 1 rl ; rn ; ln ; n S Mt. J.Chem.Kinet. 7 115-117 11 t G J. Phys. Chem. A. 2006 110(21); -1 1 Gt K E; r ; xn A J. Phys. Chem. A 2006 110, 119- 1197 13 MK M J. A Chem. Soc. 86 108, 57-579 1 MK M J. Phys. Chem. 8 93 735-739

4

15 Mn M ; rd E . Phys. Chem. A 8 102, 9-99 1 n A; ntr ; ; n M Phys. Chem. Chem. Phys. 200 5 173-173 17 Gtv G ; n ; rtltt . Chem. Phys. 0, 3-11 1 r S Mt. . Quantum Chem. 64, 3-9 19 rnll ; Olv Proc. R. Soc. London. Ser. A 82 381, 3-55 rt K; rd . Am. Chem. Soc. 115, 3-351 1 ( Khrpv G M; Shv A G; Shv G A; Shlphnv A Russ. Chem. Bull. (IzV. AN, Ser. Khim.) 200 50, 95-957 (b Khrpv G M; Shtdnv ; Chhv ; Shv A G . Mol. Struct. (THEOCHEM) 2004 6, 1-9 rnr ; Crll M ; Cx A . Phys. Chem. 83, 173-1 3 Wdt A M; nt E ; Y . Phys. Chem. 86 90, 359-355 Khrpv G M; Shv A G; Shv G A; lv E G; Chhv Chem. Comput. Simul. Butlerov. Commun. 2002 686, 15-19 5 lr A; lv . Phys. Chem. 39, 195- 111 Sp G ; nn S W . Am. Chem. Soc. 6 89, 3 7 Sttr U; nll M . Phys. Chem. A 0, 55-55 W-; -; Chn -M; -C . Phys. Chem. A 2002 106, 79- 733 9 bbrt E; dlr K . . Chem. Phys. 2 20, 57-577 3 Cnb C ; Chvl ; Mrn O; r S; Ott C M . Phys. Chem. 86 90, 353-35 31 ( Sh ; Chn ; Yn Struct. Chem. 200 16, 57- (b Sh -; Chn -; Yn -; Chin. Phys. 2006 39-333 ( Sh -; Chn -; Yn -; n S.-K.Chin. Phys. Lett. 2006 23, 19-1

3 Arn ; An M; Gtzllr ; ltnprr U; G - lr W . Aerosol Sci. 2000 31, S 135 33 Crt A; hvhr K; dfrn C; lv ; pl A . Chem. Phys. , 06, 13-179 3 M S nd r rdtn t f rtn f Enrt Mtrl Un Qnt Mhnl Clltn Combustion and Flame 11 5-5 115

35 A Ont Ctr I Gölp Yn Ab nt nt hl prdtn f nthlp f frtn ht pt nd ntrp f -ph nrt pnd Combustion and Flame 7 151 -73 3 - - hn - Yn nt fntnl td f th ht f frtn f vrl ntrtr pnd Journal of Molecular Structure: THEOCHEM 7 15 151-15 37 Gn 3 vn 1 rh M ; r G W; Shll ; Sr G E; bb M A; Chn ; Mntr A r; rvn ; Kdn K ; rnt C; Mll M; Inr S S; ; rn ; Mnn ; C M; Sln G ; trn G A; tj ; d M; Ehr M; t K; d ; ; Ihd M; j ; nd Y; Kt O; ; Kln M; ; Knx E; rthn ; Cr ; Ad C; rll ; Gprt ; Strtnn E; Yzv O; Atn A ; C ; ll C; Ohtr W; Al Y; Mr K; th G A; Slvdr ; nnnbr ; rz G; pprh S; nl A ; Strn M C; r O; Ml K; b A ; hvhr K; rn ; Ortz ; C Q; bl A G; Clffrd S; Cl ; Stfnv ; G; hn A; rz ; Kr I; Mrtn ; x ; Kth ; Al-h M A; n C Y; nr A; Chllb M; Gll M W; hnn ; Chn W; Wn M W; Gnzlz C; pl A Gn In ttbrh A 3 3 W hr d Shlr nd A pl Ab Int Mllr Orbtl hr (hn Wl Sn Yr 19 39 IS Chtr Wbb http://webbook.nist.gov/chemistry/ AM El-h W zzll M S M vrr G l nd Crrn J. Phys. Chem. A 11 131-133 1 A Stt nd d Phys. Chem. 199 1 15 Shn C h rttn prtnt f Chl Ennrn r Inttt f hnl 3 S W nn Thermochemical Kinetics; Wl-Intrn Yr 197 l nd n J. Am. Chem. Soc. 19 1 5 ( tzr K S Chem. Phys. 1937 5, 9 (b Ibid. 19 14, 39 tzr K S.; Gnn W J. Chem. Phys. 19 10, 7 Kntz C ; n M J. Am. Chem. Soc. 7 129(9), 51-5 h ; zzll W; Krd M J. Phys. Chem. A., 7; 111(28); 31-377 6

9 brt W Ahrft nd Wll Grn J. Phys. Chem. A., 2008 112(38); 91- 915 5 brt Sh Int. J.Chem.Kinet. 5, 1-9 51 Y-n nd hn l J. Phys. Chem., 2 96, 95-9571 5 d Sbbr nnn hrn nd ph W zzll Phys. Chem. Chem. Phys., 2002 391-373 53 Ahd M El-h ph W zzll hn M S Mr vrr Grdnn l nd nr Crrn J. Phys. Chem. A., 2006 110(50); 131-133