<<

Ecography ECOG-04347 Speed, J. D. M., Skjelbred, I. Å., Barrio, I. C., Martin, M. D., Berteaux, D., Bueno, C. G., Christie, K. S., Forbes, B. C., Forbey, J., Fortin, D., Grytnes, J.-A., Hoset, K. S., Lecomte, N., Marteinsdóttir, B., Mosbacher, J. B., Pedersen, Å. Ø., Ravolainen, V., Rees, E. C., Skarin, A., Sokolova, N., Thornhill, A. H., Tombre, I. and Soininen, E. M. 2019. Trophic interactions and abiotic factors drive functional and phylogenetic structure of vertebrate herbivore communities across the Arctic biome. – Ecography doi: 10.1111/ecog.04347

Supplementary material Appendix 1 Supplementary methods and results.

Table A1. Full list of 76 Arctic vertebrate herbivore species indicating those used in this study and those used by Barrio et al. (2016). GenBank accession numbers are shown for the four genetic markers for all included species. Species names according to IUCN and Birdlife International.

Species Used by Genetic Used in Notes cytB COI 12S ND4 Barrio et data current al. 2016 available study Dicrostonyx groenlandicus 1 1 1 KJ556713.1 JF456464.1 AF128937.1 Dicrostonyx hudsonius 1 1 1 AJ238436.1 JF456491.1 Dicrostonyx nelsoni 1 0 0 Dicrostonyx nunatakensis 0 0 0 Dicrostonyx richardsoni 1 1 1 AJ238435.1 JF443818.1 Dicrostonyx torquatus 1 1 1 KT867537.1 Dicrostonyx unalascensis 1 0 0 Dicrostonyx vinogradovi 1 0 0 Lemmus amurensis 0 1 1 FJ025979.1 Lemmus lemmus 1 1 1 JX483908.1 Lemmus portenkoi 1 0 0 Lemmus sibiricus 1 1 1 AY219144.1 Lemmus trimucronatus 1 1 1 AF119276.1 JF456714.1 AF128943.1 Synaptomys borealis 1 1 1 AF119259.1 JF457125.1 AF128932.1 amphibius 1 1 1 KM005047.1 AY332681.1 AF128938.1 lemminus 1 1 1 KJ556633.1 miurus 1 1 1 EF608581.1 Microtus abbreviatus 1 1 1 AF163890.1

1 Species Used by Genetic Used in Notes cytB COI 12S ND4 Barrio et data current al. 2016 available study Microtus oeconomus 1 1 1 KP190237.1 KP190307.1 AJ616853.1 Microtus middendorffii 1 1 1 AF163898.1 HM137740.1 Microtus gregalis 1 1 1 KP190244.1 KP190315.1 Microtus levis 1 1 1 FJ641161.1 EF608582.1 FJ619947.1 EF608583.1 Microtus pennsylvanicus 1 1 1 KF948531.1 KM189812.1 JN393216.1 U83806.1 Microtus longicaudus 1 1 1 KF964344.1 JF456725.1 AF128936.1 Microtus chrotorrhinus 1 1 1 AF163893.1 Microtus xanthognathus 1 1 1 AF163907.1 Microtus hyperboreus 1 1 1 HM137736.1 Myodes gapperi 1 1 1 DQ323950.1 JQ350489.1 U83808.1 Myodes rutilus 1 1 1 JX477342.1 HM165297.1 Myodes rufocanus 1 1 1 KR059903.1 JF693313.1 Sicista betulina 1 1 1 KP715861.1 Apodemus sylvaticus 1 1 1 KM582049.1 KP869163.1 AJ311131.1 parryii 1 1 1 Synonym: AF157931.1 KM537933.1 parryii Marmota broweri 1 1 1 JN024621.1 Marmota camtschatica 1 1 1 AF100715.1 JF313276.1 Marmota monax 1 1 1 AF157953.1 JF456717.1 AY227529.1 JF313286.1 Marmota caligata 1 1 1 KJ458055.1 JF313275.1 Castor canadensis 1 1 1 KY321562.1 LC144616.1 AY012111.1 JQ663965.1 Ondatra zibethicus 1 1 1 KT376465.1 JF456977.1 JN315625.1 U83809.1 Erethizon dorsatum 1 1 1 KC463889.1 JF456596.1 AY012118.1 Ochotona hyperborea 1 1 1 KR076823.1 DQ347441.1 AY012127.1 EU549756.1 Ochotona turuchanensis 1 1 1 EF567056.1 DQ347468.1

2 Species Used by Genetic Used in Notes cytB COI 12S ND4 Barrio et data current al. 2016 available study Ochotona collaris 1 1 1 KP411020.1 Lepus americanus 1 1 1 KM261475.1 U58923.1 Lepus arcticus 1 1 1 HQ596461.1 JF443819.1 Lepus othus 1 1 1 HQ596479.1 Lepus timidus 1 1 1 DQ882959.1 HM232960.1 HM232960.1 Rangifer tarandus 1 1 1 Both wild and semi- KJ138217.1 JF443494.1 AY184438.1 domestic populations used in current study, while Barrio et al. 2016 used only wild populations Ovibos moschatus 1 1 1 U17862.1 JF443354.1 AY670662.1 Alces alces 1 1 1 KC337273.1 KX859263.1 Alces americanus 1 1 1 M98484.1 JF443170.1 Ovis dalli 1 1 1 AF034728.1 JF443359.1 AY670664.1 Ovis nivicola 1 1 1 AJ867265.1 Y09259.1 Bison bison 1 1 1 AF036273.1 JF443195.1 Ovis aries 1 1 0 Excluded as non-native domestic livestock within study region Cygnus columbianus 1 1 1 Including Cygnus EU585642.1 DQ433560.1 columbianus ssp. bewickii Cygnus cygnus 1 1 1 EU585643.1 GU571360.1 AY164523.1 Cygnus buccinator 1 1 1 AY509690.1 AY666404.1 U59667.1 Anser brachyrhynchus 1 1 1 EU585614.1 GU571244.1 Anser albifrons 1 1 1 EU585612.1 DQ433314.1 AY164531.1

3 Species Used by Genetic Used in Notes cytB COI 12S ND4 Barrio et data current al. 2016 available study Anser anser 1 1 1 AY427814.1 GU571242.1 AY164530.1 DQ468124.1 Anser fabalis 1 1 1 EU585618.1 FJ808625.1 AY164514.1 Anser erythropus 1 1 1 EU585617.1 GU571729.1 Chen caerulescens 1 1 1 Synonym: Anser DQ434537.1 caerulescens Chen rossii 1 1 1 EU914156.1 DQ434538.1 U83734.1 Chen canagica 1 1 1 EU585615.1 AF173714.1 Branta canadensis 1 1 1 EU585629.1 DQ434443.1 AF173715.1 Branta hutchinsii 1 1 1 AY072593.1 DQ434479.1 Branta bernicla 1 1 1 HM063580.1 GU571279.1 HM063557.1 Branta leucopsis 1 1 1 EU585630.1 GU571283.1 Branta ruficollis 1 1 1 EU585631.1 Anas penelope 1 1 1 AF059107.1 GU571239.1 AY164518.1 Anas americana 1 1 1 AF059103.1 DQ433309.1 Lagopus lagopus 1 1 1 EF571187.1 GU571438.1 AF222583.1 Lagopus muta 1 1 1 AY156346.1 DQ433738.1 KC785614.1 Lagopus leucura 0 1 1 AF230171.1 DQ433716.1 AF222584.1 Total 73 74 70

4 Figure A1 The phylogenetic tree of 70 Arctic vertebrate herbivore species. The five main clades are coloured. From top: Anseriformes (light blue), Galliformes (dark blue), Lagomorpha (yellow), Rodentia (red), Artiodactyla (green).

5 Table A2. Description of the functional traits used to develop the functional classification of Arctic vertebrate herbivores. Abbreviations for trait categories in the column Trait quantification refer to abbreviations used in Appendix S4. Numeric values for factors refer to the order for ordered factors.

Trait Trait function Trait quantification Variable type Importance of Forbs If the herbivore species feeds mainly on Scored 0-3 depending on the frequency in diet. Discrete, ordered from main arctic forbs, it will likely have a large impact 0; non-existing low to high importance functional on this plant functional group 1; low importance, (0-10% of an average diet or in diet groups of Graminoids If the herbivore species feeds mainly on known usage from only some populations; diet plants in the graminoids, it will likely have a large proportions above 0.5 should be infrequent) herbivore’s diet impact on this plant functional group 2; medium importance (10-50% of an average diet Shrubs If the herbivore species feeds mainly on or used by most populations during most seasons; shrubs, it will likely have a large impact proportions can vary from low to high) on this plant functional group 3; high importance (>50% of an average diet or If the herbivore species feeds mainly on known usage of medium to high proportions from mosses, it will likely have a large impact all populations and seasons) on this plant functional group If the herbivore species feeds mainly on lichens, it will likely have a large impact on this plant functional group Diet type How selective or generalist a herbivore According to Shipley et al 2009: Factor, ordered from species is will determine if its impacts Obligatory generalist (OG, 1) generalist to specialist affect only certain plant species, or the Facultative generalist (FG, 2) effects spread across several plant Facultative specialist (FS, 3) species Obligatory specialist (OS, 4)

Gut type Gut morphology will determine what Type of gut: Factor, ordered from plants or plant parts can be eaten by undifferentiated (U, 1) inefficient to efficient the herbivore hindgut fermenter (HF, 2) ruminant (R, 3)

6 Trait Trait function Trait quantification Variable type Belowground feeding Belowground feeding by herbivores can Type of belowground feeding: Unordered factor have distinct impacts on vegetation Burrowing (B) Grubbing (G) None (N) Body mass Key variable in trophic ecology, Body mass (grams) Continuous reflecting both feeding and predation ecology. Mobility Wide ranging herbivores will have an Ability to move between the 100x100 km pixels Binary impact on vegetation over larger spatial used in analyses: scales than herbivores with reduced Yes (1) mobility No (0) Group size summer Larger groups of herbivores foraging Group size categories: Factor, ordered from together will have a more intense effect solitary (S, 1) solitary to large groups on vegetation and behaviour in relation small group (SG, 2) to predation family group (FG, 3) winter Larger groups of herbivores foraging large group (LG, 4) together will ha e a more intense effect on vegetation and behaviour in relation to predation Population dynamics (cyclicity) The effects of herbivores can also vary Prevalence of cyclic populations: Factor, ordered from low over time, from variable (cyclic) impacts non-cyclic (NC, 1) to high degree of when herbivores have peaks in cyclic/non-cyclic (C/NC, 2); when some populations temporal variation in abundance, to uniform (noncyclic). of a species cycle and others do not. population size These affect trophic dynamics in Cyclic (C, 3) relation to vegetation and plants. Litter/clutch size Larger litter/clutch sizes underlie Litter size, number of offspring per year. Continuous population dynamics, notably growth

7 Trait Trait function Trait quantification Variable type rates, with impacts on trophic dynamics. Wintering strategy Winter strategy controls trophic Wintering strategy: Factor, ordered from not interactions in the Arctic during winter. Not present in the Arctic during winter (NP, 1) present to active above Several species migrate out of the Arctic Active below ground (BS, 2) snow during winter. Active above ground (AAS, 3) Habitat Main habitat affects the type of trophic Habitat class: Factor interactions Terrestrial (T) Limnic (L)

8 Table A3. Functional traits of Arctic vertebrate herbivores related to what they eat: their diet and the contribution of different plant groups to their diet (forbs, graminoids, shrubs, mosses and lichens, scored 0-3 depending on the frequency in diet, with 3 being highest) , gut type, occurrence of belowground feeding (BG) ; and traits related to how much plant biomass they eat (body mass, g) , their population dynamics, reproductive output (litter size, nr of offspring per year) , group size in summer and winter, wintering strategy, habitat and their ability to move between 100x100 km pixels (mobility) . Diet type: OG obligatory generalist, FG facultative generalist, OS obligatory specialist, FS facultative specialist. Gut type: HF hindgut fermenter, R ruminant, U undifferentiated. Belowground feeding: B burrowing, G grubbing, N none. Population dynamics: C cyclic, NC non-cyclic, C/NC cyclic/non-cyclic when some populations of a species cycle and others do not. Group size: LG large group, FG family group, SG small group, S solitary (for analyses FG and SG were pooled together) . Winter: AAS active above ground, ABS active below ground, NP not present. Habitat: T terrestrial, L limnic. Data were compiled by different experts (see initials corresponding to author names, DE – Dorothee Ehrich, Arctic University of Norway, SR – Sonia Rozenfeld, Russian Academy of Sciences) ; relevant references are indicated by superscripts where needed. E Data extrapolated from species in the same genus. Species in rows shaded in grey were not included in the functional classification due to lack of phylogenetic data or status as livestock. However, they are included in this table for completeness. For all species, values provided represent averages across Arctic populations and subspecies.

oss raminoid hrub orb ichen winter F G S M L Winter Winter strategy Habitat Mobility References Order/Family Binomial Initials Diet type Gut Belowground mass Body Population dynamics size Litter size Group summer size Group 1–6 Rodentia/ Dicrostonyx groenlandicus EMS OG 3 2 3 1 1 HF B 54.40 C 3.78 S S ABS T no 3,6–9 Rodentia/Cricetidae Dicrostonyx hudsonius NL OGE 2 2 2 1 0 HFE B 57.00 C 3.49 SE SE ABSE T no 3,10 Rodentia/Cricetidae Dicrostonyx nelsoni NL OGE 2 2 3 1 0 HFE BE 60.85 CE 3.5 SE SE ABSE TE no 3,11,12 Rodentia/Cricetidae Dicrostonyx nunatakensis NL OGE 2 2 3 1 0 HF B 60.82 CE 3E S S ABS T no 3,10,11,13 Rodentia/Cricetidae Dicrostonyx richardsoni NL OG 3 3 3 0 0 HF B 55.00 C 3.5 SG S ABS T no 3,6,14–18 Rodentia/Cricetidae Dicrostonyx torquatus NS OG 2 2 3 0 0 HF B 85.00 C 3.85 S S ABS T no 3,6,11,19 Rodentia/Cricetidae Dicrostonyx unalascensis EMS OG 3 2 3 1 0 HFE BE 60.84 C 5.6 SE SE ABSE TE no 3,20,21 Rodentia/Cricetidae Dicrostonyx vinogradovi DE OG 2 2 3 0 0 HF B 60.78 C 5.6 S S ABS T no 15,22 Rodentia/Cricetidae Lemmus amurensis NS OS 1 1 0 3 0 HF B 43.70 C 5.5 S S ABS T no 1,3,6,23,24 Rodentia/Cricetidae Lemmus lemmus EMS FG 1 3 1 3 0 HF B 47.50 C 5.1 S S ABS T no 3,21 Rodentia/Cricetidae Lemmus portenkoi DE FS 2 2 0 3 0 HF B 55.76 C 5.75 S S ABS T no 3,6,16,17,20,25,26 Rodentia/Cricetidae Lemmus sibiricus DE, NS FG 2 3 1 0 0 HF B 52.27 C 6.39 S S ABS T no 1,3–6,27,28 Rodentia/Cricetidae Lemmus trimucronatus EMS FG 1 3 1 3 0 HF B 69.82 C 6.86 S S ABS T no 3,6,11 Rodentia/Cricetidae Synaptomys borealis EMS FG 2 3 1 0 0 HFE B 21.30 C/NCE 4.27 SE SE ABS T noE 3,6,29–35 Rodentia/Cricetidae Arvicola amphibius KH OG 3 3 1 0 0 HF B 120.00 C/NC 4.76 S S ABS T no

9

oss raminoid hrub orb ichen F G S M L winter Order/Family Binomial Initials Diet type Gut Belowground mass Body Population dynamics size Litter size Group summer size Group Winter strategy Habitat Mobility References 3,36 Rodentia/Cricetidae Alticola lemminus NS FS 1 1 1 2 2 HF BE 33.56 NC 6.17E S S ABS T no 3,6,37,38 Rodentia/Cricetidae Microtus miurus EMS OG 2 2 2 1 1 HF B 41.00 C/NC 3.89 S FG ABS T no 3,6,39 Rodentia/Cricetidae Microtus abbreviatus EMS OGE 2 2 2 1 1 HFE BE 62.00 C 3 SE FGE ABSE TE no 3,6,23,40,41 Rodentia/Cricetidae Microtus oeconomus EMS OG 1 3 2 1 1 HF B 34.38 C 5.62 S S ABS T no 3,6,16,18,42–44 Rodentia/Cricetidae Microtus middendorffii NS FG 2 3 2 0 0 HF B 36.49 C 5.49 S S ABS T no 3,16,18,25,26,42,45–49 Rodentia/Cricetidae Microtus gregalis NS OG 3 3 2 0 0 HF B 47.50 C 9 FG S ABS T no 3,50–55 Rodentia/Cricetidae Microtus levis KH OG 3 3 0 0 0 HF B 35.49 C 5.2 S S ABS T no 3,6,56,57 Rodentia/Cricetidae Microtus pennsylvanicus EMS OG 2 2 1 0 0 HFE B 36.75 C 5.16 S S ABS T no 3,6,58,59 Rodentia/Cricetidae Microtus longicaudus EMS OG 2 1 1 0 0 HFE B 46.71 C 4.73 S S ABS T no 3,6,60,61 Rodentia/Cricetidae Microtus chrotorrhinus EMS OG 2 1 2 1 0 HFE B 39.00 NC 3.58 S S ABS T no 3,6,62 Rodentia/Cricetidae Microtus xanthognathus EMS OG 2 3 1 0 1 HFE B 125.75 NC 8.1 S S ABS T no 6,14,16,18,42,43,63 Rodentia/Muridae Microtus hyperboreus NL FG 2 3 2 0 0 HF B 36.00E C 5.49 S S ABS T no 3,6,64 Rodentia/Cricetidae Myodes gapperi EMS FG 1 1 2 1 1 HF B 19.83 NC 5.37 S S ABS T no 3,6,65–67 Rodentia/Cricetidae Myodes rutilus KH FG 1 1 2 1 2 HF N 19.94 C/NC 5.6 S FG ABS T no 3,6,23,68 Rodentia/Cricetidae Myodes rufocanus EMS OG 3 3 3 1 0 HF B 36.43 C 5.01 S S ABS T no 3,69 Rodentia/Dipodidae Sicista betulina NS OG 3 3 3 0 0 HF N 8.00 NC 5.15 S S NP T no 3,6,70–75 Rodentia/Muridae Apodemus sylvaticus NL OG 2 3 3 0 0 HF B 30.45 NC 5.16 S S ABS T no 3,6,76 Rodentia/Sciuridae Urocitellus parryii ICB FG 3 3 2 1 1 HF B 759.99 NC 6.5 LG FG NP T no 3,77,78 Rodentia/Sciuridae Marmota broweri ICB FG 3 3 1 1 1 HF B 3405.00 NC 4.5 LG FG NP T no 3,6,79 Rodentia/Sciuridae Marmota camtschatica ICB FG 3 3 1 1 1 HF B 3500.00 NC 4.99 LG FG NP T no 3,6,80,81 Rodentia/Sciuridae Marmota monax ICB FG 3 3 2 1 1 HF B 3801.72 NC 4.1 S FG NP T no 82,83 Rodentia/Sciuridae Marmota caligata ICB FG 3 3 1 1 1 HF B 4900.00 NC 3.9 LG FG NP T no 3,6,84,85 Rodentia/Castoridae Castor canadensis NL OG 1 1 3 0 0 HF N 21820.00 NC 3.6 SG SG AAS L no 3,6,86,87 Rodentia/Cricetidae Ondatra zibethicus ICB FG 2 3 0 0 0 HF B 1065.75 C 6.55 LG FG ABS L no 3,6,88–90 Rodentia/Erethizontidae Erethizon dorsatum DB FS 1 1 3 0 0 HF N 7085.33 C/NC 1 S S AAS T no 3,6,91,92 Lagomorpha/Ochotonidae Ochotona hyperborea EMS, ICB FG 2 1 2 0 1 HF N 120.00 NC 3.02 S S ABS T no 3,91,93 Lagomorpha/Ochotonidae Ochotona turuchanensis EMS, ICB FGE 2 1 2 0 1 HF N 142.15 NC 3.4 S S ABS T no 3,6,94,95 Lagomorpha/Ochotonidae Ochotona collaris EMS, ICB FG 1 3 3 1 1 HF N 129.00 NC 3.35 S S ABS T no 3,6,96–98 Lagomorpha/Leporidae Lepus americanus JF FG 2 1 3 0 0 HF N 1710.02 C/NC 3.54 S S AAS T no

10

oss raminoid hrub orb ichen F G S M L winter Order/Family Binomial Initials Diet type Gut Belowground mass Body Population dynamics size Litter size Group summer size Group Winter strategy Habitat Mobility References 3,6,99 Lagomorpha/Leporidae Lepus arcticus JF FG 1 1 3 1 1 HF N 4405.04 NC 5.62 S S AAS T no 3,6,100 Lagomorpha/Leporidae Lepus othus JF FG 1 2 3 0 0 HF N 4805.96 NC 6.15 S S AAS T no 3,6,101,102 Lagomorpha/Leporidae Lepus timidus JF FG 2 2 3 1 1 HF N 3048.00 NC 3.16 S S AAS T no ÅP, VTR, 3,103–112 Artiodactyla/Cervidae Rangifer tarandus SR, DF FG 2 3 2 1 2 R N 86033.98 NC 1 LG LG AAS T yes 3,6,104,111–116 Artiodactyla/Bovidae Ovibos moschatus JBM FG 2 3 2 1 1 R N 340501.06 NC 1.01 SG SG AAS T yes 3,6,117,118 Artiodactyla/Cervidae Alces alces JDMS FS 2 1 3 0 0 R N 356998.16 C/NC 1.25 S S AAS T yes 3,6,119 Artiodactyla/Cervidae Alces americanus JF FG 2 2 3 1 1 R N 541460.44 NC 1 S S AAS T yes 3,6,120–123 Artiodactyla/Bovidae Ovis dalli EMS, ICB OG 2 3 2 0 1 R N 55650.62 NC 1.22 FG LG AAS T yes 3,6,124,125 Artiodactyla/Bovidae Ovis nivicola BM FG 1 3 2 1 2 R N 90000.00 NC 1 LG LG AAS T yes 3,6,126–132 Artiodactyla/Bovidae Bison bison DF FG 1 3 1 0 1 R N 579255.28 NC 0.98 LG LG AAS T yes 3,6,133–137 Artiodactyla/Bovidae Ovis aries BM FG 2 3 2 1 1 R N 50000.00 NC 1.19 FG LG NP T no 138–144 Anseriformes/Anatidae Cygnus columbianus ER FG 3 3 2 1 0 U G 6298.81 NC 3.85 LG LG NP L yes 3,145–148 Anseriformes/Anatidae Cygnus cygnus ER FG 3 3 1 1 0 U G 9349.99 NC 4.47 LG LG NP L yes 3,149–151 Anseriformes/Anatidae Cygnus buccinator ER FG 3 3 2 2 0 U G 11071.13 NC 5 LG LG NP L yes 3,152–154 Anseriformes/Anatidae Anser brachyrhynchus JDMS FG 3 3 1 1 0 U G 2642.04 NC 4 LG LG NP L yes 3,155,156 Anseriformes/Anatidae Anser albifrons SR FG 2 3 2 1 0 U G 2506.39 NC 5 LG LG NP L yes 3,157 Anseriformes/Anatidae Anser anser IT, SR FG 1 3 1 0 0 U G 3302.41 NC 5 LG LG NP L yes 3,155,158,159 Anseriformes/Anatidae Anser fabalis IT, SR FG 3 3 2 1 0 U G 2754.73 NC 4 LG LG NP L yes 3,158–161 Anseriformes/Anatidae Anser erythropus SR FG 1 3 1 0 0 U N 1755.50 NC 5 LG LG NP L yes 3,155,162,163 Anseriformes/Anatidae Chen caerulescens EMS, JDMS FG 2 3 1 1 0 U G 2636.15 NC 4 LG LG NP L yes 3,155,163,164 Anseriformes/Anatidae Chen rossii EMS, JDMS FG 2 3 1 2 0 U N 1635.99 NC 4 LG LG NP L yes 3,155 Anseriformes/Anatidae Chen canagica SR FS 1 3 1 0 0 U N 2136.49 NC 4.9 LG LG NP L yes 3,165 Anseriformes/Anatidae Branta canadensis NL FG 2 3 1 0 0 U G 2811.68 NC 4 LG LG NP L yes 165,166 Anseriformes/Anatidae Branta hutchinsii NL FG 2 3 1 0 0 U G 2050.00 NC 4 LG LG NP L yes 3,154,158,159,167–169 Anseriformes/Anatidae Branta bernicla JDMS, SR FG 2 2 1 2 0 U N 1277.91 NC 4 LG LG NP L yes 3,153,154,158,159,170 Anseriformes/Anatidae Branta leucopsis JDMS, SR FG 2 3 1 2 0 U N 1683.97 NC 5 LG LG NP L yes –173 3,156,174 Anseriformes/Anatidae Branta ruficollis SR FS 3 2 2 0 0 U N 1226.47 NC 5 LG LG NP L yes 3,155,175 Anseriformes/Anatidae Anas penelope NL FG 3 3 0 0 0 U N 770.03 NC 8 SG LG NP L yes

11

oss raminoid hrub orb ichen F G S M L winter Order/Family Binomial Initials Diet type Gut Belowground mass Body Population dynamics size Litter size Group summer size Group Winter strategy Habitat Mobility References 3,176 Anseriformes/Anatidae Anas americana NL FG 3 3 0 0 0 U N 754.61 NC 8 SG LG NP L yes 3,177–179 Galliformes/Phasianidae Lagopus lagopus KC FG 1 1 3 1 0 HF N 566.86 C/NC 9 S LG AAS T yes 3,178,180–183 Galliformes/Phasianidae Lagopus muta KC FS 1 1 3 1 0 HF N 535.30 C/NC 9 S LG AAS T yes 3,184–186 Galliformes/Phasianidae Lagopus leucura KC FG 1 1 3 0 0 HF N 354.97 C/NC 5.5 S LG AAS T yes

12 Body mass (grams log) Gut type Group size S Group size W

40 30 30 25 30 20 20 20 15 10 10 10 5

0 5 10 15 0 0 0 2 4 6 8 10 12 14 solitary solitary ruminant large_group large_group small_group small_group undifferentiated hindgut_fermenter Popul dynamics Habitat type Wintering strategy Litter size 50 30 40 40 25 30 20 30 20 15 20 10 10 10 5

0 0 0 0 5 10 15 20 0 2 4 6 8 limnic cyclic terrestrial noncyclic not_present cyclic_noncyclic active_below_snow active_above_snow Belowground feeding Mobility Diet type Forbs in diet 30 40 25 20 30

15 20 10 10 5

0 0 10 20 30 40 0 0 5 10 15 20 25 30 no yes 1 2 3 none ob_gen ob_spe fac_gen fac_spe grubbing burrowing

Graminoids in diet Shrubs in diet Mosses in diet Lichens in diet 0 10 20 30 40 0 5 10 15 20 0 5 10 20 30 0 10 20 30 40

1 2 3 0 1 2 3 0 1 2 3 0 1 2

Figure A2 Distribution of trait values between species. See Table S2 for a description of traits and trait categories, and Table S3 for trait descriptions by species.

13 Table A4 Phylogenetic signal (K) of continuous and ordinal functional traits. Higher values (values >1) show phylogenetic conservatism of traits. Gut type was the most phylogenetically-conserved trait across herbivore species, followed by mobility, wintering strategy and habitat type. Diet type and composition were amongst the most phylogenetically- diversified traits.

Trait K Body mass 0.003 Litter clutch size 0 Habitat type 2.094 Belowground feeding 0.001 Mobility 8.33 Forbs in diet 0 Graminoids in diet 0 Shrub in diet 0.001 Mosses in diet 0 Lichens in diet 0.094 Group size 1.362 Group size summer 0.531 Group size winter 1.362 Population dynamics 0.295 Gut type 5.155 Diet type 0 Wintering strategy 2.556

14 Table A5 Summary table of factorial analysis of mixed data, showing eigenvalues and percent of variance explained by the first six components.

Component Eigenvalue Percentage of variance Cumulative percentage of variance

1 6.10 33.92 33.92

2 3.68 20.44 54.35

3 1.73 9.60 63.95

4 1.43 7.94 71.90

5 0.90 5.00 76.90

6 0.87 4.84 81.74

15 (a) Quantitative variables (b) Quaulitative variables

1.0

4

body_mass_log gut_type_order active_above_snow

0.5 diet_item_shrub diet_item_lichen

diet_type_order 2 no belowground feeding

group_size_winter_order 0.0 diet_item_moss group_size_summer_order mobile Dim 2 (20.44%) 2Dim (20.44%) 2Dim terrestrial population_dynamics_order 0

diet_item_graminoid immobile -0.5 diet_item_forb limnic Litter_clutch_size active_below_snow not_present grubbing burrowing

-2 -1.0

-1.0 -0.5 0.0 0.5 1.0 -2 -1 0 1 2 3 4

Dim 1 (33.92%) Dim 1 (33.92%)

Figure A3 (a) Quantitative variables plotted as vectors along the first two axes from the factorial analysis of mixed data and (b) qualitative variable levels plotted along the first two axis. Contributions of each of the first two axes are shown.

16 60 dim1 dim2 dim3 dim4 50 dim5 dim6

40

30

20 variable contribution to dimensions contribution variable

10

0 Mobility Gut type Diet type Diet Body mass Body Habitat type Habitat Forbs in diet Forbs in Shrubs in diet in Shrubs Lichens in diet in Lichens Mosses in diet in Mosses Litter/clutch size Litter/clutch Group size winter size Group Graminoids in diet in Graminoids Wintering strategy Wintering Group size summer size Group Population dynamics Population Belowground feeding Belowground

Figure A4 Contributions of each variable to the six dimensions of the factorial analysis of mixed data. Variable contributions sum to 100 for each dimension.

17 Figure A5 Functional classification of Arctic vertebrate herbivores based on hierarchical clustering of factorial analysis of mixed data. The three main functional groups are coloured. From top: (1) limnic-habitat associated herbivores, migrating outside the Arctic for winter, undifferentiated guts for which graminoids are an important diet component (waterfowl; paragon Anser anser, green), (2) immobile, burrowing species with hindgut fermenting digestive physiology (paragon Synaptomys borealis, black), and (3) large-bodied facultative-generalist species for which shrubs and lichens are an important diet component (paragon Lepus timidus, red). See Figure S7 for functional group characterisation by traits. 18 cluster 1 cluster 2 cluster 3

Alces americanus Ovis nivicola Alces alces Rangifer tarandus Bison bison 4 Ovibos moschatus

Ovis dalli Erethizon dorsatum

Lepus arcticus Lepus timidus LagopusCastor leucura canadensis Lepus americanusLepus othus Lagopus muta cluster 2 2 Lagopus lagopus

OOchotonachotonaOchotona turuchanensis hyperborea collaris Myodes rutilus

Dim 2 (20.44%) Dim2 Alticola lemminus

Myodes gapperi Chen canagica 0 Marmota monax Branta ruficollis AnserBranta erythropus bernicla

Microtus chrotorrhinus Marmota caligata Chen rossii Microtus miurus Marmota broweri Microtus abbreviatus Sicista betulina Marmota camtschatica DicrostonyxDicrostonyx groenlandicus torquatusLemmus amurensis Urocitellus parryii Brantacluster Anserleucopsis 3anser Apodemus sylvaticus AnserCygnus albifrons columbianus Microtus oeconomus Branta canadensis Dicrostonyx hudsonius BrantaChenCygnusAnser caerulescens hutchinsii fabalis buccinator Microtus longicaudus Microtuscluster xanthognathus1 Cygnus cygnus MMicrotus icrotusDicrostonyxLemmusS ynaptomysmiddendorffiihyperboreus richardsonilemmus borealis Anser brachyrhynchus AnasAnas americanapenelope MicrotusMyodes Lemmuspennsylvanicus rufocanus trimucronatus LemmusArvicola sibiricus amphibius

-2 Ondatra zibethicus

MicrotusMicrotus gregalis levis 0 5 -5

Dim 1 (33.92%)

Figure A6. Functional classification plotted along the first two dimensions of the hierarchical clustering on principle components. Species labels are coloured according to clusters to match Figure S5.

19 body_mass_log.x Litter_clutch_size.x diet_item_forb.x diet_item_graminoid.x 1.0 1.0

12 8 0.8 0.8 10 6 0.6 0.6 8 3 3 0.4 0.4 6 4 2 2 1 1 4 0.2 0.2 2

2 0.0 0.0 Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators

diet_item_shrub.x diet_item_moss.x diet_item_lichen.x Diet_type 1.0 1.0 1.0 1.0

0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

3 3 2 ob_spe 0.4 0.4 0.4 0.4 2 2 1 ob_gen 1 1 0 fac_spe 0.2 0 0.2 0 0.2 0.2 fac_gen

0.0 0.0 0.0 0.0 Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators

gut_type Belowground_feeding.x Mobility.x group_size_summer

1.0 1.0 1.0 1.0

0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

undifferentiated no belowground feeding mobile solitary 0.4 0.4 0.4 0.4 ruminant grubbing immobile large_group hindgut_fermenter burrowing small_group 0.2 0.2 0.2 0.2

0.0 0.0 0.0 0.0 Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators

group_size_winter Population_dynamics wintering_strategy Habitat_type.x

1.0 1.0 1.0 1.0

0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

solitary noncyclic not_present terrestrial 0.4 0.4 0.4 0.4 large_group cyclic_noncyclic active_below_snow limnic small_group cyclic active_above_snow 0.2 0.2 0.2 0.2

0.0 0.0 0.0 0.0 Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic Burrowing Large-bodied Limnic hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators hindgut-fermenters facultative generalists migrators

20 Figure A7 Characterisation of three main functional groups shown in Figure S5. Boxplots are shown for the continuous trait variables (body mass and litter/clutch size), with median, interquartile range and 1.5 times interquartile range shown by lines, boxes and whiskers respectively. Spineplots are shown for the factorial trait variables, with the colour showing the trait order, the box width the number of species in each functional group and the box height the conditional relative frequency of the trait in the functional group.

21 Figure A8. Mantel statistics (Pearson correlation coefficients) between species distance matrices based on factorial anlaysis of mixed data. Correlation coefficients between the full 16-trait dataset and random selection of nine to 15 traits.

22 Table A6. List of Arctic species assumed to be predators of Arctic herbivores (excluding humans) and thus included in the variable predator diversity.

Class Order Family Species Aves Strigiformes Strigidae Aegolius funereus Aves Falconiformes Accipitridae Aquila chrysaetos Aves Strigiformes Strigidae Asio flammeus Aves Strigiformes Strigidae Bubo bubo Aves Strigiformes Strigidae Bubo scandiacus Aves Strigiformes Strigidae Bubo virginianus Aves Falconiformes Accipitridae Buteo lagopus Aves Falconiformes Accipitridae Circus cyaneus Aves Passeriformes Corvidae Corvus corax Aves Falconiformes Falconidae Falco columbarius Aves Falconiformes Falconidae Falco peregrinus Aves Falconiformes Falconidae Falco rusticolus Aves Falconiformes Accipitridae Haliaeetus albicilla Aves Falconiformes Accipitridae Haliaeetus leucocephalus Aves Falconiformes Accipitridae Haliaeetus pelagicus Aves Passeriformes Corvidae Perisoreus canadensis Aves Charadriiformes Stercorariidae Stercorarius longicaudus Aves Charadriiformes Stercorariidae Stercorarius parasiticus Aves Charadriiformes Stercorariidae Stercorarius pomarinus Aves Charadriiformes Stercorariidae Stercorarius Aves Strigiformes Strigidae Strix nebulosa Aves Strigiformes Strigidae Strix uralensis Aves Strigiformes Strigidae Sturnia ulula Mammalia Carnivora Canidae Canis latrans Mammalia Carnivora Canidae Canis lupus Mammalia Carnivora Mustelidae Gulo gulo Mammalia Carnivora Felidae Lynx canadensis Mammalia Carnivora Felidae Lynx lynx Mammalia Carnivora Mustelidae Martes zibellina Mammalia Carnivora Mustelidae Mustela erminea Mammalia Carnivora Mustelidae Mustela nivalis Mammalia Carnivora Mustelidae Neovison vison Mammalia Carnivora Ursidae Ursus arctos Mammalia Carnivora Ursidae Ursus maritimus Mammalia Carnivora Canidae Vulpes lagopus Mammalia Carnivora Canidae Vulpes vulpes

23 Figure A9 Pairwise plots between continuous environmental variables and response variables. Response variables are standardised as the residuals of relationships with species richness

24 Figure A10 Pairwise correlation plots between all continuous environmental variables. Lower panel show data and upper panels the absolute Pearson correlation coefficients, with text size proportional to the value.

25 Table A7 Generalised variance inflation factors (GVIF) estimated across environmental variables for each GLS model. Variables are standardised as the residuals of the relationships with species richness

Variable df Phylogenetic Functional Functional diversity diversity convergence

NDVI 1 2.04 1.81 1.96

Winter minimum 1 temperature 1.07 1.07 1.05

Habitat heterogeneity 1 1.01 1.02 1.02

Topographic 1 heterogeneity 1.07 1.03 1.05

Ice fee 1 1.01 1.02 1.01

Predator diversity 1 2.04 1.81 1.97

Zoogeographic region 2 1.01 1.06 1.02

26 Figure A11. Variograms showing spatial autocorrelation at increasing distance for each global GLS model fitted with exponential variance-covariance structures including coordinates of cell centroids as spatial variables.

27 Figure A12. Spatial patterns in diversity in terms of species richness, phylogenetic diversity, functional diversity and functional convergence of avian and mammalian Arctic vertebrate herbivore. Note species, phylogenetic and functional diversity are plotted on the same colour scale.

28 Supporting material References

1. Batzli, G. O. in The biology of (eds. Stenseth, N. C. & Ims, R. A.) 281–301 (Academic Press, 1993). 2. Brooks, R. J. in The biology of lemmings (eds. Stenseth, N. C. & Rolf Anker Ims) 355–386 (Academic Press, 1993). 3. Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and . Ecology 95, 2027 (2014). 4. Pitelka, F. A. & Batzli, G. O. in The biology of lemmings (eds. Stenseth, N. C. & Ims, R. A.) 198–213 (Academic Press, 1993). 5. Gruyer, N., Gauthier, G. & Berteaux, D. Cyclic dynamics of sympatric populations on Bylot Island, Nunavut, Canada. Can. J. Zool. 86, 910–917 (2008). 6. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009). 7. Gabbutt, P. D. The distribution of some small mammals and their associated fleas from central Labrador. Ecology 42, 518–525 (1961). 8. Rausch, R. L. in Advances in modern theriology (ed. Sokolov, V. E.) 162–175 (Academy of Science, 1977). 9. Fulton, T. L., Norris, R. W., Graham, R. W., Semken, H. A. & Shapiro, B. Ancient DNA supports southern survival of Richardson’s (Dicrostonyx richardsoni) during the last glacial maximum. Mol. Ecol. 22, 2540–2548 (2013). 10. Encyclopedia of Life. Available at: http://www.eol.org. 11. Naughton, D. The Natural History of Canadian Mammals. (University of Toronto Press, 2012). 12. Slough, B. & Jung, T. Diversity and distribution of the mammals of the Yukon Territory: a review. Can. Field-Naturalist 121, 119–127 (2007). 13. Gaida, A. M. & Brooks, R. J. Paternal care in collared lemmings Dicrostonyx richardsoni): artifact or adaptation? Arctic 46, 312–315 (1993). 14. Dunaeva, T. N. & Kucheruk, V. V. Ecology of Collared lemming. В Материалы по экологии наземных позвоночных тундры Южного Ямала. Москва. 52–62 (1941). 15. Cherniavsky, F. B. & A.V., T. Популяционные циклы леммингов в Арктике и экологические и эндокринные аспекты. (1982). 16. Dunaeva, T. N. in Materials of the Institute of Geography of Academy of Sciences of USSR (ed. Formozov, A. N.) 78–143 (Academy of Sciences of USSR, 1948). 17. Danilov, А. Н. Динамика численности и пространственного распределения тундровых грызунов на Южном Ямале: Автореф. дис. … канд. биол. наук. Екатеринбург. 1–18 (2000). 18. Sokolova, H. A. Биотопическое распределение мелких мышевидных грызунов в районе р. Паютаяха // Научный вестник. Мат-лы по флоре и фауне Ямало-ненецкого автономного округа. Вып. 3 (29). Салехард. 116–121 (2004). 19. Linzey, A. V. & NatureServe. in The IUCN Red List of Threatened Species 2008 e.T39974A10281541 (2008). 20. Mironov, A. Пространственно-временная организация участков обитания грызунов: Дис. ... док. биол. наук. Санкт-Петербург. (2003). 21. Menyushina, I. E., Ehrich, D., Henden, J. A., Ims, R. A. & Ovsyanikov, N. G. The nature of lemming cycles on Wrangel: an island without small mustelids. Oecologia 170, 363–371 (2012). 22. Revin, Y. V. Материалы по экологии амурского лемминга (Lemmus amurensis) в Южной Якутии. Зоологический журнал 62, 922–929 (1983). 23. Soininen, E. M. Interactions between small and their food plants in tundra habitats. (University of Tromso, 2012). 24. Stenseth, N. & Ims, R. A. The biology of lemmings. (Academic Press, 1993). 25. Kopein, K. N. Популяционная экология большой узкочерепной полевки и обского Pyastolova лемминга на Ямале: Автореф. дис. ... канд. биол. наук. Свердловск. (1959). 26. Kopein, K. N. Материалы по биологии обского лемминга и большой узкочерепной полевки. Бюллетень Уральского отделения МОИП 1, 109–133 (1958). 27. Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One 10, e0115335 (2015). 28. Banks, E. M., Brooks, R. J. & Schnell, J. A radiotracking study of home range and activity of the brown lemming (Lemmus trimucronatus). J. . 56, 888–901 (1975). 29. Frafjord, K. Influence of reproductive status: home range size in water (Arvicola amphibius). PLoS

29 One 11, e0154338 (2016). 30. Niethammer, J. in Grzimek’s Encyclopedia of Mammals vol. 3 242245 (1990). 31. Jeppsson, B. in Social systems and population cycles in voles 213–226 (Birkhäuser Basel, 1990). 32. Saucy, F. Density dependence in time series of the fossorial form of the water , Arvicola terrestris. Oikos 71, 381–392 (1994). 33. Aars, J., Lambin, X., Denny, R. & Griffin, A. C. Water vole in the Scottish uplands: distribution patterns of disturbed and pristine populations ahead and behind the American mink invasion front. In. Anim. Conserv. forum 4, 187–194 (2001). 34. Litvinov, Y. N., Abramov, S. A. & Panov, V. V. Significance of population dynamics for the formation of long-term community structure. Russ. J. Ecol. 44, 336–345 (2013). 35. Howes, C. A. A review of the food and mortality of water voles in Yorkshire. Naturalist 104, 74 (1979). 36. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T951A115054300 (2016). 37. Cole, F. R. & Wilson, D. E. Microtus miurus (Rodentia: Cricetidae). Mamm. Species 42, 75–89 (2010). 38. Batzli, G. O. & Henttonen, H. Home range and social organization of the (Microtus miurus). J. Mammal. 74, 868–878 (1993). 39. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T13425A22350031 (2016). 40. Baltensperger, A. P., Huettmann, F., Hagelin, J. C. & Welker, J. M. Quantifying trophic niche spaces of small mammals using stable isotopes (δ15N and δ13C) at two scales across . Can. J. Zool. 93, 579–588 (2015). 41. Hovland, N., Andreassen, H. P. & Ims, R. A. Foraging behaviour of the root vole Microtus oeconomus in fragmented habitats. Oecologia 121, 236–244 (1999). 42. Sokolova, N. A. et al. Small rodents in the shrub tundra of Yamal (Russia): Density dependence in habitat use? Mamm. Biol. 79, 306–312 (2014). 43. Schwartz, S. S. & Pyastolova, O. A. Middendorff’s vole. in Mammals of Yamal and the Polar Urals – Proceedings of the Institute of Plant and Ecology (ed. Schwartz, S. S.) 197–226 (UNC AS of USSR I. UNC AS of USSR Publishers, 1971). 44. Dunaeva, T. N. & Kucheruk, V. V. Ecology of Middendorff voles. В Материалы по экологии наземных позвоночных тундры Южного Ямала. Москва. 63–65 (1941). 45. Pal’chekh, N. A. Некоторые данные по изучению расселения грызунов в степной зоне Западной Сибири // Териофауна России и сопредельных территорий. Материалы междунар. совещ. 6-7 февраля 2003 г. - Москва. 253 (2003). 46. Pal’chekh, N. A., Mal’kova, M. G., Kuz’min, I. V. & Yakimenko, V. V. The structure of narrow-skulled vole (Microtus gregalis Pall.) colonies in Western Siberia. Russ. J. Ecol. 34, 327–331 (2003). 47. Mal’kova, M. G., Pal’chekh, N. A., Yakimenko, V. V. & Kuz’min, I. V. The spatiotemporal structure of rodent populations in the steppe zone of Western Siberia. Russ. J. Ecol. 35, 27–34 (2004). 48. Zadubrovskaya. Межвидовая изменчивость систем семейных отношений у мышевидных грызунов сем. Cricetidae открытых ландшафтов юга Сибири : Автореф. дис. ... канд. биол. наук. Новосибирск. (2011). 49. Zadubrovsky. Изменчивость социального поведениямышевидных грызунов с разной пространственно-этологической структурой популяции: Автореф. дис. ... канд. биол. наук. Новосибирск. (2013). 50. Korpimäki, E. Diet composition, prey choice, and breeding success of long-eared : effects of multiannual fluctuations in food abundance. Can. J. Zool. 70, 2373–2381 (1992). 51. Koivunen, V., Korpimäki, E. & Hakkarainen, H. Differential avian predation on sex and size classes of small mammals: doomed surplus or dominant individuals? Ann. Zool. Fennici 33, 293–301 (1996). 52. Norrdahl, K. & Korpimäki, E. Predation and interspecific competition in two Microtus voles. Oikos 67, 149–158 (1993). 53. Huitu, O., Norrdahl, K. & Korpima, E. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography (Cop.). 2, 197–206 (2004). 54. Korpimäki, E. et al. Vole cycles and predation in temperate and boreal zones of Europe. J. Anim. Ecol. 74, 1150–1159 (2005). 55. Okulova, N. M. et al. Autumn diets of sibling species Microtus arvalis sensu lato and M. agrestis (Rodentia, ) in the forest-steppe of the central chernozem zone. Russ. J. Ecol. 46, 181 (2015). 56. Reich, L. M. Microtus pennsylvanicus. Mamm. Species 159, 1–8 (1981). 57. Lindroth, R. L. & Batzli, G. O. Food habits of the (Microtus pennsylvanicus) in bluegrass and prairie habitats. J. Mammal. 65, 600–606 (1984). 58. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T42627A115196586 (2016).

30

59. Smolen, M. J. & Keller, B. L. Microtus longicaudus. Mamm. Species 271, 1–7 (1987). 60. Kirkland, G. L. & Jannett, F. J. Microtus chrotorrhinus. Mamm. Species 180, 1–5 (1982). 61. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T42626A115196387 62. Conroy, C. J. & Cook, J. A. Microtus xanthognathus. Mamm. Species 627, 1–5 (1999). 63. Haring, E., Sheremetyeva, I. N. & Kryukov, A. P. Phylogeny of Palearctic vole species (genus Microtus, Rodentia) based on mitochondrial sequences. Mamm. Biol. für Säugetierkd. 76, 258–267 (2011). 64. Merritt, J. F. Clethrionomys gapperi. Mamm. Species 146, 1–9 (1981). 65. Bangs, E. Summer food habits of voles, Clethrionomys rutilus and Microtus pennsylvanicus, on the Kenai Peninsula, Alaska. Can. Field-Naturalist 98, 489–492 (1984). 66. Boonstra, R. & Krebs, C. J. Population dynamics of red-backed voles (Myodes) in . Oecologia 168, 601–620 (2012). 67. West, S. D. Midwinter aggregation in the northern red-backed vole, Clethrionomys rutilus. Can. J. Zool. 55, 1404–1409 (1977). 68. Ims, R. A. Kinship and origin effects on dispersal and space sharing in Clethrionomys rufocanus. Ecology 70, 607–616 (1989). 69. Ivanter, E. V. Популяционная экология мелких млекопитающих таёжного Северо-Запада СССР. (1975). 70. Fedriani, J. M. Do frugivorous mice choose where or what to feed? J. Mammal. 86, 576–586 (2005). 71. Montgomery, S. S. J. & Montgomery, W. I. Intrapopulation variation in the diet of the wood mouse Apodemus sylvaticus. J. Zool. 222, 641–651 (1990). 72. Jennings, T. J. Notes on the burrow systems of Woodmice (Apodemus sylvaticus). J. Zool. 177, 500–504 (1975). 73. Rogers, L. M. & Gorman, M. L. The population dynamics of small mammals living in set-aside and surrounding semi-natural and crop land. J. Zool. 236, 451–464. (1995). 74. Attuquayefio, D. K., Gorman, M. L. & Wolton, R. J. Home range sizes in the Wood mouse Apodemus sylvaticus: habitat, sex and seasonal differences. J. Zool. 210, 45–53 (1986). 75. Montgomery, W. I., Wilson, W. L., Hamilton, R. & McCartney, P. Dispersion in the wood mouse, Apodemus sylvaticus: variable resources in time and space. J. Anim. Ecol. 60, 179–192 (1991). 76. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T20488A22262403 (2016). 77. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T42455A22258026 (2016). 78. Hubbart, J. Current understanding of the Alaska (Marmota broweri): A sensitive species in a changing environment. J. Biol. Life Sci. 2, 6–13 (2011). 79. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T12831A115106935 (2016). 80. Kwiecinski, G. G. Marmota monax. Mamm. Species 7, 1–8 (1998). 81. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T42458A22257685 (2016). 82. Braun, J. K., Eaton, T. S. & Mares, M. A. Marmota caligata (Rodentia: Sciuridae). Mamm. Species 43, 155–171 (2011). 83. Barash, D. P. The social behaviour of the (Marmota caligata). Anim. Behav. 22, 256–261 (1974). 84. Gallant, D., Berube, C., Tremblay, E. & Vasseur, L. An extensive study of the foraging ecology of beavers (Castor canadensis) in relation to habitat quality. Can. J. Zool. 82, 922–933 (2004). 85. Jenkins, S. & Busher, P. Castor canadensis. Mamm. Species 120, 1–8 (1979). 86. Cassola, F. in The IUCN Red List of Threatened Species 2016 e.T15324A22344525 (2016). 87. Willner, G. R., Feldhamer, G. A., Zueker, E. E. & Chapman, J. A. Ondatra zibethicus. Mamm. Species 141, 1–8 (1980). 88. Morin, P., Berteaux, D. & Klvana, I. Hierarchical habitat selection by North American porcupines in southern boreal forest. Can. J. Zool. 83, 1333–1342 (2005). 89. Roze, U. The North American porcupine . (Cornell University Press, 2009). 90. Klvana, I., Berteaux, D. & Cazelles, B. Porcupine feeding scars and climatic data show ecosystem effects of the solar cycle. Am. Nat. 164, 283–297 (2004). 91. Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World . (2009). 92. Gliwicz, J., Pagacz, S. & Witczuk, J. Strategy of food plant selection in the Siberian Northern Pika, Ochotona hyperborea. Arctic, Antarct. Alp. Res. 38, 54–59 (2006). 93. Smith, A. T. & Lissovsky, A. in The IUCN Red List of Threatened Species 2016 e.T41503A45194115 (2016). 94. Hudson, J. M. G., Morrison, S. F. & Hik, D. S. Effects of Leaf Size on Forage Selection by Collared Pikas, Ochotona collaris. Arctic, Antarct. Alp. Res. 40, 481–486 (2008).

31

95. Morrison, S. F. & Hik, D. S. Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J. Anim. Ecol. 76, 899–907 (2007). 96. Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014). 97. Krebs, C. J. et al. What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can. J. Zool. 92, 1039–1048 (2014). 98. Ewacha, M. V. A., Roth, J. D. & Brook., R. K. Vegetation structure and composition determine snowshoe hare (Lepus americanus) activity at arctic tree line. Can. J. Zool. 92, 789–794 (2014). 99. Larter, N. C. Seasonal changes in arctic hare, Lepus arcticus, diet composition and differential digestibility. Can. Field-Naturalist 113, (1999). 100. Murray, D. & Smith, A. T. in The IUCN Red List of Threatened Species 2008 e.T11795A3308465 (2008). 101. Hulbert, I. Food competition between a large ruminant and a small hindgut fermentor: the case of the roe deer and mountain hare. Oecologia 128, 499 (2001). 102. Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995). 103. Syroechkovskii, E. Wild reindeer . (Smithsonian Institution Libraries, 1995). 104. Sheremetev, I. S., Rozenfeld, S. B., Sipko, T. P. & Gruzdev, A. R. Extinction of large herbivore mammals: Niche characteristics of the Musk Ox Ovibos moschatus and the Reindeer Rangifer tarandus coexisting in isolation. Biol. Bull. Rev. 4, 433–442 (2014). 105. Bjorkvoll, E., Pedersen, B., Hytteborn, H., Jonsdottir, I. & R, L. Seasonal and Interannual Dietary Variation during Winter in Female Svalbard Reindeer (Rangifer tarandus platyrhynchus). Arct. Antarct. Alp. Res. 41, 88–96 (2009). 106. Bergerud, A. Food habits of Newfoundland caribou. J. Wildl. Manage. 36, 913–923 (1972). 107. Skogland, T. Wild reindeer foraging-niche organization. Holarct. Ecol. 7, 345–379 (1984). 108. Gaare, E. & Skogland, T. Wild reindeer food habits and range use at Hardangervidda. Fennoscandian tundra ecosystems. Ecol. Stud. 195–205 (1975). 109. Thomas, D., Edmonds, E. & Brown, K. The diet of woodland caribou populations in west-central Alberta. Rangifer 9, 337–342 (1996). 110. Nicholas, C. & Nagy, J. Seasonal changes in the composition of the diets of Peary caribou and muskoxen on Banks Island. Polar Res. 23, 131–140 (2004). 111. Kazmin, V. D., Kholod, S. S., Rozenfeld, S. B. & Abaturov, B. D. Current state of forage resources and feeding of reindeer (Rangifer tarandus) and musk oxen (Ovibos moschatus) in the Arctic of Wrangel Island. Biol. Bull. 38, 747–753 (2011). 112. Rozenfeld, S. B., Sipko, T. P., Gruzdev, A. R. & Tikhonov, A. N. Trophic relationships of Musk Ox (Ovibos moschatus) and Reindeer (Rangifer tarandus) on Wrangel Island. Biol. Bull. 39, 779–787 (2012). 113. Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: year-round movement patterns of high-arctic muskoxen. Wildlife Biol. 22, 253–267 (2016). 114. Schmidt, N. M., Pedersen, S. H., Mosbacher, J. B. & Hansen, L. H. Long-term patterns of muskox (Ovibos moschatus) demographics in high arctic Greenland. Polar Biol. 38, 1667–1675 (2015). 115. Klein, D. R. & Bay, C. Foraging dynamics of muskoxen in Peary Land, northern Greenland. Ecography (Cop.). 13, 269–280 (1990). 116. Larter, N. C. & Nagy, J. A. Peary caribou, muskoxen and Banks Island forage: assessing seasonal diet similarities. Rangifer 17, 9–16 (1997). 117. Shipley, L. Fifty years of food and foraging in moose: lessons in ecology from a model herbivore. Alces A J. Devoted to Biol. Manag. Moose 46, 1–13 (2010). 118. Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. Population limitation and the of Isle Royale. J. Mammal. 79, 828–841 (1998). 119. Jung, T. S. Dietary overlap and potential competition in a dynamic ungulate community in Northwestern Canada Ungulate Diet Overlap. J. Wildl. Manage. 79, 1277 (2015). 120. Seip, D. R. & Bunnell, F. L. Foraging behaviour and food habits of Stone’s sheep. Can. J. Zool. 63, 1638– 1646 (1985). 121. Hoefs, M. & Bayer, M. Demographic characteristics of an unhunted Dall sheep (Ovis dalli dalli) population in southwest Yukon, Canada. Can. J. Zool. 61, 1346–1357 (1983). 122. Corti, P. & Shackleton, D. M. Relationship between predation-risk factors and sexual segregation in Dall’s sheep (Ovis dalli dalli). Can. J. Zool. 80, 2108–2117 (2002). 123. Festa-Bianchet, M. in The IUCN Red List of Threatened Species 2008 e.T39250A10179389 (2008). 124. Harris, R. B. & Tsytsulina, K. in The IUCN Red List of Threatened Species 2008 e.T15740A5076357 (2008).

32

125. Baskin, L. M., Baskin, K. M. & Hoefs, M. Snow Sheep (Ovis nivicola) . (1985). 126. Gates, C. & Aune, K. in The IUCN Red List of Threatened Species 2008 e.T2815A9485062 (2008). 127. Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. Wild Mammals of North America: Biology, Management, and Conservation . (The Johns Hopkins University Press, 2003). 128. Chowns, T. Seaonal changes in distribution of wood bison in the Mackenzie bison sanctuary. File Report no. 67. (1987). 129. Gates, C. C. & Larter, N. C. Growth and Dispersal of an Erupting Large Herbivore Population in Northern Canada: The Mackenzie Wood Bison (Bison bison athabascae). Arctic 43, 231–238 (1990). 130. Larter, N. C. & Gates, C. C. Home-range size of wood bison: effects of age, sex, and forage availability. J. Mammal. 75, 142–149 (1994). 131. Larter, N. C. & Gates, C. C. Diet and habitat selection of wood bison in relation to seasonal changes in forage quantity and quality. Can. J. Zool. 69, 2677–2685 (1991). 132. Reynolds, H. W., Hansen, R. M. & Peden, D. G. Diets of slave river lowland bison herd, Northwest territories, Canada. J. Wildl. Manage. 42, 581–590 (1978). 133. Mysterud, A. Diet overlap among ruminants in Fennoscandia. Oecologia 124, 130–137 (2000). 134. Thorhallsdottir, A. G. & Thorsteinsson, I. Behaviour and plant selection. Búvísindi Icelandic Agric. Sci. 7, 59–77 (1993). 135. Warren, J. T. & Mysterud, I. Extensive ranging by sheep released onto an unfamiliar range. Appl. Anim. Behav. Sci. 38, 67–73 (1993). 136. Sturlaugsdóttir, H. Man sauður hvar gekk lamb? Félagshegðun venjulegs fjár og forystufjár. Móðuratferli, tengslamyndun og samheldni í sumarhögum. (Agricultural University of Iceland, 2008). 137. Jørgensen, N. H., Steinheim, G. & Holand, Ø. Area use of two sheep breeds in contrasting summer alpine grazing environments in southern Norway. Acta Agric. Scand. Sect. A—Animal Sci. 62, 99–105 (2016). 138. Limpert, R. J. & Earnst, S. L. in The Birds of North America (eds. Poole, A. & Gill, F. eds.) The Birds of North America, No. 89. The Academy of Natural Sciences, Philadelphia and The American Ornithologists' Union, Washington D.C., USA. 139. Rees, E. C. Bewick’s Swan . (T. & A.D. Poyser, 2006). 140. Ubels, R., Vulink, J. T. & Van Eerden, M. R. in Pechora Delta: Structure and dynamics of the Pechora Delta ecosystems (1995-1999) (ed. Eerden, M. R. van) 223–241 (2000). 141. Solovyeva, D. & Vartanyan, S. Aspects of the breeding biology of Bewick’s Swans Cygnus columbianus bewickii nesting in high densities in the Chaun River delta, Chukotka, east Russia. Wildfowl 64, 148–166 (2014). 142. Nolet, B. & Drent, R. Bewick’s Swans refuelling on pondweed tubers in the Dvina Bay (White Sea) during their spring migration: first come, first served. J. Avian Biol. 29, 574–581 (1998). 143. Shchadilov, Y. M., Rees, E. C., Belousova, A. V. & Bowler, J. M. Annual variation in the proportion of Bewick’s Swans and Whooper Swans breeding in northern European Russia. Waterbirds 25, 86–94 (2002). 144. Popovkina, A. B. & Rozenfeld, S. B. On feeding of Bewick’s swan (Cygnus bewickii) on southeastern Taimyr. Zool. Zhurnal 91, 881–886 (2012). 145. Einarsson, O. Breeding biology of the Whooper Swan and factors affecting its breeding success, with notes on its social dynamics and life cycle in the wintering range. (University of Bristol, UK., 1996). 146. Brazil, M. A. The Whooper Swan . (T. & A.D. Poyser, 1981). 147. Hall, C. et al. Population size and breeding success of the Icelandic Whooper Swan Cygnus cygnus: results of the 2015 international census. Wildfowl 66, 75–97 (2016). 148. Rees, E. C., Black, J. M., Spray, C. J. & Thorisson, S. Comparative study of the breeding success of Whooper Swans Cygnus cygnus nesting in upland and lowland regions of Iceland. Ibis (Lond. 1859). 133, 365–373 (1991). 149. Mitchell, C. D. Trumpeter Swan (Cygnus buccinator). in The Birds of North America (eds. Poole, A. & Gill, F. eds) No.105 (The Academy of Natural Sciences, Philadelphia, and The American Ornithologists’ Union, 1994). 150. Banko, W. E. The Trumpeter swan. Its history, habits and population in the United States . (University of Nebraska Press, 1960). 151. Olsen, D., Long, B. & Mitchell, C. D. Geographic variation in Trumpeter Swan Cygnus buccinator clutch size and egg weights. Wildfowl 65, 133–142 (2015). 152. , T. A., Francis, I. S. & Bergersen, E. Diet and habitat use of Svalbard Pink-footed Geese Anser brachyrhynchus during arrival and pre-breeding periods in Adventdalen. Ardea 94, 691–699 (2006).

33

153. Norwegian Polar Institute. Available at: http://www.npolar.no/en/species. 154. Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42, 319–326 (2002). 155. de Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009). 156. Rozenfeld, S. B. & Badmaev, V. B. Feeding ecology of Red-Breasted Goose (Branta ruficollis) and Greater White-fronted Goose (Anser albifrons) on migration route and in the Arctic. Bull. South. Sci. Cent. 4, 87–96 (2008). 157. Avibirds.com. Available at: http://www.avibirds.com/. 158. Rozenfeld, S. B. Feeding ecology of geese in Russian Arctic . (KMK, 2009). 159. Rozenfeld, S. B. & Sheremetyev, I. S. Arctic geese (Anser) and brants (Branta) of Eurasia: An analysis of factors that control population dynamics and geographical ranges. Biol. Bull. Rev. 6, 436–455 (2016). 160. Markkola, J., Niemelä, M. & Rytkönen, S. Diet selection of lesser white-fronted geese Anser erythropus at a spring staging area. Ecography (Cop.). 26, 705–714 (2003). 161. Global Species. Available at: https://globalspecies.org/. 162. Gauthier, G. Feeding ecology of nesting greater snow geese. J. Wildl. Manage. 57, 216–223 (1993). 163. Audet, B., Gauthier, G. & Lévesque, E. Feeding ecology of greater snow goose goslings in mesic tundra on Bylot Island, Nunavut, Canada. Condor 109, 361–376 (2007). 164. Gloutney, M. L., Alisauskas, R. T., Afton, A. D. & Slattery, S. M. Foraging time and dietary intake by breeding Ross’s and Lesser Snow Geese. Oecologia 127, 78–86 (2001). 165. Mowbray, T. B., Ely, C. R., Sedinge, J. S. & Trost, R. E. in The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002). doi:DOI: 10.2173/bna.682 166. del Hoyo, J., Collar, N. & Kirwan, G. M. in Handbook of the Birds of the World Alive (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions, 2017). 167. Summers, R. W. et al. The breeding biology of Dark-bellied Brent Geese Branta b. bernicla and King Eiders Somateria spectabilis on the northeastern Taimyr Peninsula, especially in relation to Snowy Nyctea scandiaca nests. Wildfowl 45, 110–118 (1994). 168. Madsen, J., Bregnballe, T. & Mehlum, F. Study of the breeding ecology and behaviour of the Svalbard population of Light-bellied Brent Goose Branta bernicla hrota. Polar Res. 7, 1–21 (1989). 169. Volkov, S. V. & Rozenfeld, S. B. Ecology of feeding and dynamics of diet composition in breeding Pacific Brant (Branta bernicla nigricans) at the Lena River Delta, Yakutia. Zool. Zhurnal 87, 819–829 (2008). 170. Fox, T. A. D., Eide, N. E., Bergersen, E. & Madsen, J. Resource partitioning in sympatric arctic-breeding geese: summer habitat use , spatial and dietary overlap of Barnacle and Pink-footed Geese in Svalbard. Ibis (Lond. 1859). 151, 122–133 (2009). 171. Rozenfeld, S. B. & Sheremetyev, I. S. Barnacle goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Zool. Zhurnal 92, 1450–1462 (2013). 172. Rozenfeld, S. B., Ivanov, M. N., Pletz, M. Y. & Nechaev, M. G. The feeding ecology of the Barnacle goose (Branta leucopsis) and trophic links of Anseriformes on open coastal meadows of the Kanin Peninsula. Casarca 14, 138–169 (2011). 173. Rozenfeld, S. B. & Karagitcheva, Y. V. The pattern of feeding ecology of the females of Barnacle Goose (Branta leucopsis) on the salt marshes of European North. Actual problems of ecology and evolution in the researches of the young scientists . (KMK, 2010). 174. Rozenfeld, S. B. & Volkov, S. V. Food ecology of the Red-Breasted goose on the Western Taimyr. MOIP Bull. 106, 52–57 (2001). 175. Carboneras, C., Christie, D. A. & Kirwan, G. M. in Handbook of the Birds of the World Alive (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions, 2017). 176. Mini, A. E., Harrington, E. R., Rucker, E., Dugger, B. D. & Mowbray, T. B. in The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2014). doi:DOI: 10.2173/bna.401 177. Hannon, S. J., Eason, P. K. & Martin, K. in The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 1998). 178. Weeden, R. B. Foods of rock and ptarmigan in central Alaska with comments on interspecific competition. Auk 86, 271–281 (1969). 179. Gruys, R. C. Autumn and winter movements and sexual segregation of willow ptarmigan. Arctic 46, 228–239 (1993). 180. Weeden, R. B. Spatial separation of sexes in rock and willow ptarmigan in winter. Auk 81, 534–541 (1964).

34

181. Montgomerie, R. & Holder, K. in The Birds of North America (ed. Rodewal, P. G.) (Cornell Lab of Ornithology, 2008). 182. Gasaway, W. C., White, R. G. & Holleman, D. F. Digestion of dry matter and absorption of water in the intestine and cecum of rock ptarmigan. Condor 78, 77–84 (1976). 183. Gasaway, W. C., Holleman, D. F. & White, R. G. Flow of digesta in the intestine and cecum of the rock ptarmigan. Condor 77, 467–474 (1975). 184. Martin, K., Stacey, P. & Braun, C. Recruitment, dispersal, and demographic rescue in spatially structured White-tailed ptarmigan populations. Condor 102, 503–516 (2000). 185. Martin, K., Robb, L. A., Wilson, S. & Braun, C. E. in The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2015). 186. Hoffman, R. White-tailed ptarmigan (Lagopus leucura): A technical conservation assessment . (2006).

35

Appendix 2 Multiple sequence alignment of markers COI, cytB, 12S, and ND4. The file is in

FASTA format. Provided here https://doi.org/10.6084/m9.figshare.6165923.v2

Appendix 3 Herbivore diversity maps as GIS layers. Provided here https://doi.org/10.6084/m9.figshare.6165923.v2