Apricot Jelly Fungus Guepinia Helvelloides

Total Page:16

File Type:pdf, Size:1020Kb

Apricot Jelly Fungus Guepinia Helvelloides apricot jelly fungus Guepinia helvelloides Kingdom: Fungi FEATURES Phylum: Basidiomycota The apricot jelly fungus is also known as the red jelly Class: Agaricomycetes fungus. The fan-shaped cap may curl under in the Order: Auriculariales back. The cap tapers to a short, thick stalk at the base. The cap may be pink to orange. The “jelly Family: Exidiaceae fungus” name is given because of the jellylike ILLINOIS STATUS consistency of the cap. The cap is firm and may be two to four inches tall and one to two and one-half common, native inches wide. The body of a fungus (mycelium) is made up of strands called mycelia. The mycelium grows within the soil, a dead tree or other object and is rarely seen. The fruiting body that produces spores is generally present for only a short period of time but is the most familiar part of the fungus to people. BEHAVIORS The apricot jelly fungus may be found statewide in Illinois. It grows singly or in clusters on soil or decaying conifers. Unlike plants, fungi do not have roots, stems, leaves, flowers or seeds. The apricot jelly fungus must absorb nutrients and water from © Roger Cook the objects it grows in. Spores are most often produced in summer and fall. The spores provide a means of reproduction, dispersal and survival in poor conditions. Spore production occurs when conditions are favorable, generally with warm ILLINOIS RANGE temperatures and ample moisture. © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Michael Kuo Aquatic Habitats bottomland forests; peatlands; swamps; wet prairies and fens Woodland Habitats bottomland forests; coniferous forests; southern Illinois lowlands; upland deciduous forests Prairie and Edge Habitats black soil prairie; dolomite prairie; edge; gravel prairie; hill prairie; sand prairie; shrub prairie © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
Recommended publications
  • Annotated Check List and Host Index Arizona Wood
    Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Three Hitherto Unreported Macro-Fungi from Kashmir Himalaya
    Pak. J. Bot., 44(6): 2111-2115, 2012. THREE HITHERTO UNREPORTED MACRO-FUNGI FROM KASHMIR HIMALAYA SHAUKET AHMED PALA*, ABDUL HAMID WANI, ROUF HAMZA BODA AND RIYAZ AHMED MIR Section of Mycology and Plant Pathology, Department of Botany, University of Kashmir, Srinagar, Hazratbal-190006. *Corresponding author e-mail: [email protected] Abstract The Himalayan state, Jammu and Kashmir due to its climate ranging from tropical deciduous forests to temperate and coniferous forests provides congenial habitat for the growth of diverse macro fungal species which in turn gives it the status of ‘hub’ of macro-fungal species. The macro fungal species richness of the state is directly related to its expansive forest communities and diverse weather patterns, but all the regions of the state have not been extensively surveyed till now. In this backdrop, a systematic survey for exploration and inventorization of macro fungal species of Western Kashmir Himalaya was undertaken during the year 2009 and 2010, which in turn resulted identification of the three species viz., Thelephora caryophyllea (Schaeff.) Pers., Coltricia cinnamomea (Pers.) Murr., and Guepinia helvelloides Fr. as new reports from the Kashmir. These species were identified on the basis of macro and microscopic characters and also the aid of taxonomic keys, field manuals, mushroom herbaria and help from expert taxonomists in the related field was taken into account. Introduction et al., 2010). The present communication describes the general distribution, brief morphological description, Since the dawn of civilizations, mushrooms have macro and microscopic details and edibility of three been fascinating man due to their unusual characters like newly reported species of macro-fungi from Kashmir sudden appearance in isolated places in groups, rings and Himalaya.
    [Show full text]
  • Diversity, Nutritional Composition and Medicinal Potential of Indian Mushrooms: a Review
    Vol. 13(4), pp. 523-545, 22 January, 2014 DOI: 10.5897/AJB2013.13446 ISSN 1684-5315 ©2014 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Review Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review Hrudayanath Thatoi* and Sameer Kumar Singdevsachan Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar-751003, Odisha, India. Accepted 2 January, 2014 Mushrooms are the higher fungi which have long been used for food and medicinal purposes. They have rich nutritional value with high protein content (up to 44.93%), vitamins, minerals, fibers, trace elements and low calories and lack cholesterol. There are 14,000 known species of mushrooms of which 2,000 are safe for human consumption and about 650 of these possess medicinal properties. Among the total known mushrooms, approximately 850 species are recorded from India. Many of them have been used in food and folk medicine for thousands of years. Mushrooms are also sources of bioactive substances including antibacterial, antifungal, antiviral, antioxidant, antiinflammatory, anticancer, antitumour, anti-HIV and antidiabetic activities. Nutriceuticals and medicinal mushrooms have been used in human health development in India as food, medicine, minerals among others. The present review aims to update the current status of mushrooms diversity in India with their nutritional and medicinal potential as well as ethnomedicinal uses for different future prospects in pharmaceutical application. Key words: Mushroom diversity, nutritional value, therapeutic potential, bioactive compound. INTRODUCTION Mushroom is a general term used mainly for the fruiting unexamined mushrooms will be only 5%, implies that body of macrofungi (Ascomycota and Basidiomycota) there are 7,000 yet undiscovered species, which if and represents only a short reproductive stage in their life discovered will be provided with the possible benefit to cycle (Das, 2010).
    [Show full text]
  • Skin Wound Healing Promoting Effect of Polysaccharides Extracts from Tremella Fuciformis and Auricularia Auricula on the Ex-Vivo Porcine Skin Wound Healing Model
    2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) © (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 20 Skin Wound Healing Promoting Effect of Polysaccharides Extracts from Tremella fuciformis and Auricularia auricula on the ex-vivo Porcine Skin Wound Healing Model + Ratchanee Khamlue 1, Nikhom Naksupan 2, Anan Ounaroon 1 and Nuttawut Saelim 2 1 Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand 2 Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand Abstract. In this study we focused on the wound healing promoting effect of polysaccharides purified from Tremella fuciformis and Auricularia auricula by using the ex-vivo porcine skin wound healing model (PSWHM) as a tool for wound healing evaluation due to human ethics and animal right concerns, and more practical and high throughput experiment. Using previously reported protocol with modifications, purified polysaccharides from A. auricula and T. fuciformis were obtained at 0.84 and 2.0% yields (w/w), 86.60 and 91.22% purity, respectively, with small amounts of nucleic acid and protein contamination. The PSWHMs (3mm circular wound) were divided into five groups, each group (n=22) was treated with one of the following concentrations of polysaccharides extracts (1, 10 and 100µg/wound of T. fuciformis or A. auricula) or control solutions (10µl 10mM PBS), or 10µl 25ng/ml EGF (internal control). Then the treated PSWHMs were cultured at 37ºC with 5% CO2 for 48 hours before histological and microscopic evaluation. Epidermal or keratinocyte migration distances from the edges of each wound were measured, normalized with the PBS control group and expressed as mean%.
    [Show full text]
  • Biomass Production in Auricularia Spp.(Jew S Ear) Collected from Manipur, India
    Int.J.Curr.Microbiol.App.Sci (2015) 4(6): 985-989 ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 985-989 http://www.ijcmas.com Original Research Article Biomass Production in Auricularia spp.(Jew s ear) collected from Manipur, India M. Babita Devi1*, S. Mukta Singh2 and N. Irabanta Singh1 1Centre of Advanced Studies in Life Sciences, Manipur University, Chanchipur 795003, India 2Department of Botany, D.M. College of Science, Imphal 795001, India *Corresponding author A B S T R A C T Auricularia spp. an edible jelly fungus which grows ubiquitously on any decayed K e y w o r d s logs or on dead branches of trees in different forest areas of Manipur. The sporophores of this edible mushroom were tissue cultured and biomass production Auricularia was assessed. In liquid media, Potato dextrose was found to support the maximum delicata, biomass production of three Auricularia species followed by Yeast potato dextrose A. polytricha, in both A. delicata and A. polytricha and Malt extract in A. auricula. Likewise, A. auricula, very good biomass was produced at pH 6.5 for the three species after 10 days of Edible incubation. Both A. delicata and A. polytricha attained their maximum biomass mushroom, production at 280C whereas 300C for A. auricula after 10 days. The biomass Biomass production by the test fungus over a period of 40 days of incubation exhibited production differential response with the maximum mycelial growth of A. delicata in 25 days of incubation whereas 20 days for both A. polytricha and A. auricula respectively. Introduction Auricularia spp.(Jew s ear) are widely These three species, has a very peculiar distributed throughout the tropical and sub- consistency so that the indigenous people of tropical regions of the world (Zoberi, 1972 the state are very fond of taking this fungus and Well, K., 1984).
    [Show full text]
  • Rock Island State Park Species List
    Rock Island State Park Species List Place cursor over cells with red By Cumberland Mycological Society, Crossville, TN triangles to view pictures click on underlined species for web links to details about those species and/or comments Inventory List: Common Name (if applicable) Jun-12 Oct-12 Jun-13 Aug-14 Edibility Notes* Aleuria aurantia syn. Peziza aruantia "Orange Peel" x(?) edible but flavorless Agaricus placomyces "Eastern Flat-topped Agaricus" x(?) poisonous Agaricus pocillator none x unknown -possibly poisonous Agaricus silvicola none x edible (with extreme caution) Amanita abrupta "Abrupt-bulbed Lepidella" x unknown and possibly poisonous Amanita amerifulva [often called 'Amanita fulva' -a European species] “Tawny Grisette” x x edible -with extreme caution!! Amanita amerirubescens "Blusher" x x x edible -with extreme caution!! Amanita banningiana "Mary Banning's Slender Caesar" x x Amanita bisporigera = A. virosa sensu auct. amer. (Ref. RET) "Destroying Angel" x x x deadly poisonous! Amanita brunnescens “Cleft foot-Amanita” x x possibly poisonous Amanita cinereoconia var. cinereoconia "American Gray Dust Lepidella" x no information -best avoided Amanita citrina f. lavendula "Lavender-staining Citrina" x possibly poisonous Amanita citrina sensu auct. amer. "Citron Amanita," "False Death Cap" x possibly poisonous Amanita daucipes "Turnip-foot Amanita" x x possibly poisonous Amanita farinosa "Powdery-cap Amanita" x x x x unknown; not recommended Amanita flavoconia “Yellow Patches" x x x possibly poisonous Amanita gemmata complex "Gem-studded Amanita" x x possibly poisonous Amanita jacksonii syn. A. umbonata, syn. A. caesarea "American Caesar's Mushroom" x edible -with extreme caution!! Amanita muscaria var. guessowii syn. A. muscaria var. formosa "Yellow-orange Fly Agaric" x poisonous Amanita parcivolvata "Ringless False Fly Agaric" x x likely poisonous Amanita polypyramis "Plateful of Pyramids Lepidella" x x poisonous Amanita subcokeri Tulloss nom.
    [Show full text]
  • Antitumor and Immunomodulatory Activities of Medicinal Mushroom Polysaccharides and Polysaccharide-Protein Complexes in Animals and Humans (Review)
    MYCOLOGIA BALCANICA 2: 221–250 (2005) 221 Antitumor and immunomodulatory activities of medicinal mushroom polysaccharides and polysaccharide-protein complexes in animals and humans (Review) Solomon P. Wasser *, Maryna Ya. Didukh & Eviatar Nevo Institute of Evolution, University of Haifa, Mt Carmel, 31905 Haifa, Israel M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkovskaya St., 01001 Kiev, Ukraine Received 24 September 2004 / Accepted 9 June 2005 Abstract. Th e number of mushrooms on Earth is estimated at 140 000, yet perhaps only 10 % (approximately 14 000 named species) are known. Th ey make up a vast and yet largely untapped source of powerful new pharmaceutical products. Particularly, and most important for modern medicine, they present an unlimited source for polysaccharides with anticancer and immunostimulating properties. Many, if not all Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelia, and culture broth. Th e data about mushroom polysaccharides are summarized for 651 species and seven intraspecifi c taxa from 182 genera of higher Hetero- and Homobasidiomycetes. Th ese polysaccharides are of diff erent chemical composition; the main ones comprise the group of β-glucans. β-(1→3) linkages in the main chain of the glucan and further β-(1→ 6) branch points are needed for their antitumor action. Numerous bioactive polysaccharides or polysaccharide- protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses, and exhibit antitumour activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has signifi cant eff ects on the maturation, diff erentiation, and proliferation of many kinds of immune cells in the host.
    [Show full text]
  • Use of Polysaccharide Extracted from Tremella Fuciformis Berk for Control Diabetes Induced in Rats
    Emirates Journal of Food and Agriculture. 2015. 27(7): 585-591 doi: 10.9755/ejfa.2015.05.307 http://www.ejfa.me/ REGULAR ARTICLE Use of polysaccharide extracted from Tremella fuciformis berk for control diabetes induced in rats Erna E. Bach1, Silvia G. Costa2, Helenita A. Oliveira2, Jorge A. Silva Junior2, Keisy M. da Silva2, Rogerio M. de Marco1, Edgar M. Bach Hi3, Nilsa S.Y. Wadt1 1Department of Healthy, UNINOVE, São Paulo, Brazil. R. Dr. Adolfo Pinto, 109, Barra Funda, CEP 01156-050, São Paulo, SP, Brazil, 2Department of Healthy, IC-UNINOVE, São Paulo, Brazil. R. Dr. Adolfo Pinto, 109, Barra Funda, CEP 01156-050, São Paulo, SP, Brazil, 3UNILUS, Academic Nucleum in Experimental Biochemistry (NABEX), Santos, São Paulo, Brazil ABSTRACT Exopolysaccharides (EPS) was extracted from Tremella fuciformis growth in solid medium contained sorghum seeds. The objective of present work was analyzed EPS and evaluate the effect on the glucose, cholesterol, HDL, triglycerides, glutamic-pyruvic transaminase (GPT), urea level in the plasma of rats with type 1 diabetes mellitus (DM1) induced by high sugar diet and streptozotocin. Beta-glucan and total sugar from T. fuciformis was determined and the major quantity was alfa linked glucose. Concentration used for animals was 1mmol and 2mmol of EPS. Male Wistar rats were separated in two groups where one was induced diabetes mellitus (DM1) with streptozotocin and another with high sugar diet. The rats were allocated as follows: control that received commercial pellet; control that received polysaccharide; diabetic group that received streptozotocin or high sugar diet; diabetic group that received 1mmol or 2mmol from polysaccharide obtained from different T.
    [Show full text]
  • Phylogeny of Tremella and Cultiviation of T. Fuciformis in Taiwan 1
    Phylogeny of Tremella and cultiviation of T. fuciformis in Taiwan Chee-Jen CHEN Abstract: Tremella fuciformis is a jelly fungus, so called Silver Ear, and very common in the world. It has been used as medicine in China, and is also recognized as natural food in Taiwan. Because of its values in medicine and economy, it is worth understanding its phylogeny and cultivation. Phylogenic grouping can be achieved by studying fungal PRUSKRORJ\DQGWKHODUJHVXEPLWULERVRPDO'1$VHTXHQFHV&RPSDULQJPRUSKRORJLFDO characters and molecular phylogenies, TremellaVSHFLHVFDQEHGLYLGHGLQWR¿YHSK\OR- genetic groups, i.e. Aurantia, Foliacea, Fuciformis, Indecorata, and Mesenterica group. The novel technical cultivation of Silver Ear uses two isolates, T. fuciformis and its host Annulohypoxylon archeri (=Hypoxylon archeri), to obtain a rich yield. 1. Introduction 7KHIXQJDOÀRUDRI7DLZDQKDVEHHQLQYHVWLJDWHGVLQFHKDVEHHQVWX- died increasingly up to 2013, and is now estimated to comprise some 1,276 genera with 5,396 species, including subspecies and synonyms. The number RI7DLZDQHVHVSHFLHVDFFRXQWVIRURIWKHWKHJOREDOUHFRUG7KHIXQJDO diversity plays an important role in the study of fungal evolution, cultivation and even bio-resources for further application. The phylogeny in the genus Tremella and the novel cultivation of silver ear mushroom in Taiwan, T. fuci- formis, are discussed in this paper. Since the planning of a nation-wide research project of “Fungal Flora of Taiwan”, which is supported by the National Science Council of Taiwan since WKH ÀRULVWLF VXUYH\ RI +HWHUREDVLGLRP\FHWHV KDV EHHQ QHJOHFWHG DQG YHU\OLWWOHSURJUHVVZDVPDGHRZLQJWRWKHDEVHQFHRITXDOL¿HGWD[RQRPLF specialists of this fungal group in the country. Although fungi are common ingredients for Asian food (e.g. T. fuciformis, Lentinula edodes, Flammulina velutipes VFLHQWL¿FUHVHDUFKRQWKHLUDJULFXOWXUHEHJDQTXLWHODWH%HFDXVHRI the scanty literature on tropical fungi in Asia, the process of the inventory is slow.
    [Show full text]
  • Mushrooms of Southwestern BC Latin Name Comment Habitat Edibility
    Mushrooms of Southwestern BC Latin name Comment Habitat Edibility L S 13 12 11 10 9 8 6 5 4 3 90 Abortiporus biennis Blushing rosette On ground from buried hardwood Unknown O06 O V Agaricus albolutescens Amber-staining Agaricus On ground in woods Choice, disagrees with some D06 N N Agaricus arvensis Horse mushroom In grassy places Choice, disagrees with some D06 N F FV V FV V V N Agaricus augustus The prince Under trees in disturbed soil Choice, disagrees with some D06 N V FV FV FV FV V V V FV N Agaricus bernardii Salt-loving Agaricus In sandy soil often near beaches Choice D06 N Agaricus bisporus Button mushroom, was A. brunnescens Cultivated, and as escapee Edible D06 N F N Agaricus bitorquis Sidewalk mushroom In hard packed, disturbed soil Edible D06 N F N Agaricus brunnescens (old name) now A. bisporus D06 F N Agaricus campestris Meadow mushroom In meadows, pastures Choice D06 N V FV F V F FV N Agaricus comtulus Small slender agaricus In grassy places Not recommended D06 N V FV N Agaricus diminutivus group Diminutive agariicus, many similar species On humus in woods Similar to poisonous species D06 O V V Agaricus dulcidulus Diminutive agaric, in diminitivus group On humus in woods Similar to poisonous species D06 O V V Agaricus hondensis Felt-ringed agaricus In needle duff and among twigs Poisonous to many D06 N V V F N Agaricus integer In grassy places often with moss Edible D06 N V Agaricus meleagris (old name) now A moelleri or A.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]