Occurrence and Sequence Analysis of Porcine Deltacoronaviruses In

Total Page:16

File Type:pdf, Size:1020Kb

Occurrence and Sequence Analysis of Porcine Deltacoronaviruses In Zhai et al. Virology Journal (2016) 13:136 DOI 10.1186/s12985-016-0591-6 RESEARCH Open Access Occurrence and sequence analysis of porcine deltacoronaviruses in southern China Shao-Lun Zhai1†, Wen-Kang Wei1†, Xiao-Peng Li1†, Xiao-Hui Wen1, Xia Zhou1, He Zhang1, Dian-Hong Lv1*, Feng Li2,3 and Dan Wang2* Abstract Background: Following the initial isolation of porcine deltacoronavirus (PDCoV) from pigs with diarrheal disease in the United States in 2014, the virus has been detected on swine farms in some provinces of China. To date, little is known about the molecular epidemiology of PDCoV in southern China where major swine production is operated. Results: To investigate the prevalence of PDCoV in this region and compare its activity to other enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis coronavirus (TGEV), and porcine rotavirus group C (Rota C), 390 fecal samples were collected from swine of various ages from 15 swine farms with reported diarrhea. Fecal samples were tested by reverse transcription-PCR (RT-PCR) that targeted PDCoV, PEDV, TGEV, and Rota C, respectively. PDCoV was detected exclusively from nursing piglets with an overall prevalence of approximate 1.28 % (5/390), not in suckling and fattening piglets. Interestingly, all of PDCoV-positive samples were from 2015 rather than 2012–2014. Despite a low detection rate, PDCoV emerged in each province/region of southern China. In addition, compared to TGEV (1.54 %, 5/390) or Rota C (1.28 %, 6/390), there were highly detection rates of PEDV (22.6 %, 88/390) in those samples. Notably, all five PDCoV-positive piglets were co-infected by PEDV. Furthermore, phylogenetic analysis of spike (S) and nucleocapsid (N) gene sequences of PDCoVs revealed that currently circulating PDCoVs in southern China were more closely related to other Chinese strains of PDCoVs than to those reported in United States, South Korea and Thailand. Conclusions: This study demonstrated that PDCoV was present in southern China despite the low prevalence, and supported an evolutionary theory of geographical clustering of PDCoVs. Keywords: Porcine deltacoronavirus, Occurrence, Spike gene, Nucleocapsid gene, Sequence analysis, Southern China Background (PEDV), transmissible gastroenteritis virus (TGEV), and Before 2012, the subfamily Coronavirinae included three porcine respiratory coronavirus (PRCV) belong to the genus genera (Alphacoronavirus, Betacoronavirus and Gamma- Alphacoronavirus; meanwhile, porcine hemagglutinating en- coronavirus). However, in 2012, an emerging genus, Delta- cephalomyelitis virus (PHEV) and Porcine deltacoronavirus coronavirus, was found in many animal species including (PDCoV) are assigned to the genus Betacoronavirus and swine from Hong Kong [1]. At present, more than five the genus Deltacoronavirus, respectively [1]. Numerous different coronaviruses have been described in swine pop- studies have shown that more than half of porcine corona- ulations. Among them, porcine epidemic diarrhea virus viruses (including PDCoV) were enteropathogenic and caused acute diarrhea and vomiting in pigs, which resulted * Correspondence: [email protected]; [email protected] – † in huge economic losses for the global swine industry [2 6]. Equal contributors Currently, PDCoV has been reported in Hong Kong, 1Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal North America, Mexico, South Korea, Thailand and some Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, provinces of China [1, 7–19]. Despite recent progress, Guangzhou 510640, China little is known about the prevalence and epidemiology of 2Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA PDCoV in southern China (including Guangdong Full list of author information is available at the end of the article © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zhai et al. Virology Journal (2016) 13:136 Page 2 of 11 province, Hainan province, and Guangxi autonomous previously published methods [8]. For amplification of the region), where major swine production is operated. full-length S and N genes, previously reported RT-PCR Therefore, the aim of this study was to investigate the primers (PDCoV-SF2: 5’-AGCGTTGACACCAACCTA prevalence and sequence properties of PDCoV in this TT-3’ and PDCoV-SR2: 5’-TCGTCGACTACCATTCCT region. TAAAC-3’; PDCoV-NF1 : 5’-CCATC GCTCCAAG TC ATTCT-3’ and PDCoV-NR1: 5’-TGGGTGGGTTTAA Methods CAGACATAG-3’) were used. PCR was carried out at Sampling 50 °C 30 min and 95 °C for 5 min, followed by 40 cycles A total of 390 fecal samples (Table 1) were collected of 98 °C for 10 s, 55 °C for 15 s, and 68 °C for 5 and 2 min from 15 commercial swine farms with reported diarrhea for S and N genes, respectively; final extension was per- in southern China. Farms A, D, E, J-O were from formed at 68 °C for 15 min. Positive amplicons were Guangdong province, Farms B, F, G were from Hainan cloned into the pGM-19 T vector (Tiangen Inc. Beijing). province, and farms C, H, I were the Guangxi autono- Furthermore, all positive recombinant plasmids were sub- mous region. Farms A-I derived 30 samples with the mitted to a sequencing company (The Beijing Genomics following arrangement: ten samples from suckling Institute, BGI) and sequenced at least three times. Five S piglets (<3 weeks old), ten samples from nursing piglets gene sequences and five N gene sequences were obtained (between 3 and 9 weeks old), and ten samples from (Additional file 1: Table S1), and have been submitted fattening piglets (>9 weeks old). The samples of farms to GenBank database (accession numbers KU204694- A-I were collected between July and August 2015 and KU204701, KX534090-KX534091). stored at −80 °C until further use. However, the samples of farms J-O were archived samples from 2012 to 2014. Phylogenetic analysis of the S and N genes Prior to viral RNA extraction, fecal samples were diluted Sequence alignment analysis was performed using the one time using Phosphate Buffered Saline (PBS) (pH: Clustal W program implemented in DNAStar software. A 7.4). The supernatants were then collected by centrifuga- phylogenetic tree was then constructed by the neighbor- tion at 5000 × g for 5 min. 200 μl of clarified superna- joining method using the Molecular Evolutionary Genetics tants was used to extract viral RNA following the Analysis (MEGA) software version 5.1 with 1000 bootstrap manufacturer’s recommendations (Axygen Scientific replications set at 1000. Moreover, the possible recombin- Inc.). RNA samples were stored at −80 °C until further ation event was evaluated in the S and N genes by recom- analysis. bination detection program (RDP) 3.34 software. Reverse transcription polymerase chain reaction (RT-PCR) Results detection PDCoV detection To detect PDCoV genome in collected fecal samples, A total of 390 pig fecal samples, collected from 15 swine the previously reported RT-PCR primers (41 F: 5’-TTT farms with reported diarrhea in southern China, were CAGGTGCTCAAAGCTCA-3’ and 735R: 5’-GCGAAA assessed for the presence of PDCoV and other viral en- AGCATTTCCTGAAC-3’) targeting the nucleocapsid teric pathogens (PEDV, TGEV, and Rota C) by RT-PCR. (N) gene with reaction conditions (50 °C for 30 min As summarized in Table 1, the PDCoV genome was de- and 95 °C for 15 min for the reverse transcription reac- tected in specimens from 4 of 15 swine farms. Interest- tion, followed by 40 cycles of PCR amplification at 95 °C ingly, the PDCoV genome was detected only in nursing for 15 s, 55 °C for 45 s, and 72 °C for 1 min, with a final piglets, and was absent in suckling piglets and fattening extension at 72 °C for 7 min) were used [15]. In addition, pigs. Although PDCoV was detected in each province/ molecular detection of the three diarrhea-related enteric region of southern China, its overall prevalence in the viruses (Porcine epidemic diarrhea virus, PEDV; Porcine investigated pigs of various age groups (n =390) was transmissible gastroenteritis virus, TGEV; Porcine rota- relatively low (5/390, 1.28 %). The positive rate could be virus group C, Rota C) was performed in accordance with higher if only nursing piglets were included (5/150, previous methods [20–22] for further evaluation of the 3.33 %). In contrast, the prevalence of PEDV, another por- possible co-infection status with PDCoV in investigated cine coronavirus causing epidemic diarrhea, was relatively pig samples. higher (22.6 %, 88/390). In addition, PEDV was different from PDCoV in that it distributed similarly between nurs- Amplification of the spike (S) and N genes ing (36/150, 24 %) and suckling piglets (47/150, 31.3 %). To perform in-depth sequence comparison and phylogen- Five fattening pigs from farms A, D, F and I were also etic analysis with known reference sequences (Additional tested positive for the PEDV genome. We also examined file 1: Table S1), the
Recommended publications
  • Predicting Hosts Based on Early SARS-Cov-2 Samples And
    www.nature.com/scientificreports OPEN Predicting hosts based on early SARS‑CoV‑2 samples and analyzing the 2020 pandemic Qian Guo1,2,3,7, Mo Li4,7, Chunhui Wang4,7, Jinyuan Guo1,3,7, Xiaoqing Jiang1,2,5,7, Jie Tan1, Shufang Wu1,2, Peihong Wang1, Tingting Xiao6, Man Zhou1,2, Zhencheng Fang1,2, Yonghong Xiao6* & Huaiqiu Zhu1,2,3,5* The SARS‑CoV‑2 pandemic has raised concerns in the identifcation of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on fve host types, including plant, germ, invertebrate, non‑human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the fve‑ classifcation, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fll the gap in the efcient inference of host species for SARS‑CoV‑2 using existing tools, we conducted a deep analysis on the host likelihood profle calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID‑19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS‑CoV‑2, while minks might be one of the most noteworthy hosts. Several genes of SARS‑CoV‑2 demonstrated their signifcance in determining the host range. Furthermore, a large‑scale genome analysis, based on DeepHoF’s computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS‑CoV‑2 samples and the strong association of SARS‑CoV‑2 between humans and minks.
    [Show full text]
  • Genome Organization of Canada Goose Coronavirus, a Novel
    www.nature.com/scientificreports OPEN Genome Organization of Canada Goose Coronavirus, A Novel Species Identifed in a Mass Die-of of Received: 14 January 2019 Accepted: 25 March 2019 Canada Geese Published: xx xx xxxx Amber Papineau1,2, Yohannes Berhane1, Todd N. Wylie3,4, Kristine M. Wylie3,4, Samuel Sharpe5 & Oliver Lung 1,2 The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-of of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab. Viruses belonging to the Coronaviridae family have a single stranded positive sense RNA genome of 26–31 kb. Members of this family include both human pathogens, such as severe acute respiratory syn- drome virus (SARS-CoV)1, and animal pathogens, such as porcine epidemic diarrhea virus2. Currently, the International Committee on the Taxonomy of Viruses (ICTV) recognizes four genera in the Coronaviridae family: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. While the reser- voirs of the Alphacoronavirus and Betacoronavirus genera are believed to be bats, the Gammacoronavirus and Deltacoronavirus genera have been shown to spread primarily through birds3. Te frst three species of the Deltacoronavirus genus were discovered in 20094 and recent work has vastly expanded the Deltacoronavirus genus, adding seven additional species3.
    [Show full text]
  • Canine Coronaviruses: Emerging and Re-Emerging Pathogens of Dogs
    1 Berliner und Münchener Tierärztliche Wochenschrift 2021 (134) Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, Open Access Leipzig, Germany Berl Münch Tierärztl Wochenschr (134) 1–6 (2021) Canine coronaviruses: emerging and DOI 10.2376/1439-0299-2021-1 re-emerging pathogens of dogs © 2021 Schlütersche Fachmedien GmbH Ein Unternehmen der Schlüterschen Canine Coronaviren: Neu und erneut auftretende Pathogene Mediengruppe des Hundes ISSN 1439-0299 Korrespondenzadresse: Ahmed Abd El Wahed, Uwe Truyen [email protected] Eingegangen: 08.01.2021 Angenommen: 01.04.2021 Veröffentlicht: 29.04.2021 https://www.vetline.de/berliner-und- muenchener-tieraerztliche-wochenschrift- open-access Summary Canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) are highly infectious viruses of dogs classified as Alphacoronavirus and Betacoronavirus, respectively. Both are examples for viruses causing emerging diseases since CCoV originated from a Feline coronavirus-like Alphacoronavirus and CRCoV from a Bovine coronavirus-like Betacoronavirus. In this review article, differences in the genetic organization of CCoV and CRCoV as well as their relation to other coronaviruses are discussed. Clinical pictures varying from an asymptomatic or mild unspecific disease, to respiratory or even an acute generalized illness are reported. The possible role of dogs in the spread of the Betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to study as ani- mal always played the role of establishing zoonotic diseases in the community. Keywords: canine coronavirus, canine respiratory coronavirus, SARS-CoV-2, genetics, infectious diseases Zusammenfassung Das canine Coronavirus (CCoV) und das canine respiratorische Coronavirus (CRCoV) sind hochinfektiöse Viren von Hunden, die als Alphacoronavirus bzw.
    [Show full text]
  • Hydroxychloroquine Or Chloroquine for Treating Coronavirus Disease 2019 (COVID-19) – a PROTOCOL for a Systematic Review of Individual Participant Data
    Hydroxychloroquine or Chloroquine for treating Coronavirus Disease 2019 (COVID-19) – a PROTOCOL for a systematic review of Individual Participant Data Authors Fontes LE, Riera R, Miranda E, Oke J, Heneghan CJ, Aronson JK, Pacheco RL, Martimbianco ALC, Nunan D BACKGROUND In the face of the pandemic of SARS CoV2, urgent research is needed to test potential therapeutic agents against the disease. Reliable research shall inform clinical decision makers. Currently, there are several studies testing the efficacy and safety profiles of different pharmacological interventions. Among these drugs, we can cite antimalarial, antivirals, biological drugs, interferon, etc. As of 6 April 2020 there are three published reportsand 100 ongoing trials testing hydroxychloroquine/chloroquine alone or in association with other drugs for COVID-19. This prospective systematic review with Individual Participant data aims to assess the rigour of the best-available evidence for hydroxychloroquine or chloroquine as treatment for COVID-19 infection. The PICO framework is: P: adults with COVID-19 infection I: chloroquine or hydroxychloroquine (alone or in association) C: placebo, other active treatments, usual standard care without antimalarials O: efficacy and safety outcomes OBJECTIVES To assess the effects (benefits and harms) of chloroquine or hydroxychloroquine for the treatment of COVID-19 infection. METHODS Criteria for considering studies for this review Types of studies We shall include randomized controlled trials (RCTs) with a parallel design. We intend to include even small trials (<50 participants), facing the urgent need for evidence to respond to the current pandemic. Quasi-randomized, non-randomized, or observational studies will be excluded due to a higher risk of confounding and selection bias (1).
    [Show full text]
  • The COVID-19 Pandemic: a Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control
    Journal of Clinical Medicine Review The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control Yosra A. Helmy 1,2,* , Mohamed Fawzy 3,*, Ahmed Elaswad 4, Ahmed Sobieh 5, Scott P. Kenney 1 and Awad A. Shehata 6,7 1 Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA; [email protected] 2 Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt 3 Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt 4 Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; [email protected] 5 Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; [email protected] 6 Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, Sadat 32897, Egypt; [email protected] 7 Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany * Correspondence: [email protected] (Y.A.H.); [email protected] (M.F.) Received: 18 March 2020; Accepted: 21 April 2020; Published: 24 April 2020 Abstract: A pneumonia outbreak with unknown etiology was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. The causative agent of the outbreak was identified by the WHO as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), producing the disease named coronavirus disease-2019 (COVID-19). The virus is closely related (96.3%) to bat coronavirus RaTG13, based on phylogenetic analysis.
    [Show full text]
  • Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses
    Article DOI: https://doi.org/10.3201/eid2704.203945 Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses Appendix Appendix Table. Citations for in-text tables, by coronavirus and host category Pathogen (abbreviation) Category Table Reference Alphacoronavirus 1 (ACoV1); strain canine enteric coronavirus Receptor 1 (1) (CCoV) Reservoir host(s) 2 (2) Spillover host(s) 2 (3–6) Clinical manifestation 3 (3–9) Alphacoronavirus 1 (ACoV1); strain feline infectious peritonitis Receptor 1 (10) virus (FIPV) Reservoir host(s) 2 (11,12) Spillover host(s) 2 (13–15) Susceptible host 2 (16) Clinical manifestation 3 (7,9,17,18) Bat coronavirus HKU10 Receptor 1 (19) Reservoir host(s) 2 (20) Spillover host(s) 2 (21) Clinical manifestation 3 (9,21) Ferret systemic coronavirus (FRSCV) Receptor 1 (22) Reservoir host(s) 2 (23) Spillover host(s) 2 (24,25) Clinical manifestation 3 (9,26) Human coronavirus NL63 Receptor 1 (27) Reservoir host(s) 2 (28) Spillover host(s) 2 (29,30) Nonsusceptible host(s) 2 (31) Clinical manifestation 3 (9,32–34) Human coronavirus 229E Receptor 1 (35) Reservoir host(s) 2 (28,36,37) Intermediate host(s) 2 (38) Spillover host(s) 2 (39,40) Susceptible host(s) 2 (41) Clinical manifestation 3 (9,32,34,38,41–43) Porcine epidemic diarrhea virus (PEDV) Receptor 1 (44,45) Reservoir host(s) 2 (32,46) Spillover host(s) 2 (47) Clinical manifestation 3 (7,9,32,48) Rhinolophus bat coronavirus HKU2; strain swine acute Receptor 1 (49) diarrhea syndrome coronavirus (SADS-CoV) Reservoir host(s) 2 (49) Spillover host(s) 2
    [Show full text]
  • Coronaviruses in Avian Species – Review with Focus on Epidemiology and Diagnosis in Wild Birds
    J Vet Res 62, 249-255, 2018 DOI:10.2478/jvetres-2018-0035 REVIEW ARTICLE Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds Justyna Miłek, Katarzyna Blicharz-Domańska Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland [email protected] Received: May 2, 2018 Accepted: September 19, 2018 Abstract Coronaviruses (CoVs) are a large group of enveloped viruses with a single-strand RNA genome, which continuously circulate in mammals and birds and pose a threat to livestock, companion animals, and humans. CoVs harboured by avian species are classified to the genera gamma- and deltacoronaviruses. Within the gamma-CoVs the main representative is avian coronavirus, a taxonomic name which includes the highly contagious infectious bronchitis viruses (IBVs) in chickens and similar viruses infecting other domestic birds such as turkeys, guinea fowls, or quails. Additionally, IBVs have been detected in healthy wild birds, demonstrating that they may act as the vector between domestic and free-living birds. Moreover, CoVs other than IBVs, are identified in wild birds, which suggests that wild birds play a key role in the epidemiology of other gammaCoVs and deltaCoVs. Development of molecular techniques has significantly improved knowledge of the prevalence of CoVs in avian species. The methods adopted in monitoring studies of CoVs in different avian species are mainly based on detection of conservative regions within the viral replicase, nucleocapsid genes, and 3’UTR or 5’UTR. The purpose of this review is to summarise recent discoveries in the areas of epidemiology and diagnosis of CoVs in avian species and to understand the role of wild birds in the virus distribution.
    [Show full text]
  • (Hcovs) and the Molecular Mechanisms of SARS-Cov-2 Infection
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 October 2020 doi:10.20944/preprints202010.0041.v1 The Human Coronaviruses (HCoVs) and the Molecular Mechanisms of SARS-CoV-2 Infection Luigi Santacroce1, Ioannis A. Charitos2, Domenico M. Carretta3, Emanuele De Nitto4, Roberto Lovero5 1) Ionian Department, Microbiology and Virology Lab., University Hospital of Bari, Università degli Studi di Bari, 70124 Bari, Italy 2) Italy Regional Emergency Service, National Poisoning Center, University Hospital of Foggia, Foggia, Italy 3) U.O.S. Coronary Unit and Electrophysiology/Pacing Unit, Syncope Unit at Cardio-Thoracic Department, Policlinico Consorziale, Bari 4) Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy. 5) AOU Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Clinical Pathology Unit, Bari 70124, Italy ORCIDs: (0000-0003-3527-7483 I.A.C.; 0000-0002-3998-5324 E.D.N.; 0000-0001-7580-5733 R.L.) Correspondence: [email protected] Abstract: In humans, coronaviruses can cause infections of the respiratory system, with damage of varying severity depending on the virus examined: ranging from mild or moderate upper respiratory tract diseases, such as the common cold, to pneumonia, severe acute respiratory syndrome, kidney failure and even death. Human coronaviruses known to date, common throughout the world, are seven. The most common - and least harmful - ones were discovered in the 1960s and cause a common cold. Others, more dangerous, were identified in the early 2000s and cause more severe respiratory tract infections. Among these the SARS-CoV, isolated in 2003 and responsible for the Severe Acute Respiratory Syndrome (the so-called SARS), which appeared in China in November 2002, the Coronavirus 2012 (2012-nCoV) cause of the Middle Eastern Respiratory Syndrome from Coronavirus (MERS), which exploded in June 2012 in Saudi Arabia, and actually SARS-CoV-2.
    [Show full text]
  • Update on the Phylodynamics of SADS-Cov
    life Article Update on the Phylodynamics of SADS-CoV Fabio Scarpa 1,*,† , Daria Sanna 2,† , Ilenia Azzena 1,2, Piero Cossu 1 , Marta Giovanetti 3, Domenico Benvenuto 4, Elisabetta Coradduzza 5 , Ivailo Alexiev 6 , Marco Casu 1 , Pier Luigi Fiori 2 and Massimo Ciccozzi 4 1 Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; [email protected] (I.A.); [email protected] (P.C.); [email protected] (M.C.) 2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] (D.S.); fi[email protected] (P.L.F.) 3 Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; marta.giovanetti@ioc.fiocruz.br 4 Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; [email protected] (D.B.); [email protected] (M.C.) 5 Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; [email protected] 6 National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Coronaviruses are known to be harmful and heterogeneous viruses, able to infect a large Citation: Scarpa, F.; Sanna, D.; Azzena, I.; Cossu, P.; Giovanetti, M.; number of hosts. Among them, SADS-CoV (Swine Acute Diarrhea Syndrome Coronavirus), also Benvenuto, D.; Coradduzza, E.; known as PEAV (Porcine Enteric Alphacoronavirus), or SeA-CoV (Swine Enteric Alphacoronavirus), Alexiev, I.; Casu, M.; Fiori, P.L.; et al. is the most recent Alphacoronavirus discovered, and caused several outbreaks reported in Chinese Update on the Phylodynamics of swine herds between late 2016 and 2019.
    [Show full text]
  • Animal Reservoirs and Hosts for Emerging Alpha- and Betacoronaviruses
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 September 2020 doi:10.20944/preprints202009.0058.v1 Review Animal Reservoirs and Hosts for Emerging Alpha- and Betacoronaviruses Ria R. Ghai, Ann Carpenter, Meghan K. Herring, Amanda Y. Liew, Krystalyn B. Martin, Susan I. Gerber, Aron J. Hall, Jonathan M. Sleeman, Sophie VonDobschuetz and Casey Barton Behravesh 1 U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States (R. Ghai, A. Carpenter, M. Herring, A. Liew, K. Martin, S. Gerber, A Hall, C Barton Behravesh) 2 Emory University, Atlanta, GA, United States (M. Herring, A. Liew, K. Martin) 3 U.S. Geological Survey National Wildlife Health Center, Madison, WI, United States (J. Sleeman) 4 Food and Agriculture Organization of the United Nations, Rome, Italy (S. VonDobschuetz) Running Title: Animal hosts for emerging alpha and betacoronaviruses Article Summary: A review of coronaviruses in wildlife, livestock, and companion animals, and comprehensive data on receptor usage, hosts, and clinical presentation of 15 previously or currently emerging alpha-or beta-coronaviruses in people and animals. Abstract: The ongoing global pandemic caused by coronavirus disease 2019 (COVID-19) has once again demonstrated the significance of the Coronaviridae family in causing human disease outbreaks. As SARS-CoV-2 was first detected in December 2019, information on its tropism, host range, and clinical presentation in animals is limited. Given the limited information, data from other coronaviruses may be useful to inform scientific inquiry, risk assessment and decision-making. We review the endemic and emerging alpha- and betacoronavirus infections of wildlife, livestock, and companion animals, and provide information on the receptor usage, known hosts, and clinical signs associated with each host for 15 coronaviruses discovered in people and animals.
    [Show full text]
  • And Betacoronaviruses in Rodents from Yunnan, China Xing-Yi Ge1,4, Wei-Hong Yang2, Ji-Hua Zhou2, Bei Li1, Wei Zhang1, Zheng-Li Shi1* and Yun-Zhi Zhang2,3*
    Ge et al. Virology Journal (2017) 14:98 DOI 10.1186/s12985-017-0766-9 RESEARCH Open Access Detection of alpha- and betacoronaviruses in rodents from Yunnan, China Xing-Yi Ge1,4, Wei-Hong Yang2, Ji-Hua Zhou2, Bei Li1, Wei Zhang1, Zheng-Li Shi1* and Yun-Zhi Zhang2,3* Abstract Background: Rodents represent the most diverse mammals on the planet and are important reservoirs of human pathogens. Coronaviruses infect various animals, but to date, relatively few coronaviruses have been identified in rodents worldwide. The evolution and ecology of coronaviruses in rodent have not been fully investigated. Results: In this study, we collected 177 intestinal samples from thress species of rodents in Jianchuan County, Yunnan Province, China. Alphacoronavirus and betacoronavirus were detected in 23 rodent samples from three species, namely Apodemus chevrieri (21/98), Eothenomys fidelis (1/62), and Apodemus ilex (1/17). We further characterized the full-length genome of an alphacoronavirus from the A. chevrieri rat and named it as AcCoV-JC34. The AcCoV-JC34 genome was 27,649 nucleotides long and showed a structure similar to the HKU2 bat coronavirus. Comparing the normal transcription regulatory sequence (TRS), 3 variant TRS sequences upstream the spike (S), ORF3, and ORF8 genes were found in the genome of AcCoV-JC34. In the conserved replicase domains, AcCoV-JC34 was most closely related to Rattus norvegicus coronavirus LNRV but diverged from other alphacoronaviruses, indicating that AcCoV-JC34 and LNRV may represent a novel alphacoronavirus species. However, the S and nucleocapsid proteins showed low similarity to those of LRNV, with 66.5 and 77.4% identities, respectively.
    [Show full text]
  • Betacoronavirus Genomes: How Genomic Information Has Been Used to Deal with Past Outbreaks and the COVID-19 Pandemic
    International Journal of Molecular Sciences Review Betacoronavirus Genomes: How Genomic Information Has Been Used to Deal with Past Outbreaks and the COVID-19 Pandemic Alejandro Llanes 1 , Carlos M. Restrepo 1 , Zuleima Caballero 1 , Sreekumari Rajeev 2 , Melissa A. Kennedy 3 and Ricardo Lleonart 1,* 1 Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; [email protected] (A.L.); [email protected] (C.M.R.); [email protected] (Z.C.) 2 College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; [email protected] 3 College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; [email protected] * Correspondence: [email protected]; Tel.: +507-517-0740 Received: 29 May 2020; Accepted: 23 June 2020; Published: 26 June 2020 Abstract: In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002–2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019–2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2.
    [Show full text]