Occurrence and Sequence Analysis of Porcine Deltacoronaviruses In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predicting Hosts Based on Early SARS-Cov-2 Samples And
www.nature.com/scientificreports OPEN Predicting hosts based on early SARS‑CoV‑2 samples and analyzing the 2020 pandemic Qian Guo1,2,3,7, Mo Li4,7, Chunhui Wang4,7, Jinyuan Guo1,3,7, Xiaoqing Jiang1,2,5,7, Jie Tan1, Shufang Wu1,2, Peihong Wang1, Tingting Xiao6, Man Zhou1,2, Zhencheng Fang1,2, Yonghong Xiao6* & Huaiqiu Zhu1,2,3,5* The SARS‑CoV‑2 pandemic has raised concerns in the identifcation of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on fve host types, including plant, germ, invertebrate, non‑human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the fve‑ classifcation, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fll the gap in the efcient inference of host species for SARS‑CoV‑2 using existing tools, we conducted a deep analysis on the host likelihood profle calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID‑19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS‑CoV‑2, while minks might be one of the most noteworthy hosts. Several genes of SARS‑CoV‑2 demonstrated their signifcance in determining the host range. Furthermore, a large‑scale genome analysis, based on DeepHoF’s computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS‑CoV‑2 samples and the strong association of SARS‑CoV‑2 between humans and minks. -
Genome Organization of Canada Goose Coronavirus, a Novel
www.nature.com/scientificreports OPEN Genome Organization of Canada Goose Coronavirus, A Novel Species Identifed in a Mass Die-of of Received: 14 January 2019 Accepted: 25 March 2019 Canada Geese Published: xx xx xxxx Amber Papineau1,2, Yohannes Berhane1, Todd N. Wylie3,4, Kristine M. Wylie3,4, Samuel Sharpe5 & Oliver Lung 1,2 The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-of of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab. Viruses belonging to the Coronaviridae family have a single stranded positive sense RNA genome of 26–31 kb. Members of this family include both human pathogens, such as severe acute respiratory syn- drome virus (SARS-CoV)1, and animal pathogens, such as porcine epidemic diarrhea virus2. Currently, the International Committee on the Taxonomy of Viruses (ICTV) recognizes four genera in the Coronaviridae family: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. While the reser- voirs of the Alphacoronavirus and Betacoronavirus genera are believed to be bats, the Gammacoronavirus and Deltacoronavirus genera have been shown to spread primarily through birds3. Te frst three species of the Deltacoronavirus genus were discovered in 20094 and recent work has vastly expanded the Deltacoronavirus genus, adding seven additional species3. -
Canine Coronaviruses: Emerging and Re-Emerging Pathogens of Dogs
1 Berliner und Münchener Tierärztliche Wochenschrift 2021 (134) Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, Open Access Leipzig, Germany Berl Münch Tierärztl Wochenschr (134) 1–6 (2021) Canine coronaviruses: emerging and DOI 10.2376/1439-0299-2021-1 re-emerging pathogens of dogs © 2021 Schlütersche Fachmedien GmbH Ein Unternehmen der Schlüterschen Canine Coronaviren: Neu und erneut auftretende Pathogene Mediengruppe des Hundes ISSN 1439-0299 Korrespondenzadresse: Ahmed Abd El Wahed, Uwe Truyen [email protected] Eingegangen: 08.01.2021 Angenommen: 01.04.2021 Veröffentlicht: 29.04.2021 https://www.vetline.de/berliner-und- muenchener-tieraerztliche-wochenschrift- open-access Summary Canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) are highly infectious viruses of dogs classified as Alphacoronavirus and Betacoronavirus, respectively. Both are examples for viruses causing emerging diseases since CCoV originated from a Feline coronavirus-like Alphacoronavirus and CRCoV from a Bovine coronavirus-like Betacoronavirus. In this review article, differences in the genetic organization of CCoV and CRCoV as well as their relation to other coronaviruses are discussed. Clinical pictures varying from an asymptomatic or mild unspecific disease, to respiratory or even an acute generalized illness are reported. The possible role of dogs in the spread of the Betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to study as ani- mal always played the role of establishing zoonotic diseases in the community. Keywords: canine coronavirus, canine respiratory coronavirus, SARS-CoV-2, genetics, infectious diseases Zusammenfassung Das canine Coronavirus (CCoV) und das canine respiratorische Coronavirus (CRCoV) sind hochinfektiöse Viren von Hunden, die als Alphacoronavirus bzw. -
Hydroxychloroquine Or Chloroquine for Treating Coronavirus Disease 2019 (COVID-19) – a PROTOCOL for a Systematic Review of Individual Participant Data
Hydroxychloroquine or Chloroquine for treating Coronavirus Disease 2019 (COVID-19) – a PROTOCOL for a systematic review of Individual Participant Data Authors Fontes LE, Riera R, Miranda E, Oke J, Heneghan CJ, Aronson JK, Pacheco RL, Martimbianco ALC, Nunan D BACKGROUND In the face of the pandemic of SARS CoV2, urgent research is needed to test potential therapeutic agents against the disease. Reliable research shall inform clinical decision makers. Currently, there are several studies testing the efficacy and safety profiles of different pharmacological interventions. Among these drugs, we can cite antimalarial, antivirals, biological drugs, interferon, etc. As of 6 April 2020 there are three published reportsand 100 ongoing trials testing hydroxychloroquine/chloroquine alone or in association with other drugs for COVID-19. This prospective systematic review with Individual Participant data aims to assess the rigour of the best-available evidence for hydroxychloroquine or chloroquine as treatment for COVID-19 infection. The PICO framework is: P: adults with COVID-19 infection I: chloroquine or hydroxychloroquine (alone or in association) C: placebo, other active treatments, usual standard care without antimalarials O: efficacy and safety outcomes OBJECTIVES To assess the effects (benefits and harms) of chloroquine or hydroxychloroquine for the treatment of COVID-19 infection. METHODS Criteria for considering studies for this review Types of studies We shall include randomized controlled trials (RCTs) with a parallel design. We intend to include even small trials (<50 participants), facing the urgent need for evidence to respond to the current pandemic. Quasi-randomized, non-randomized, or observational studies will be excluded due to a higher risk of confounding and selection bias (1). -
The COVID-19 Pandemic: a Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control
Journal of Clinical Medicine Review The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control Yosra A. Helmy 1,2,* , Mohamed Fawzy 3,*, Ahmed Elaswad 4, Ahmed Sobieh 5, Scott P. Kenney 1 and Awad A. Shehata 6,7 1 Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA; [email protected] 2 Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt 3 Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt 4 Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; [email protected] 5 Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; [email protected] 6 Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, Sadat 32897, Egypt; [email protected] 7 Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany * Correspondence: [email protected] (Y.A.H.); [email protected] (M.F.) Received: 18 March 2020; Accepted: 21 April 2020; Published: 24 April 2020 Abstract: A pneumonia outbreak with unknown etiology was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. The causative agent of the outbreak was identified by the WHO as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), producing the disease named coronavirus disease-2019 (COVID-19). The virus is closely related (96.3%) to bat coronavirus RaTG13, based on phylogenetic analysis. -
Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses
Article DOI: https://doi.org/10.3201/eid2704.203945 Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses Appendix Appendix Table. Citations for in-text tables, by coronavirus and host category Pathogen (abbreviation) Category Table Reference Alphacoronavirus 1 (ACoV1); strain canine enteric coronavirus Receptor 1 (1) (CCoV) Reservoir host(s) 2 (2) Spillover host(s) 2 (3–6) Clinical manifestation 3 (3–9) Alphacoronavirus 1 (ACoV1); strain feline infectious peritonitis Receptor 1 (10) virus (FIPV) Reservoir host(s) 2 (11,12) Spillover host(s) 2 (13–15) Susceptible host 2 (16) Clinical manifestation 3 (7,9,17,18) Bat coronavirus HKU10 Receptor 1 (19) Reservoir host(s) 2 (20) Spillover host(s) 2 (21) Clinical manifestation 3 (9,21) Ferret systemic coronavirus (FRSCV) Receptor 1 (22) Reservoir host(s) 2 (23) Spillover host(s) 2 (24,25) Clinical manifestation 3 (9,26) Human coronavirus NL63 Receptor 1 (27) Reservoir host(s) 2 (28) Spillover host(s) 2 (29,30) Nonsusceptible host(s) 2 (31) Clinical manifestation 3 (9,32–34) Human coronavirus 229E Receptor 1 (35) Reservoir host(s) 2 (28,36,37) Intermediate host(s) 2 (38) Spillover host(s) 2 (39,40) Susceptible host(s) 2 (41) Clinical manifestation 3 (9,32,34,38,41–43) Porcine epidemic diarrhea virus (PEDV) Receptor 1 (44,45) Reservoir host(s) 2 (32,46) Spillover host(s) 2 (47) Clinical manifestation 3 (7,9,32,48) Rhinolophus bat coronavirus HKU2; strain swine acute Receptor 1 (49) diarrhea syndrome coronavirus (SADS-CoV) Reservoir host(s) 2 (49) Spillover host(s) 2 -
Coronaviruses in Avian Species – Review with Focus on Epidemiology and Diagnosis in Wild Birds
J Vet Res 62, 249-255, 2018 DOI:10.2478/jvetres-2018-0035 REVIEW ARTICLE Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds Justyna Miłek, Katarzyna Blicharz-Domańska Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland [email protected] Received: May 2, 2018 Accepted: September 19, 2018 Abstract Coronaviruses (CoVs) are a large group of enveloped viruses with a single-strand RNA genome, which continuously circulate in mammals and birds and pose a threat to livestock, companion animals, and humans. CoVs harboured by avian species are classified to the genera gamma- and deltacoronaviruses. Within the gamma-CoVs the main representative is avian coronavirus, a taxonomic name which includes the highly contagious infectious bronchitis viruses (IBVs) in chickens and similar viruses infecting other domestic birds such as turkeys, guinea fowls, or quails. Additionally, IBVs have been detected in healthy wild birds, demonstrating that they may act as the vector between domestic and free-living birds. Moreover, CoVs other than IBVs, are identified in wild birds, which suggests that wild birds play a key role in the epidemiology of other gammaCoVs and deltaCoVs. Development of molecular techniques has significantly improved knowledge of the prevalence of CoVs in avian species. The methods adopted in monitoring studies of CoVs in different avian species are mainly based on detection of conservative regions within the viral replicase, nucleocapsid genes, and 3’UTR or 5’UTR. The purpose of this review is to summarise recent discoveries in the areas of epidemiology and diagnosis of CoVs in avian species and to understand the role of wild birds in the virus distribution. -
(Hcovs) and the Molecular Mechanisms of SARS-Cov-2 Infection
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 October 2020 doi:10.20944/preprints202010.0041.v1 The Human Coronaviruses (HCoVs) and the Molecular Mechanisms of SARS-CoV-2 Infection Luigi Santacroce1, Ioannis A. Charitos2, Domenico M. Carretta3, Emanuele De Nitto4, Roberto Lovero5 1) Ionian Department, Microbiology and Virology Lab., University Hospital of Bari, Università degli Studi di Bari, 70124 Bari, Italy 2) Italy Regional Emergency Service, National Poisoning Center, University Hospital of Foggia, Foggia, Italy 3) U.O.S. Coronary Unit and Electrophysiology/Pacing Unit, Syncope Unit at Cardio-Thoracic Department, Policlinico Consorziale, Bari 4) Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy. 5) AOU Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Clinical Pathology Unit, Bari 70124, Italy ORCIDs: (0000-0003-3527-7483 I.A.C.; 0000-0002-3998-5324 E.D.N.; 0000-0001-7580-5733 R.L.) Correspondence: [email protected] Abstract: In humans, coronaviruses can cause infections of the respiratory system, with damage of varying severity depending on the virus examined: ranging from mild or moderate upper respiratory tract diseases, such as the common cold, to pneumonia, severe acute respiratory syndrome, kidney failure and even death. Human coronaviruses known to date, common throughout the world, are seven. The most common - and least harmful - ones were discovered in the 1960s and cause a common cold. Others, more dangerous, were identified in the early 2000s and cause more severe respiratory tract infections. Among these the SARS-CoV, isolated in 2003 and responsible for the Severe Acute Respiratory Syndrome (the so-called SARS), which appeared in China in November 2002, the Coronavirus 2012 (2012-nCoV) cause of the Middle Eastern Respiratory Syndrome from Coronavirus (MERS), which exploded in June 2012 in Saudi Arabia, and actually SARS-CoV-2. -
Update on the Phylodynamics of SADS-Cov
life Article Update on the Phylodynamics of SADS-CoV Fabio Scarpa 1,*,† , Daria Sanna 2,† , Ilenia Azzena 1,2, Piero Cossu 1 , Marta Giovanetti 3, Domenico Benvenuto 4, Elisabetta Coradduzza 5 , Ivailo Alexiev 6 , Marco Casu 1 , Pier Luigi Fiori 2 and Massimo Ciccozzi 4 1 Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; [email protected] (I.A.); [email protected] (P.C.); [email protected] (M.C.) 2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] (D.S.); fi[email protected] (P.L.F.) 3 Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; marta.giovanetti@ioc.fiocruz.br 4 Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; [email protected] (D.B.); [email protected] (M.C.) 5 Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; [email protected] 6 National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Coronaviruses are known to be harmful and heterogeneous viruses, able to infect a large Citation: Scarpa, F.; Sanna, D.; Azzena, I.; Cossu, P.; Giovanetti, M.; number of hosts. Among them, SADS-CoV (Swine Acute Diarrhea Syndrome Coronavirus), also Benvenuto, D.; Coradduzza, E.; known as PEAV (Porcine Enteric Alphacoronavirus), or SeA-CoV (Swine Enteric Alphacoronavirus), Alexiev, I.; Casu, M.; Fiori, P.L.; et al. is the most recent Alphacoronavirus discovered, and caused several outbreaks reported in Chinese Update on the Phylodynamics of swine herds between late 2016 and 2019. -
Animal Reservoirs and Hosts for Emerging Alpha- and Betacoronaviruses
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 September 2020 doi:10.20944/preprints202009.0058.v1 Review Animal Reservoirs and Hosts for Emerging Alpha- and Betacoronaviruses Ria R. Ghai, Ann Carpenter, Meghan K. Herring, Amanda Y. Liew, Krystalyn B. Martin, Susan I. Gerber, Aron J. Hall, Jonathan M. Sleeman, Sophie VonDobschuetz and Casey Barton Behravesh 1 U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States (R. Ghai, A. Carpenter, M. Herring, A. Liew, K. Martin, S. Gerber, A Hall, C Barton Behravesh) 2 Emory University, Atlanta, GA, United States (M. Herring, A. Liew, K. Martin) 3 U.S. Geological Survey National Wildlife Health Center, Madison, WI, United States (J. Sleeman) 4 Food and Agriculture Organization of the United Nations, Rome, Italy (S. VonDobschuetz) Running Title: Animal hosts for emerging alpha and betacoronaviruses Article Summary: A review of coronaviruses in wildlife, livestock, and companion animals, and comprehensive data on receptor usage, hosts, and clinical presentation of 15 previously or currently emerging alpha-or beta-coronaviruses in people and animals. Abstract: The ongoing global pandemic caused by coronavirus disease 2019 (COVID-19) has once again demonstrated the significance of the Coronaviridae family in causing human disease outbreaks. As SARS-CoV-2 was first detected in December 2019, information on its tropism, host range, and clinical presentation in animals is limited. Given the limited information, data from other coronaviruses may be useful to inform scientific inquiry, risk assessment and decision-making. We review the endemic and emerging alpha- and betacoronavirus infections of wildlife, livestock, and companion animals, and provide information on the receptor usage, known hosts, and clinical signs associated with each host for 15 coronaviruses discovered in people and animals. -
And Betacoronaviruses in Rodents from Yunnan, China Xing-Yi Ge1,4, Wei-Hong Yang2, Ji-Hua Zhou2, Bei Li1, Wei Zhang1, Zheng-Li Shi1* and Yun-Zhi Zhang2,3*
Ge et al. Virology Journal (2017) 14:98 DOI 10.1186/s12985-017-0766-9 RESEARCH Open Access Detection of alpha- and betacoronaviruses in rodents from Yunnan, China Xing-Yi Ge1,4, Wei-Hong Yang2, Ji-Hua Zhou2, Bei Li1, Wei Zhang1, Zheng-Li Shi1* and Yun-Zhi Zhang2,3* Abstract Background: Rodents represent the most diverse mammals on the planet and are important reservoirs of human pathogens. Coronaviruses infect various animals, but to date, relatively few coronaviruses have been identified in rodents worldwide. The evolution and ecology of coronaviruses in rodent have not been fully investigated. Results: In this study, we collected 177 intestinal samples from thress species of rodents in Jianchuan County, Yunnan Province, China. Alphacoronavirus and betacoronavirus were detected in 23 rodent samples from three species, namely Apodemus chevrieri (21/98), Eothenomys fidelis (1/62), and Apodemus ilex (1/17). We further characterized the full-length genome of an alphacoronavirus from the A. chevrieri rat and named it as AcCoV-JC34. The AcCoV-JC34 genome was 27,649 nucleotides long and showed a structure similar to the HKU2 bat coronavirus. Comparing the normal transcription regulatory sequence (TRS), 3 variant TRS sequences upstream the spike (S), ORF3, and ORF8 genes were found in the genome of AcCoV-JC34. In the conserved replicase domains, AcCoV-JC34 was most closely related to Rattus norvegicus coronavirus LNRV but diverged from other alphacoronaviruses, indicating that AcCoV-JC34 and LNRV may represent a novel alphacoronavirus species. However, the S and nucleocapsid proteins showed low similarity to those of LRNV, with 66.5 and 77.4% identities, respectively. -
Betacoronavirus Genomes: How Genomic Information Has Been Used to Deal with Past Outbreaks and the COVID-19 Pandemic
International Journal of Molecular Sciences Review Betacoronavirus Genomes: How Genomic Information Has Been Used to Deal with Past Outbreaks and the COVID-19 Pandemic Alejandro Llanes 1 , Carlos M. Restrepo 1 , Zuleima Caballero 1 , Sreekumari Rajeev 2 , Melissa A. Kennedy 3 and Ricardo Lleonart 1,* 1 Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; [email protected] (A.L.); [email protected] (C.M.R.); [email protected] (Z.C.) 2 College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; [email protected] 3 College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; [email protected] * Correspondence: [email protected]; Tel.: +507-517-0740 Received: 29 May 2020; Accepted: 23 June 2020; Published: 26 June 2020 Abstract: In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002–2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019–2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2.