The Molecular Virology of Coronaviruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Organization of Canada Goose Coronavirus, a Novel
www.nature.com/scientificreports OPEN Genome Organization of Canada Goose Coronavirus, A Novel Species Identifed in a Mass Die-of of Received: 14 January 2019 Accepted: 25 March 2019 Canada Geese Published: xx xx xxxx Amber Papineau1,2, Yohannes Berhane1, Todd N. Wylie3,4, Kristine M. Wylie3,4, Samuel Sharpe5 & Oliver Lung 1,2 The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-of of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab. Viruses belonging to the Coronaviridae family have a single stranded positive sense RNA genome of 26–31 kb. Members of this family include both human pathogens, such as severe acute respiratory syn- drome virus (SARS-CoV)1, and animal pathogens, such as porcine epidemic diarrhea virus2. Currently, the International Committee on the Taxonomy of Viruses (ICTV) recognizes four genera in the Coronaviridae family: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. While the reser- voirs of the Alphacoronavirus and Betacoronavirus genera are believed to be bats, the Gammacoronavirus and Deltacoronavirus genera have been shown to spread primarily through birds3. Te frst three species of the Deltacoronavirus genus were discovered in 20094 and recent work has vastly expanded the Deltacoronavirus genus, adding seven additional species3. -
Review a Review of Coronavirus Infection in the Central Nervous
Review J Vet Intern Med 2001;15:438–444 A Review of Coronavirus Infection in the Central Nervous System of Cats and Mice Janet E. Foley and Christian Leutenegger Feline infectious peritonitis (FIP) is a common cause of death in cats. Management of this disease has been hampered by difficulties identifying the infection and determining the immunological status of affected cats and by high variability in the clinical, patho- logical, and immunological characteristics of affected cats. Neurological FIP, which is much more homogeneous than systemic effusive or noneffusive FIP, appears to be a good model for establishing the basic features of FIP immunopathogenesis. Very little information is available about the immunopathogenesis of neurologic FIP, and it is reasonable to use research from the well- characterized mouse hepatitis virus (MHV) immune-mediated encephalitis system, as a template for FIP investigation, and to contrast findings from the MHV model with those of FIP. It is expected that the immunopathogenic mechanisms will have important similarities. Such comparative research may lead to better understanding of FIP immunopathogenesis and rational prospects for management of this frustrating disease. Key words: Cats; Feline infectious peritonitis; Mouse hepatitis virus; Neurological disease. eline infectious peritonitis (FIP) is a fatal, immune-me- membrane), N (nucleocapsid), and S (spike glycoprotein), F diated disease produced as a result of infection of which is post-translationally modified to S1 and S2.8 The macrophages by mutant feline coronavirus strains (FIPVs). MHV genome, however, also codes for an HE protein and The severity of FIP is determined by virus strain and by does not contain a 7b ORF. -
Broad Receptor Engagement of an Emerging Global Coronavirus May Potentiate Its Diverse Cross-Species Transmissibility
Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility Wentao Lia,1, Ruben J. G. Hulswita,1, Scott P. Kenneyb,1, Ivy Widjajaa, Kwonil Jungb, Moyasar A. Alhamob, Brenda van Dierena, Frank J. M. van Kuppevelda, Linda J. Saifb,2, and Berend-Jan Boscha,2 aVirology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; and bDepartment of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691 Contributed by Linda J. Saif, April 12, 2018 (sent for review February 15, 2018; reviewed by Tom Gallagher and Stefan Pöhlmann) Porcine deltacoronavirus (PDCoV), identified in 2012, is a common greatly increase the potential for successful adaptation to a new enteropathogen of swine with worldwide distribution. The source host (6, 12). A pivotal criterion of cross-species transmission and evolutionary history of this virus is, however, unknown. concerns the ability of a virus to engage a receptor within the PDCoV belongs to the Deltacoronavirus genus that comprises pre- novel host, which for CoVs, is determined by the receptor dominantly avian CoV. Phylogenetic analysis suggests that PDCoV specificity of the viral spike (S) entry protein. originated relatively recently from a host-switching event be- The porcine deltacoronavirus (PDCoV) is a recently discov- tween birds and mammals. Insight into receptor engagement by ered CoV of unknown origin. PDCoV (species name coronavirus PDCoV may shed light into such an exceptional phenomenon. Here HKU15) was identified in Hong Kong in pigs in the late 2000s we report that PDCoV employs host aminopeptidase N (APN) as an (13) and has since been detected in swine populations in various entry receptor and interacts with APN via domain B of its spike (S) countries worldwide (14–24). -
Link of a Ubiquitous Human Coronavirus to Dromedary Camels
Link of a ubiquitous human coronavirus to dromedary camels Victor M. Cormana,b,1, Isabella Eckerlea,1, Ziad A. Memishc, Anne M. Liljanderd, Ronald Dijkmane,f, Hulda Jonsdottire,f, Kisi J. Z. Juma Ngeiywag, Esther Kamaug, Mario Younanh, Malakita Al Masrii, Abdullah Assirii, Ilona Gluecksj, Bakri E. Musak, Benjamin Meyera, Marcel A. Müllera, Mosaad Hilalil, Set Bornsteinm, Ulrich Werneryn, Volker Thiele,f, Joerg Joresd,o, Jan Felix Drexlera,b,2, and Christian Drostena,b,2 aUniversity of Bonn Medical Centre, 53127 Bonn, Germany; bGerman Centre for Infection Research, partner site Bonn–Cologne, Germany; cCollege of Medicine, Alfaisal University, 11533 Riyadh, Kingdom of Saudi Arabia; dInternational Livestock Research Institute, Nairobi, Kenya; eDepartment of Infectious Diseases and Pathobiology, Vetsuisse Faculty Bern, University of Bern, 3012 Bern, Switzerland; fFederal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhausern, Switzerland; gMinistry of Agriculture, Livestock, and Fisheries, State Department of Livestock, Department of Veterinary Services, Nairobi, Kenya; hVétérinaires Sans Frontières Germany, Nairobi, Kenya; iMinistry of Health, 11176 Riyadh, Kingdom of Saudi Arabia; jVétérinaires Sans Frontières Suisse, Nairobi, Kenya; kMinistry of Science and Communication, Khartoum, Sudan; lCairo University, 12613 Giza, Egypt; mNational Veterinary Institute, 75189 Uppsala, Sweden; nCentral Veterinary Research Laboratory, Dubai, United Arab Emirates; and oInstitute of Veterinary Bacteriology, University of Bern, 3001 Bern, Switzerland Edited by Luis Enjuanes, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Madrid, Spain, and accepted by Editorial Board Member Diane E. Griffin June 27, 2016 (received for review March 17, 2016) The four human coronaviruses (HCoVs) are globally endemic respiratory ecological history of these ubiquitous human pathogens. -
How Influenza Virus Uses Host Cell Pathways During Uncoating
cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3]. -
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
water Review On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater Adrian Wartecki 1 and Piotr Rzymski 2,* 1 Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Pozna´n,Poland; [email protected] 2 Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Pozna´n,Poland * Correspondence: [email protected] Received: 24 April 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it. -
1099.Full.Pdf
Type I IFN-Mediated Protection of Macrophages and Dendritic Cells Secures Control of Murine Coronavirus Infection This information is current as Luisa Cervantes-Barragán, Ulrich Kalinke, Roland Züst, of September 23, 2021. Martin König, Boris Reizis, Constantino López-Macías, Volker Thiel and Burkhard Ludewig J Immunol 2009; 182:1099-1106; ; doi: 10.4049/jimmunol.182.2.1099 http://www.jimmunol.org/content/182/2/1099 Downloaded from References This article cites 43 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/182/2/1099.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Type I IFN-Mediated Protection of Macrophages and Dendritic Cells Secures Control of Murine Coronavirus Infection1 Luisa Cervantes-Barraga´n,*† Ulrich Kalinke,‡ Roland Zu¨st,* Martin König,‡ Boris Reizis,§ Constantino Lo´pez-Macías,† Volker Thiel,* and Burkhard Ludewig2* The swift production of type I IFNs is one of the fundamental aspects of innate immune responses against viruses. -
The Multi-Functional Reovirus Σ3 Protein Is a Virulence Factor That Suppresses Stress Granule Formation to Allow Viral Replicat
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436456; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The multi-functional reovirus σ3 protein is a 2 virulence factor that suppresses stress granule 3 formation to allow viral replication and myocardial 4 injury 5 6 Yingying Guo1, Meleana Hinchman1, Mercedes Lewandrowski1, Shaun Cross1,2, Danica 7 M. Sutherland3,4, Olivia L. Welsh3, Terence S. Dermody3,4,5, and John S. L. Parker1* 8 9 1Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 10 Ithaca, New York 14853; 2Cornell Institute of Host-Microbe Interactions and Disease, 11 Cornell University, Ithaca, New York 14853; Departments of 3Pediatrics and 12 4Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 13 Pittsburgh, PA 15224; and 5Institute of Infection, Inflammation, and Immunity, UPMC 14 Children’s Hospital of Pittsburgh, PA 15224 15 16 17 Running head: REOVIRUS SIGMA3 PROTEIN SUPPRESSES STRESS GRANULES 18 DURING INFECTION 19 20 * Corresponding author. Mailing address: Baker Institute for Animal Health, College 21 of Veterinary Medicine, Cornell University, Hungerford Hill Road; Ithaca, NY 14853. 22 Phone: (607) 256-5626. Fax: (607) 256-5608. E-mail: [email protected] 23 Word count for abstract: 261 24 Word count for text: 12282 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436456; this version posted March 22, 2021. -
Coronaviruses Post-SARS: Update on Replication and Pathogenesis
REVIEWS Coronaviruses post-SARS: update on replication and pathogenesis Stanley Perlman and Jason Netland Abstract | Although coronaviruses were first identified nearly 60 years ago, they only received notoriety in 2003 when one of their members was identified as the aetiological agent of severe acute respiratory syndrome. Previously these viruses were known to be important agents of respiratory and enteric infections of domestic and companion animals and to cause approximately 15% of all cases of the common cold. This Review focuses on recent advances in our understanding of the mechanisms of coronavirus replication, interactions with the host immune response and disease pathogenesis. It also highlights the recent identification of numerous novel coronaviruses and the propensity of this virus family to cross species barriers. Prothrombinase Coronaviruses, a genus in the Coronaviridae family (order encode an additional haemagglutinin-esterase (HE) pro- Molecule that cleaves Nidovirales; FIG. 1), are pleomorphic, enveloped viruses. tein (FIG. 2a,b). The HE protein, which may be involved thrombin, thereby initiating the Coronaviruses gained prominence during the severe acute in virus entry or egress, is not required for replica- coagulation cascade. respiratory syndrome (SARS) outbreaks of 2002–2003 tion, but appears to be important for infection of the (REF. 1). The viral membrane contains the transmembrane natural host5. (M) glycoprotein, the spike (S) glycoprotein and the enve- Receptors for several coronaviruses have been iden- lope (E) protein, and surrounds a disordered or flexible, tified (TABLE 1). The prototypical coronavirus, mouse probably helical, nucleocapsid2,3. The viral membrane is hepatitis virus (MHV), uses CEACAM1a, a member of unusually thick, probably because the carboxy-terminal the murine carcinoembryonic antigen family, to enter region of the M protein forms an extra internal layer, as cells. -
Complete Nucleotide Sequence, Molecular Analysis and Genome Structure of Bacteriophage A118 of Listeria Monocytogenes : Implications for Phage Evolution
Molecular Microbiology (2000) 35(2), 324±340 Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes : implications for phage evolution Martin J. Loessner,1* Ross B. Inman,2 Peter Lauer3 local, but sometimes extensive, similarities to a num- and Richard Calendar3 ber of phages spanning a broader phylogenetic range 1Institut fuÈr Mikrobiologie, FML Weihenstephan, of various low GC host bacteria, which implies rela- Technische UniversitaÈtMuÈnchen, Weihenstephaner tively recent exchange of genes or genetic modules. Berg 3, 85350 Freising, Germany. We have also identi®ed the A118 attachment site 2Institute for Molecular Virology, University of attP and the corresponding attB in Listeria monocyto- Wisconsin at Madison, 1525 Linden Drive, Madison, genes, and show that site-speci®c integration of the Wisconsin 53706, USA. A118 prophage by the A118 integrase occurs into a 3Department of Molecular and Cell Biology, host gene homologous to comK of Bacillus subtilis, University of California at Berkeley, 401 Barker Hall, an autoregulatory gene specifying the major compe- Berkeley, California 94720-3202, USA. tence transcription factor. Summary Introduction A118 is a temperate phage isolated from Listeria Listeria monocytogenes is a non-spore-forming, opportu- monocytogenes. In this study, we report the entire nistic Gram-positive pathogen, responsible for severe nucleotide sequence and structural analysis of its infections in both animals and humans, which is almost 40 834 bp DNA. Electron microscopic and enzymatic exclusively transmitted via contaminated food. Recurrent analyses revealed that the A118 genome is a linear, outbreaks of Listeriosis (CDC, 1998; Slutsker and Schuchat, circularly permuted, terminally redundant collection 1999) have emphasized the need for a better understand- of double-stranded DNA molecules. -
(Hcovs) and the Molecular Mechanisms of SARS-Cov-2 Infection
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 October 2020 doi:10.20944/preprints202010.0041.v1 The Human Coronaviruses (HCoVs) and the Molecular Mechanisms of SARS-CoV-2 Infection Luigi Santacroce1, Ioannis A. Charitos2, Domenico M. Carretta3, Emanuele De Nitto4, Roberto Lovero5 1) Ionian Department, Microbiology and Virology Lab., University Hospital of Bari, Università degli Studi di Bari, 70124 Bari, Italy 2) Italy Regional Emergency Service, National Poisoning Center, University Hospital of Foggia, Foggia, Italy 3) U.O.S. Coronary Unit and Electrophysiology/Pacing Unit, Syncope Unit at Cardio-Thoracic Department, Policlinico Consorziale, Bari 4) Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy. 5) AOU Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Clinical Pathology Unit, Bari 70124, Italy ORCIDs: (0000-0003-3527-7483 I.A.C.; 0000-0002-3998-5324 E.D.N.; 0000-0001-7580-5733 R.L.) Correspondence: [email protected] Abstract: In humans, coronaviruses can cause infections of the respiratory system, with damage of varying severity depending on the virus examined: ranging from mild or moderate upper respiratory tract diseases, such as the common cold, to pneumonia, severe acute respiratory syndrome, kidney failure and even death. Human coronaviruses known to date, common throughout the world, are seven. The most common - and least harmful - ones were discovered in the 1960s and cause a common cold. Others, more dangerous, were identified in the early 2000s and cause more severe respiratory tract infections. Among these the SARS-CoV, isolated in 2003 and responsible for the Severe Acute Respiratory Syndrome (the so-called SARS), which appeared in China in November 2002, the Coronavirus 2012 (2012-nCoV) cause of the Middle Eastern Respiratory Syndrome from Coronavirus (MERS), which exploded in June 2012 in Saudi Arabia, and actually SARS-CoV-2. -
Genomics and Structure/Function Studies of Rhabdoviridae Proteins Involved in Replication and Transcription
Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. R. Assenberg, O Delmas, B Morin, C Graham, X de Lamballerie, C Laubert, B Coutard, J Grimes, J Neyts, R J Owens, et al. To cite this version: R. Assenberg, O Delmas, B Morin, C Graham, X de Lamballerie, et al.. Genomics and struc- ture/function studies of Rhabdoviridae proteins involved in replication and transcription.. Antivi- ral Research, Elsevier Masson, 2010, 87 (2), pp.149-61. 10.1016/j.antiviral.2010.02.322. pasteur- 01492926 HAL Id: pasteur-01492926 https://hal-pasteur.archives-ouvertes.fr/pasteur-01492926 Submitted on 21 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License *Manuscript Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription R. Assenberg1, O. Delmas2, B. Morin3, S. C. Graham1, X. De Lamballerie4, C. Laubert5, B. Coutard3, J. M. Grimes1, J. Neyts6, R. J. Owens1,