On Subgroups of Tetrahedron Groups Ma. Louise N. De Las Peñas1, Rene P. Felix2 and Glenn R. Laigo3 1Mathematics Department, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines.
[email protected] 2Institute of Mathematics, University of the Philippines – Diliman, Diliman, Quezon City, Philippines.
[email protected] 3Mathematics Department, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines.
[email protected] Abstract. We present a framework to determine subgroups of tetrahedron groups and tetrahedron Kleinian groups, based on tools in color symmetry theory. Mathematics Subject Classification (2000). 20F55, 20F67 Key words. Coxeter tetrahedra, tetrahedron groups, tetrahedron Kleinian groups, color symmetry 1 Introduction In [6, 7] the determination of the subgroups of two-dimensional symmetry groups was facilitated using a geometric approach and applying concepts in color symmetry theory. In particular, these works derived low-indexed subgroups of a triangle group *abc, a group generated by reflections along the sides of a given triangle ∆ with interior angles π/a, π/b and π/c where a, b, c are integers ≥ 2. The elements of *abc are symmetries of the tiling formed by copies of ∆. The subgroups of *abc were calculated from colorings of this given tiling, assuming a corresponding group of color permutations. In this work, we pursue the three dimensional case and extend the problem to determine subgroups of tetrahedron groups, groups generated by reflections along the faces of a Coxeter tetrahedron, which are groups of symmetries of tilings in space by tetrahedra. The study will also address determining subgroups of other types of three dimensional symmetry groups such as the tetrahedron Kleinian groups.