Caffeine: a Well Known but Little Mentioned Compound in Plant Science

Total Page:16

File Type:pdf, Size:1020Kb

Caffeine: a Well Known but Little Mentioned Compound in Plant Science Opinion TRENDS in Plant Science Vol.6 No.9 September 2001 407 the widespread medical interest in caffeine as a dietary Caffeine: a well known component, these developments have received little attention in the plant literature, with the topic being all but neglected in recent biochemistry text books9–12. but little mentioned Caffeine is synthesized from xanthosine via a xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine pathway; compound in plant the first, third and fourth steps are catalysed by N-methyltransferases that use S-adenosyl-L- methionine (SAM) as the methyl donor13. A recent science important development has been the cloning and expression in E. coli of a gene from tea leaves that encodes caffeine synthase, an extremely labile Hiroshi Ashihara and Alan Crozier N-methyltransferase that catalyses the last two steps in this pathway14. In addition, coffee leaf cDNAs of theobromine synthase, which catalyses the penultimate Caffeine, a purine alkaloid, is a key component of many popular drinks, most methylation step, have been similarly cloned and notably tea and coffee, yet most plant scientists know little about its expressed in E. coli15,16. There are also preliminary biochemistry and molecular biology. A gene from tea leaves encoding caffeine reports on the cloning of an N-methyltransferase from synthase, an N-methyltransferase that catalyses the last two steps of coffee that catalyses the initial methylation step in the caffeine biosynthesis, has been cloned and the recombinant enzyme pathway17,18. These advances in our knowledge of the produced in E. coli. Similar genes have been isolated from coffee leaves but metabolism of caffeine and related compounds in plants the recombinant protein has a different substrate specificity to the tea and the potential biotechnological applications of enzyme. The cloning of caffeine biosynthesis genes opens up the possibility of purine alkaloid research are highlighted in this article. using genetic engineering to produce naturally decaffeinated tea and coffee. Distribution of purine alkaloids Caffeine (1,3,7-trimethylxanthine) is one of the few Purine alkaloids have a limited distribution within plant products with which the general public is readily the plant kingdom. In some species, the main purine familiar, because of its occurrence in beverages such as alkaloid is theobromine or methyluric acids rather coffee and tea, as well as various soft drinks. A growing than caffeine13. Among the purine-alkaloid- belief that the ingestion of caffeine can have adverse containing plants, most studies have been carried out effects on health has resulted in an increased demand with species belonging to the genera Camellia and for decaffeinated beverages1. Unpleasant short-term Coffea. In C. sinensis (Fig. 2), caffeine is found in the side effects from caffeine include palpitations, highest concentrations in young leaves of first-flush gastrointestinal disturbances, anxiety, tremor, shoots of var. sinensis (2.8% of the dry weight). increased blood pressure and insomnia2,3. In spite of Theobromine is the predominant purine alkaloid in numerous publications on the long-term consequences young leaves of cocoa tea (Camellia ptilophylla) of caffeine consumption on human health, no clear (5.0–6.8%) and Camellia irrawadiensis (<0.8%). picture has emerged, with reports of both protective The beans of most cultivars of Arabica coffee and deleterious effects4. (C. arabica) (Fig. 3) contain ~1.0% caffeine, whereas Caffeine was discovered in tea (Camellia sinensis) Coffea canephora cv. Robusta (1.7%) and cv. Guarini and coffee (Coffea arabica) in the 1820s (Ref. 5). (2.4%), Coffea dewevrei (1.2%) and Coffea liberica (1.4%) Along with other methylxanthines, including contain higher concentrations. By contrast, the caffeine theobromine (3,7-dimethylxanthine), paraxanthine contents of the seeds of other species, such as Coffea Hiroshi Ashihara (1,7-dimethylxanthine) and methyluric acids (Fig. 1), eugenioides (0.4%), Coffea salvatrix (0.7%) and Coffea Metabolic Biology Group, Dept Biology, Faculty of caffeine is a member of a group of compounds known racemosa (0.8%), are lower than that of C. arabica. Science, Ochanomizu collectively as purine alkaloids. There are two Young expanding leaves of C. arabica plants also University, Otsuka, hypotheses about the role of the high concentrations of contain caffeine, with traces of theobromine. In model Bunkyo-ku, Tokyo 112-8610, Japan. caffeine that accumulate in tea, coffee and a few other systems, weak intermolecular complexes form 19 e-mail: plant species. The ‘chemical defence theory’proposes between caffeine and polyphenols , and it has been [email protected] that caffeine in young leaves, fruits and flower buds proposed that caffeine is sequestered in the vacuoles 20 Alan Crozier acts to protect soft tissues from predators such as insect of coffee leaves as a chlorogenic acid complex . Plant Products and larvae6 and beetles7. The ‘allelopathic theory’proposes Mature leaves of C. liberica, C. dewevrei and Coffea Human Nutrition Group, that caffeine in seed coats is released into the soil and abeokutae convert caffeine to the methyluric acids, Division of Biochemistry 8 and Molecular Biology, inhibits the germination of other seeds . The potential theacrine (1,3,7,9-tetramethyluric acid), liberine Faculty of Biomedical and ecological role of caffeine is described in Ref. 6. [O(2),1,9-trimethyluric acid] and methylliberine Life Sciences, University It is only within the past five years that the [O(2),1,7,9-tetramethyluric acid] (Fig. 1). of Glasgow, Glasgow, biosynthetic and catabolic pathways that regulate the Purine alkaloids are also present in the leaves of UK G12 8QQ. e-mail: build-up of caffeine in the vacuoles of cells of tea and maté (Ilex paraguariensis), which is used in rural areas [email protected] coffee plants have been elucidated fully. In contrast with of South America, such as the Brazilian Panthanal and http://plants.trends.com 1360-1385/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S1360-1385(01)02055-6 408 Opinion TRENDS in Plant Science Vol.6 No.9 September 2001 O O O O O O CH CH CH H CH 1 7 3 3 H 3 3 H3C N N H3C H3C N H3C N H3C N N HN N N N N N O O O 3 O N N O N N O N N O N N O N N O N N H C CH 3 CH H3C CH CH3 CH3 CH3 CH3 3 3 3 Caffeine Theobromine Paraxanthine Theacrine Liberine Methylliberine TRENDS in Plant Science Fig. 1. Structures of the the Pampas in Argentina, to produce a herbal tea purine ring of caffeine can be produced exclusively methylxanthines caffeine, (http://www.vtek.chalmers.se/~v92tilma/tea/mate.html). by this route in young tea leaves25. The formation of theobromine and Young maté leaves contain 0.8–0.9% caffeine and caffeine by this pathway is closely associated with paraxanthine, and the methyluric acids 0.08–0.16% theobromine. Theobromine is the the SAM cycle (also known as the activated-methyl theacrine, liberine and dominant purine alkaloid in seeds of cocoa (Theobroma cycle) because the three methylation steps in the methylliberine. cacao), with cotyledons of mature beans containing caffeine biosynthesis pathway use SAM as the 2.2–2.7% theobromine and 0.6–0.8% caffeine. Caffeine methyl donor (Fig. 4). During this process, SAM is (4.3%) is the major methylxanthine in cotyledons of converted to SAH, which in turn is hydrolysed to guaraná (Paulliania cupana), extracts of which are L-homocysteine and adenosine. The adenosine is used as a refreshing pick-me-up (http://www.rain- used to synthesize the purine ring of caffeine and tree.com/guarana.htm) and which is, in a dilute form, the L-homocysteine is recycled to replenish SAM sold extensively in Brazil as a carbonated drink. Seeds levels. Because 3 moles of SAH are produced via the of cola (Cola nitida) also contain caffeine (2.2%)21. SAM cycle for each mole of caffeine that is Caffeine has recently been detected in flowers of synthesized, this pathway has the capacity to be the several citrus species, with the highest concentrations sole source of both the purine skeleton and the (0.2%) in pollen22, and is also a fungal metabolite, being methyl groups required for caffeine biosynthesis in the principal alkaloid in sclerotia of Claviceps young tea leaves25. sorhicola, a Japanese ergot pathogen of Sorghum23. Purine ring methylation Biosynthesis of purine alkaloids Xanthosine is the initial purine compound in the Origin of the purine ring of caffeine caffeine biosynthesis pathway, acting as a substrate Caffeine is a trimethylxanthine whose xanthine for the methyl group donated by SAM. Tracer skeleton is derived from purine nucleotides that are experiments with labelled precursors and leaf discs converted to xanthosine, the first committed from tea and coffee plants have shown that the major intermediate in the caffeine biosynthesis pathway. route to caffeine is xanthosine → 7-methylxanthosine → There are at least four routes from purine 7-methylxanthine → theobromine → caffeine, nucleotides to xanthosine (Fig. 4). The available although alternative minor routes might also evidence indicates that the most important routes operate26. However, as well as entering the caffeine are the production of xanthosine from inosine biosynthesis pathway, xanthosine is also converted to ′ 5 -monophosphate, derived from de novo purine xanthine, which is degraded to CO2 and NH3 via the nucleotide biosynthesis, and the pathway in purine catabolism pathway27,28 (Fig. 5). which adenosine, released from S-adenosyl-L- The first methylation step in the caffeine homocysteine (SAH), is converted to xanthosine biosynthesis pathway, the conversion of xanthosine via adenine, adenosine 5′-monophosphate, inosine 5′-monophosphate and xanthosine 5′-monophosphate13,24,25. Recently published data indicate that the conversion of SAH to xanthosine is such that the Fig.
Recommended publications
  • 2354 Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1
    [Frontiers in Bioscience 11, 2354-2370, September 1, 2006] Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1, Rocio Cruz-Ortega 1 and George R. Waller 2 1Departamento de Ecologia Funcional, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico. Mexico DF 04510, 2Department of Biochemistry and Molecular Biology, Oklahoma State University. Stillwater, OK 74078, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Classification of alkaloids 4. The importance of purine in natural compounds 5. Purine alkaloids 5.1. Distribution of purine alkaloids in plants 5.2. Metabolism of purine alkaloids 6. Biosynthesis of caffeine 6.1. Purine ring methylation 6.2. Cultured cells 7. Catabolism of caffeine 8. Caffeine-free and low caffeine varieties of coffee 8.1. Patents 9. Ecological role of alkaloids 9.1. Herbivory 9.2. Allelopathy 9.2.1. Mechanism of action of caffeine and other purine alkaloids in plants 10. Perspective 11. Acknowledgements 12. References 1. ABSTRACT 2. INTRODUCTION In this review, the biosynthesis, catabolism, Alkaloids are one of the most diverse groups of ecological significance, and modes of action of purine secondary metabolites found in living organisms. They alkaloids particularly, caffeine, theobromine and have many distinct types of structure, metabolic pathways, theophylline in plants are discussed. In the biosynthesis of and ecological and pharmacological activities. Many caffeine, progress has been made in enzymology, the amino alkaloids have been used in medicine for centuries, and acid sequence of the enzymes, and in the genes encoding some are still important drugs. Alkaloids have, therefore, N-methyltransferases. In addition, caffeine-deficient plants been prominent in many scientific fields for years, and have been produced.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.468,645 B2 Owoc (45) Date of Patent: Oct
    USOO9468645B2 (12) United States Patent (10) Patent No.: US 9.468,645 B2 OWOc (45) Date of Patent: Oct. 18, 2016 (54) HIGHLY SOLUBLE PURINE BOACTIVE (2013.01); A61K 9/0019 (2013.01); A61 K COMPOUNDS AND COMPOSITIONS 9/0095 (2013.01); A61K 9/4858 (2013.01); THEREOF A61 K3I/00 (2013.01); A61K 45/06 (2013.01); A23 V 2002/00 (2013.01) (71) Applicant: JHO Intellectual Property Holdings, (58) Field of Classification Search LLC, Davie, FL (US) CPC ..................... A23V 2002/00; A23V 2200/31; (72) Inventor: Jack Owoc, Weston, FL (US) A23V 2250/062: A23V 2250/21: A23V 2250/5108: A23V 2250/5118: A23V (*) Notice: Subject to any disclaimer, the term of this 2250/54246; A23V 2250/54252: A23V patent is extended or adjusted under 35 2250/704; A23V 2250/712: A61K 31/522; U.S.C. 154(b) by 3 days. A61K 2300/00; A61K 45/06; A61 K9/00 See application file for complete search history. (21) Appl. No.: 14/628,626 (56) References Cited (22) Filed: Feb. 23, 2015 U.S. PATENT DOCUMENTS (65) Prior Publication Data 837,282 A * 12/1906 Owoc ....................... EO1B 9/60 US 2015/O238494 A1 Aug. 27, 2015 238,292 5,973,005 A * 10/1999 D'Amelio, Sr. ... CO7C 277/08 514,565 Related U.S. Application Data 2006/0236421 A1* 10, 2006 Pennell ................ C12N 9/1007 800,278 (60) Provisional application No. 61/944,528, filed on Feb. 2009,0257997 A1* 10, 2009 Owoc .................. A61K9/0014 25, 2014. 424/94.1 (51) Int. C. * cited by examiner A6 IK3I/522 (2006.01) A6 IK 45/06 (2006.01) Primary Examiner – Debbie K Ware A2.3L 2/52 (2006.01) (74) Attorney, Agent, or Firm — David W.
    [Show full text]
  • Identification and Characterization of N 9-Methyltransferase Involved In
    ARTICLE https://doi.org/10.1038/s41467-020-15324-7 OPEN Identification and characterization of N9- methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea Yue-Hong Zhang1,2,3,6, Yi-Fang Li1,2,3,6, Yongjin Wang1,3,6, Li Tan1,3, Zhi-Qin Cao1,2,3, Chao Xie1,2,3, Guo Xie4, Hai-Biao Gong1,2,3, Wan-Yang Sun1,2,3, Shu-Hua Ouyang1,2,3, Wen-Jun Duan1,2,3, Xiaoyun Lu1,3, Ke Ding 1,3, ✉ ✉ ✉ ✉ Hiroshi Kurihara1,2,3, Dan Hu 1,2,3 , Zhi-Min Zhang 1,3 , Ikuro Abe 5 & Rong-Rong He 1,2,3 1234567890():,; Caffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites.
    [Show full text]
  • Pharmacokinetics of Caffeine: a Systematic Analysis of Reported Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.452094; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pharmacokinetics of caffeine: A systematic analysis of reported data for application in metabolic phenotyping and liver function testing Jan Grzegorzewski 1, Florian Bartsch 1, Adrian Koller¨ 1, and Matthias Konig¨ 1;∗ 1Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstraße 110, 10115 Berlin, Germany Correspondence*: Matthias Konig¨ [email protected] ABSTRACT Caffeine is by far the most ubiquitous psychostimulant worldwide found in tea, coffee, cocoa, energy drinks, and many other beverages and food. Caffeine is almost exclusively metabolized in the liver by the cytochrome P-450 enzyme system to the main product paraxanthine and the additional products theobromine and theophylline. Besides its stimulating properties, two important applications of caffeine are metabolic phenotyping of cytochrome P450 1A2 (CYP1A2) and liver function testing. An open challenge in this context is to identify underlying causes of the large inter-individual variability in caffeine pharmacokinetics. Data is urgently needed to understand and quantify confounding factors such as lifestyle (e.g. smoking), the effects of drug-caffeine interactions (e.g. medication metabolized via CYP1A2), and the effect of disease. Here we report the first integrative and systematic analysis of data on caffeine pharmacokinetics from 148 publications and provide a comprehensive high-quality data set on the pharmacokinetics of caffeine, caffeine metabolites, and their metabolic ratios in human adults. The data set is enriched by meta-data on the characteristics of studied patient cohorts and subjects (e.g.
    [Show full text]
  • Caffeine and Chlorogenic Acid Contents Among Wild Coffea
    Food Chemistry Food Chemistry 93 (2005) 135–139 www.elsevier.com/locate/foodchem Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species C. Campa, S. Doulbeau, S. Dussert, S. Hamon, M. Noirot * Centre IRD of Montpellier, B.P. 64501, 34394 Montpellier Cedex 5, France Received 28 June 2004; received in revised form 13 October 2004; accepted 13 October 2004 Abstract Chlorogenic acids, sensu largo (CGA), are secondary metabolites of great economic importance in coffee: their accumulation in green beans contributes to coffee drink bitterness. Previous evaluations have already focussed on wild species of coffee trees, but this assessment included six new taxa from Cameroon and Congo and involved a simplified method that generated more accurate results. Five main results were obtained: (1) Cameroon and Congo were found to be a centre of diversity, encompassing the entire range of CGA content from 0.8% to 11.9% dry matter basis (dmb); (2) three groups of coffee tree species – CGA1, CGA2 and CGA3 – were established on the basis of discontinuities; (3) means were 1.4%, 5.6% and 9.9% dmb, respectively; (4) there was a qualitative relation- ship between caffeine and ACG content distribution; (5) only a small part of the CGA is trapped by caffeine as caffeine chlorogenate. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Coffeae; Caffeine; Chlorogenic acids 1. Introduction lic acid [feruloylquinic acids (FQA)] and represent 98% of all CGAs (Clifford, 1985; Morishita, Iwahashi, & Two coffee species, C. canephora and C. arabica, are Kido, 1989). There are also some minor compounds, cultivated worldwide. However, these species only repre- such as esters of feruloyl-caffeoylquinic acids (FCQA), sent a small proportion of the worldÕs coffee genetic re- caffeoyl-feruloylquinic acids (CFQA) or p-coumaric acid sources as, in the wild, the Coffea subgenus (Coffea (p-CoQA).
    [Show full text]
  • Theacrine Attenuates Myocardial Fibrosis After Myocardial Infarction Via the SIRT3/Β-Catenin/ Pparγ Pathway in Estrogen-Deficient Mice
    European Review for Medical and Pharmacological Sciences 2019; 23: 5477-5486 Theacrine attenuates myocardial fibrosis after myocardial infarction via the SIRT3/β-catenin/ PPARγ pathway in estrogen-deficient mice L.-L. SONG1, Y. ZHANG2, X.-R. ZHANG3, Y.-N. SONG4, H.-Z. DAI5 1Department of Critical Care Medicine, Weifang Hanting District People’s Hospital, Weifang, China 2Department of Respiratory Medicine, Weifang Hanting District People’s Hospital, Weifang, China 3Department of Pharmacology, Weifang Medical University, Weifang, China 4Department of Breast and Thyroid Surgery, The Traditional Chinese Medicine Hospital of Weifang, Weifang, China 5Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, China Abstract. – OBJECTIVE: To investigate the myocardial apoptosis were clearly aggravated, role of theacrine in the protection of ventricular and the SIRT3 expression was decreased at 28 remodeling and chronic heart failure after myo- days after myocardial infarction. The theacrine cardial infarction in the estrogen-deficient mice. could improve the cardiac function after the MATERIALS AND METHODS: Female myocardial infarction in estrogen-deficient mice C57BL/6 mice aged 8 weeks old were selected and relieve both myocardial fibrosis and myo- and then subjected to bilateral oophorectomy. cardial apoptosis during chronic remodeling af- At 7 days after surgery, the models of the myo- ter myocardial infarction in estrogen-deficient cardial infarction were established by ligating mice. After the intervention with theacrine, the the anterior descending coronary artery. On the estrogen-deficient mice with myocardial infarc- first day after myocardial infarction, Theacrine tion had up-regulated SIRT3 and PPARγ levels (20 mg/kg) was administered via gavage for con- and a reduced β-catenin level in the heart.
    [Show full text]
  • Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times
    Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Each volume in this series provides academia, health sciences, and the herbal medicines industry with in-depth coverage of the herbal remedies for infectious diseases, certain medical conditions, or the plant medicines of a particular country. Series Editor: Dr. Roland Hardman Volume 1 Shengmai San, edited by Kam-Ming Ko Volume 2 Rasayana: Ayurvedic Herbs for Rejuvenation and Longevity, by H.S. Puri Volume 3 Sho-Saiko-To: (Xiao-Chai-Hu-Tang) Scientific Evaluation and Clinical Applications, by Yukio Ogihara and Masaki Aburada Volume 4 Traditional Medicinal Plants and Malaria, edited by Merlin Willcox, Gerard Bodeker, and Philippe Rasoanaivo Volume 5 Juzen-taiho-to (Shi-Quan-Da-Bu-Tang): Scientific Evaluation and Clinical Applications, edited by Haruki Yamada and Ikuo Saiki Volume 6 Traditional Medicines for Modern Times: Antidiabetic Plants, edited by Amala Soumyanath Volume 7 Bupleurum Species: Scientific Evaluation and Clinical Applications, edited by Sheng-Li Pan Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Bruno Burlando, Luisella Verotta, Laura Cornara, and Elisa Bottini-Massa Cover art design by Carlo Del Vecchio. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1214-3 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources.
    [Show full text]
  • The Two Tortoitumia Ultimate Tatli Himin
    THETWO TORTOITUMIAUS 20180104248A1ULTIMATE TATLI HIMIN ( 19) United States ( 12) Patent Application Publication ( 10 ) Pub . No. : US 2018 /0104248 A1 Lopez et al. (43 ) Pub . Date : Apr . 19 , 2018 ( 54 ) THEACRINE -BASED SUPPLEMENT AND Publication Classification METHOD OF USE THEREOF IN A (51 ) Int. Cl. SYNERGISTIC COMBINATION WITH A61K 31/ 522 ( 2006 . 01 ) CAFFEINE C07D 487/ 04 (2006 . 01) (52 ) U . S . CI. @( 71 ) Applicant : Ortho - Nutra, LLC , Morganville , NJ CPC .. A61K 31/ 522 ( 2013 .01 ) ; C07D 487 /04 (US ) ( 2013. 01 ) @(72 ) Inventors : Hector L Lopez , Cream Ridge , NJ (US ) ; Shawn Wells , Lewisville , TX (US ) ; Tim N . Ziegenfuss , Chardon , OH (57 ) ABSTRACT (US ) A human dietary supplement comprises theacrine and @( 73 ) Assignee : Ortho -Nutra , LLC , Morganville , NJ optionally other compounds that modulate the effects of theacrine . Uses for the theacrine - containing supplement (US ) include improvement of at least one ofmood , energy, focus, concentration or sexual desire or a reduction of at least one (21 ) Appl. No. : 15 /600 , 371 of anxiety or fatigue. A synergistic composition comprises ( 22 ) Filed : May 19 , 2017 co -administration of theacrine and caffeine , wherein the co - administered caffeine reduces theacrine oral clearance Related U . S . Application Data (CL / F ) and oral volume of distribution (Vd / F ) . In addition , the co - administered caffeine increases area under the plasma (63 ) Continuation - in -part of application No. 14 / 539, 726 , concentration time curve ( AUC ) of theacrine , and increases filed on Nov. 12 , 2014 . theacrine maximum plasma concentration ( Cmax ) in com (60 ) Provisional application No .61 / 903 ,362 , filed on Nov . parison with the corresponding pharmacokinetic parameters 12 , 2013 .
    [Show full text]
  • Plantbreedingreviews.Pdf
    416 F. E. VEGA C. Propagation Systems 1. Seed Propagation 2. Clonal Propagation 3. F1 Hybrids D. Future Based on Biotechnology V. LITERATURE CITED 1. INTRODUCTION Coffee is the second largest export commodity in the world after petro­ leum products with an estimated annual retail sales value of US $70 billion in 2003 (Lewin et a1. 2004). Over 10 million hectares of coffee were harvested in 2005 (http://faostat.fao.orgl) in more than 50 devel­ oping countries, and about 125 million people, equivalent to 17 to 20 million families, depend on coffee for their subsistence in Latin Amer­ ica, Africa, and Asia (Osorio 2002; Lewin et a1. 2004). Coffee is the most important source of foreign currency for over 80 developing countries (Gole et a1. 2002). The genus Coffea (Rubiaceae) comprises about 100 different species (Chevalier 1947; Bridson and Verdcourt 1988; Stoffelen 1998; Anthony and Lashermes 2005; Davis et a1. 2006, 2007), and new taxa are still being discovered (Davis and Rakotonasolo 2001; Davis and Mvungi 2004). Only two species are of economic importance: C. arabica L., called arabica coffee and endemic to Ethiopia, and C. canephora Pierre ex A. Froehner, also known as robusta coffee and endemic to the Congo basin (Wintgens 2004; Illy and Viani 2005). C. arabica accounted for approximately 65% of the total coffee production in 2002-2003 (Lewin et a1. 2004). Dozens of C. arabica cultivars are grown (e.g., 'Typica', 'Bourbon', 'Catuai', 'Caturra', 'Maragogipe', 'Mundo Novo', 'Pacas'), but their genetic base is small due to a narrow gene pool from which they originated and the fact that C.
    [Show full text]
  • Convergent Evolution of Caffeine in Plants by Co-Option of Exapted Ancestral Enzymes
    Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes Ruiqi Huanga, Andrew J. O’Donnella,1, Jessica J. Barbolinea, and Todd J. Barkmana,2 aDepartment of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008 Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved July 18, 2016 (received for review March 25, 2016) Convergent evolution is a process that has occurred throughout the the evolutionary gain of traits such as caffeine that are formed via tree of life, but the historical genetic and biochemical context a multistep pathway. First, although convergently co-opted genes, promoting the repeated independent origins of a trait is rarely such as XMT or CS, may evolve to encode enzymes for the same understood. The well-known stimulant caffeine, and its xanthine biosynthetic pathway, it is unknown what ancestral functions they alkaloid precursors, has evolved multiple times in flowering plant historically provided that allowed for their maintenance over mil- history for various roles in plant defense and pollination. We have lions of years of divergence. Second, it is unknown how multiple shown that convergent caffeine production, surprisingly, has protein components are evolutionarily assembled into an ordered, evolved by two previously unknown biochemical pathways in functional pathway like that for caffeine biosynthesis. Under the chocolate, citrus, and guaraná plants using either caffeine synthase- cumulative hypothesis (26), it is predicted that enzymes catalyzing or xanthine methyltransferase-like enzymes. However, the pathway earlier reactions of a pathway must evolve first; otherwise, enzymes and enzyme lineage used by any given plant species is not predict- that perform later reactions would have no substrates with which to able from phylogenetic relatedness alone.
    [Show full text]
  • Potential Herb–Drug Interactions in the Management of Age-Related Cognitive Dysfunction
    pharmaceutics Review Potential Herb–Drug Interactions in the Management of Age-Related Cognitive Dysfunction Maria D. Auxtero 1, Susana Chalante 1,Mário R. Abade 1 , Rui Jorge 1,2,3 and Ana I. Fernandes 1,* 1 CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; [email protected] (M.D.A.); [email protected] (S.C.); [email protected] (M.R.A.); [email protected] (R.J.) 2 Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal 3 CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal * Correspondence: [email protected]; Tel.: +35-12-1294-6823 Abstract: Late-life mild cognitive impairment and dementia represent a significant burden on health- care systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treat- ment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmaco- logical interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration.
    [Show full text]
  • Progress in the Production of Medicinally Important Secondary
    Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis Michael Wink, Holger Schäfer To cite this version: Michael Wink, Holger Schäfer. Progress in the production of medicinally important secondary metabo- lites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis. Biotechnology Jour- nal, Wiley-VCH Verlag, 2009, 4 (12), pp.1684. 10.1002/biot.200900229. hal-00540529 HAL Id: hal-00540529 https://hal.archives-ouvertes.fr/hal-00540529 Submitted on 27 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biotechnology Journal Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis For Peer Review Journal: Biotechnology Journal Manuscript ID: biot.200900229.R1 Wiley - Manuscript type: Review Date Submitted by the 28-Oct-2009 Author: Complete List of Authors: Wink, Michael; Heidelberg University, Institute for Pharmacy and Molecular Biotechnology
    [Show full text]