Targeting Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Climate Change GLOBAL STATUS OF CCS 2019 TARGETING CLIMATE CHANGE URGENT ACTION IS REQUIRED TO ACHIEVE CLIMATE CHANGE TARGETS CARBON CAPTURE AND STORAGE IS VITAL < > 1.0 INTRODUCTION ABOUT US ABOUT THE REPORT ACRONYMS CONTENTS The Global CCS Institute (the Institute) is an CCS is an emissions reduction technology BECCS Bioenergy with CCS 1.0 INTRODUCTION international think tank whose mission is to accelerate critical to meeting global climate targets. CCS Carbon Capture and Storage 1.1 About Global CCS Institute the deployment of carbon capture and storage (CCS), CCUS Carbon Capture Utilisation and Storage The Global Status of CCS 2019 documents important 1.2 About the Report a vital technology to tackle climate change. COP Conference of the Parties milestones for CCS over the past 12 months, its status 1.3 Acronyms DAC Direct Air Capture As a team of almost 40 professionals, working with across the world and the key opportunities 1.4 CEO Foreword DACCS Direct Air Capture with Carbon Storage and on behalf of our Members, we drive the adoption and challenges it faces. EC European Commission of CCS as quickly and cost effectively as possible; sharing 2.0 MEETING THE CLIMATE CHALLENGE: We hope this report will be read and used by EOR Enhanced Oil Recovery expertise, building capacity and providing advice and THE NEED FOR CCS governments, policy-makers, academics, media ESG Environmental, Social and Corporate Governance support so CCS can play its part in reducing greenhouse commentators and the millions of people who care ETS Emissions Trading Scheme gas emissions. about our climate. EU ETS European Union’s Emissions Trading System 3.0 GLOBAL STATUS OF CCS Our diverse international membership includes EU European Union 3.1 Global CCS Facilities Update governments, global corporations, private companies, AUTHORS FEED Front-End Engineering Design 3.2 Policy Levers for Accelerating Deployment research bodies and non-governmental organisations; GHG Greenhouse Gas 3.3 Global CO2 Storage Overview all committed to CCS as an integral part of a net-zero The team that prepared this report and its underlying Gt Gigatonne 3.4 Legal and Regulatory Overview emissions future. analyses: This report was led by Brad Page, Guloren Turan GW Gigawatt and Alex Zapantis and included Lee Beck, Chris Consoli, The Institute is headquartered in Melbourne, Australia IPCC Intergovernmental Panel on Climate Change 4.0 REGIONAL OVERVIEWS Ian Havercroft, Harry Liu, Patricia Loria, Annya Schneider, LCFS Low Carbon Fuel Standard with offices in Washington DC, Brussels, Beijing, 4.1 International Climate Policy Overview Eve Tamme, Alex Townsend, Lucy Temple-Smith, MMV Monitoring, Measurement and Verification London and Tokyo. 4.2 Americas Dominic Rassool and Tony Zhang. Mtpa Million Metric Tonnes Per Annum 4.3 Europe MW Megawatt Other Institute staff members who contributed to this 4.4 Middle East and Central Asia NDC Nationally Determined Contribution report are: Jamie Burrows, Jeff Erikson, Bruno Gerritts, 4.5 Asia Pacific Carla Judge, David Kearns, Xiangshan Ma, Rob Mitchell, OECD Organisation for Economic Co-operation Hiroshi Nambo and Nabeela Raji. and Development R&D Research and Development 5.0 CCS DEVELOPMENT: SDS Sustainable Development Scenario TECHNOLOGY AND APPLICATIONS SMR Steam Methane Reformation 5.1 Natural Gas SOE State Owned Enterprise 5.2 Hydrogen TWH Terrawatt Hour 5.3 CCS in the Power Sector UNFCCC United Nations Framework Convention 5.4 Bioenergy with Carbon Capture on Climate Change and Storage (BECCS) UK United Kingdom 5.5 Direct Air Capture (DAC) US United States of America 5.6 CO2 Utilisation US DOE United States Department of Energy 5.7 CCS Innovation 5.8 Industry’s Transition to a Net-zero Future 6.0 APPENDICES 7.0 REFERENCES 5 1.0 Introduction CONTENTS 1.4 CEO Foreword < > BRAD PAGE CEO Global CCS Institute As if the world needed any more evidence that action. It is possible to get there but it requires policies Ramping up over time to capture and store between developing the new energy economy based on clean the effects of climate change are with us now and that mobilise enormous sums of capital to deliver an 3.4 and 4.0 million tonnes of CO2 per annum, Gorgon fuels like hydrogen, is dependent on CCS deployment. getting worse, 2019 bore witness to unprecedented unprecedented transformation of the global energy puts Australia on the CCS facility map and is a credit to And as CCS is deployed, many communities that catastrophic events that go well beyond weather system. It is hard but it can be done. the determination and persistence of the joint venture otherwise may have a less prosperous outlook in a variability and cannot be explained away as simply partners led by Chevron and including prominent carbon-constrained world become a positive part The recurring theme of many deeply analytical and extreme events that happen from time-to-time. Fires Institute members Shell and Exxon Mobil. of the transition. credible reports is that we need all technologies to win of devastating proportion and impact – in many cases this wrestle. We can no longer afford to have confected Hydrogen as a vital new energy source in the But we have much more work to do. Few clean energy more severe and widespread than ever previously competitions between technologies with prejudices decarbonisation race was also to the fore in 2019. technologies are on track to be deployed at the scale experienced – have wrought havoc in countries as that serve to compromise our ability to rapidly reduce In Europe, Australia, Japan, South Korea and an required to meet the Paris climate targets. CCS is disparate as the United States (US), France, Greece, emissions. increasing number of other countries, hydrogen is resurgent but still lagging while emissions again rose Portugal and Australia. Elsewhere, extreme storm receiving policy attention not seen for several decades. in the past year. Now is the time to rally for greater events have been experienced. Think Typhoon Hagibis Against this background we have seen exciting new The difference this time around is that the need for policy support and for capital to be allocated to build in Japan during the Rugby World Cup, prolonged developments in the energy transformation during a zero-emission energy dense fuel is vital and the on the positive CCS progress of the past two years. monsoons in India, Hurricane Dorian in the Bahamas 2019. For the second year in a row the CCS facility technology to produce and deliver the hydrogen has and Typhoon Lekima in China to name but a few, all pipeline has grown. The flexibility, applicability and advanced substantially in the intervening period. As with devastating loss of life and property. Meanwhile increasingly positive economics of applying CCS to is noted later in this report, the most technologically droughts worsen and deepen in many parts of the a range of emission sources is coming to the fore. proven, economical, at-scale process for producing world, including in essential food production areas. As this report reveals, positive policy intentions and clean hydrogen is through steam methane reforming settings are apparent in many parts of the world and The climate science has been clear for many years. Now or coal gasification, both with CCS. The potential especially the US, the UK, Norway and the Netherlands we are experiencing first hand the impacts of unabated market for clean hydrogen is substantial and early leading to more projects being added to our globally greenhouse gas emissions. stage investment in production facilities, evidenced for comprehensive database. CCS is also to the fore in the example in the Japanese/Australian joint venture of Time is not on our side to achieve the necessary targets plans and policies of the EU while Japan continues to building a coal gasification pilot plant, is the harbinger agreed at the historic COP 21 in Paris in 2015. We have make impressive strides forward. It is also notable that of a growing industry as are plans in the UK and in in the recent past had highly credible analysis of options China continues to attach importance to CCS and has Europe. and pathways to achieve the 2˚C and 1.5˚C targets established a new professional committee to broaden along with net zero carbon emissions by mid-century. the advice and support to government on CCS policy Perhaps the most compelling development in the last Indeed, the IPCC 1.5˚C Special Report makes it clear and actions. 12 months though is that increasingly, CCS is the stand that all technologies, and especially CCS in various out technology to genuinely deliver a just transition 2019 will also be celebrated for the commencement applications, are necessary along with reaching net zero for many fossil fuel-based communities. Dealing with of injection at the world’s largest geological storage emissions around 2050. The 4 pathways offered by the the associated emissions for extracting, processing facility – Gorgon – offshore NW Western Australia. IPCC all demand urgent and unprecedented levels of and using fossil fuels and perhaps more significantly 1 2 1.0 Introduction CONTENTS CCS Ambassador < > LORD NICHOLAS STERN IG Patel Professor of Economics & Government, London School of Economics Chair, Grantham Research Institute “ CARBON CAPTURE, USE AND STORAGE, WILL PLAY A VITAL ROLE The effects of climate change are already raging One of the opportunities that we have at hand, AS INDICATED BY THE across the world with wild fires, droughts, and carbon capture, use and storage, will play a vital rising sea levels. Bad as it is already, we risk far role as indicated by the Intergovernmental Panel worse. Failure to mitigate climate change is deeply on Climate Change’s Report on Global Warming of INTERGOVERNMENTAL dangerous; we owe it to future generations to tackle 1.5 ºC.
Recommended publications
  • Carbon Capture: a Technology Assessment
    Carbon Capture: A Technology Assessment Peter Folger, Coordinator Specialist in Energy and Natural Resources Policy November 5, 2013 Congressional Research Service 7-5700 www.crs.gov R41325 CRS Report for Congress Prepared for Members and Committees of Congress Carbon Capture: A Technology Assessment Summary Carbon capture and sequestration (or carbon capture and storage, CCS) is widely seen as a critical strategy for limiting atmospheric emissions of carbon dioxide (CO2)—the principal “greenhouse gas” linked to global climate change—from power plants and other large industrial sources. This report focuses on the first component of a CCS system, the CO2 capture process. Unlike the other two components of CCS, transportation and geologic storage, the CO2 capture component of CCS is heavily technology-dependent. For CCS to succeed at reducing CO2 emissions from a significant fraction of large sources in the United States, CO2 capture technologies would need to be deployed widely. Widespread commercial deployment would likely depend, in part, on the cost of the technology deployed to capture CO2. This report assesses prospects for improved, lower- cost technologies for each of the three current approaches to CO2 capture: post-combustion capture; pre-combustion capture; and oxy-combustion capture. While all three approaches are capable of high CO2 capture efficiencies (typically about 90%), the major drawbacks of current processes are their high cost and the large energy requirements for operation. Another drawback in terms of their availability for greenhouse gas mitigation is that at present, there are still no full-scale applications of CO2 capture on a coal-fired or gas-fired power plant (i.e., a scale of several hundred megawatts of plant capacity).
    [Show full text]
  • A Revisionist History of Regulatory Capture WILLIAM J
    This chapter will appear in: Preventing Regulatory Capture: Special Interest . Influence and How to Limit it. Edited by Daniel Carpenter and David Moss. Copyright © 2013 The Tobin Project. Reproduced with the permission of Cambridge University Press. Please note that the final chapter from the Cambridge University Press volume may differ slightly from this text. A Revisionist History of Regulatory Capture WILLIAM J. NOVAK A Revisionist History of Regulatory Capture WILLIAM J. NOVAK PROFESSOR, UNIVERSITY OF MICHIGAN SCHOOL OF LAW The idea of regulatory capture has controlled discussions of economic regulation and regulatory reform for more than two generations. Originating soon after World War II, the so-called “capture thesis” was an early harbinger of the more general critique of the American regulatory state that dominated the closing decades of the 20th century. The political ramifications of that broad critique of government continue to be felt today both in the resilient influence of neoliberal policies like deregulation and privatization as well as in the rise of more virulent and populist forms of anti-statism. Indeed, the capture thesis has so pervaded recent assessments of regulation that it has assumed something of the status of a ground norm – a taken-for-granted term of art and an all-purpose social-scientific explanation – that itself frequently escapes critical scrutiny or serious scholarly interrogation. This essay attempts to challenge this state of affairs by taking a critical look at the emergence of regulatory capture theory from the perspective of history. After introducing a brief account of the diverse intellectual roots of the capture idea, this essay makes three interpretive moves.
    [Show full text]
  • Dispersion of Flies by Flight
    DISPERSION OF FLIES BY FLIGHT By F. C. BISHOPP, Entomologist, and E. W. I^AAKë, Entomological Assistant, Inves- tigations of Insects Affecting the Health of Man and Animals, Bureau of Entomology, United States Department of Agriculture A definite knowledge of the means of dissemination of various species of economic insects is of much importance in control or eradicative undertakings. Undoubtedly the spread of injurious forms by artificial means is in general of most pronounced importance. With free-fiying species, however, natural dispersion deserves careful consideration. This is particularly true of the various species of flies which directly affect man and animals. The accumulation of data on the possibilities of flight of various injurious species of flies should aid economic work in several ways. i. It should help in the study of the spread of fly-borne diseases, either in large districts or locally. 2. It should make possible the proper location of dumps, incinerators, hog-feeding stations, and other favorable breeding grounds so that the menace to towns, cities, military camps, etc., will be reduced to a minimum. 3. In control work in restricted districts or about individual plants it should help in determining the extent to which fly-breeding grounds in the neighborhood affect these undertakings. 4. In the prosecution of large-scale control work against certain species on farms or ranges, it should show how widespread must be the effort if marked results are to be accomplished. 5. It should make it possible to determine whether control campaigns are accumulative from year to year in their effect, or whether, owing to extensive migration, the results are effective only during one year or one period.
    [Show full text]
  • The Truth of the Capture of Adolf Eichmann (Pdf)
    6/28/2020 The Truth of the Capture of Adolf Eichmann » Mosaic THE TRUTH OF THE CAPTURE OF ADOLF EICHMANN https://mosaicmagazine.com/essay/history-ideas/2020/06/the-truth-of-the-capture-of-adolf-eichmann/ Sixty years ago, the infamous Nazi official was abducted in Argentina and brought to Israel. What really happened, what did Hollywood make up, and why? June 1, 2020 | Martin Kramer About the author: Martin Kramer teaches Middle Eastern history and served as founding president at Shalem College in Jerusalem, and is the Koret distinguished fellow at the Washington Institute for Near East Policy. Listen to this essay: Adolf Eichmann’s Argentinian ID, under the alias Ricardo Klement, found on him the night of his abduction. Yad Vashem. THE MOSAIC MONTHLY ESSAY • EPISODE 2 June: The Truth of the Capture of Adolf Eichmann 1x 00:00|60:58 Sixty years ago last month, on the evening of May 23, 1960, the Israeli prime minister David Ben-Gurion made a brief but dramatic announcement to a hastily-summoned session of the Knesset in Jerusalem: A short time ago, Israeli security services found one of the greatest of the Nazi war criminals, Adolf Eichmann, who was responsible, together with the Nazi leaders, for what they called “the final solution” of the Jewish question, that is, the extermination of six million of the Jews of Europe. Eichmann is already under arrest in Israel and will shortly be placed on trial in Israel under the terms of the law for the trial of Nazis and their collaborators. In the cabinet meeting immediately preceding this announcement, Ben-Gurion’s ministers had expressed their astonishment and curiosity.
    [Show full text]
  • GORILLA Report on the Conservation Status of Gorillas
    Version CMS Technical Series Publication N°17 GORILLA Report on the conservation status of Gorillas. Concerted Action and CMS Gorilla Agreement in collaboration with the Great Apes Survival Project-GRASP Royal Belgian Institute of Natural Sciences 2008 Copyright : Adrian Warren – Last Refuge.UK 1 2 Published by UNEP/CMS Secretariat, Bonn, Germany. Recommended citation: Entire document: Gorilla. Report on the conservation status of Gorillas. R.C. Beudels -Jamar, R-M. Lafontaine, P. Devillers, I. Redmond, C. Devos et M-O. Beudels. CMS Gorilla Concerted Action. CMS Technical Series Publication N°17, 2008. UNEP/CMS Secretariat, Bonn, Germany. © UNEP/CMS, 2008 (copyright of individual contributions remains with the authors). Reproduction of this publication for educational and other non-commercial purposes is authorized without permission from the copyright holder, provided the source is cited and the copyright holder receives a copy of the reproduced material. Reproduction of the text for resale or other commercial purposes, or of the cover photograph, is prohibited without prior permission of the copyright holder. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of UNEP/CMS, nor are they an official record. The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of UNEP/CMS concerning the legal status of any country, territory or area, or of its authorities, nor concerning the delimitation of its frontiers and boundaries. Copies of this publication are available from the UNEP/CMS Secretariat, United Nations Premises.
    [Show full text]
  • Technical Summary 17
    Technical Summary 17 IPCC Special Report Carbon Dioxide Capture and Storage Technical Summary Coordinating Lead Authors Edward Rubin (United States), Leo Meyer (Netherlands), Heleen de Coninck (Netherlands) Lead Authors Juan Carlos Abanades (Spain), Makoto Akai (Japan), Sally Benson (United States), Ken Caldeira (United States), Peter Cook (Australia), Ogunlade Davidson (Sierra Leone), Richard Doctor (United States), James Dooley (United States), Paul Freund (United Kingdom), John Gale (United Kingdom), Wolfgang Heidug (Germany), Howard Herzog (United States), David Keith (Canada), Marco Mazzotti (Italy and Switzerland), Bert Metz (Netherlands), Balgis Osman-Elasha (Sudan), Andrew Palmer (United Kingdom), Riitta Pipatti (Finland), Koen Smekens (Belgium), Mohammad Soltanieh (Iran), Kelly (Kailai) Thambimuthu (Australia and Canada), Bob van der Zwaan (Netherlands) Review Editor Ismail El Gizouli (Sudan) 18 Technical Summary Contents 1. Introduction and framework of this report ...........................................................................................................................19 2. Sources of CO2 . .....................................................................................................................................................................22 3. Capture of CO2 .................................................................................................................................................................. ....24 4. Transport of CO2 ...............................................................................................................................................................
    [Show full text]
  • The Cognitive Locus of Distraction by Acoustic Novelty in the Cross-Modal Oddball Task
    ARTICLE IN PRESS Cognition xxx (2007) xxx–xxx www.elsevier.com/locate/COGNIT The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task Fabrice B.R. Parmentier a,b,*, Gregory Elford a, Carles Escera c, Pilar Andre´s a, Iria San Miguel c a School of Psychology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK b School of Psychology, University of Western Australia, Australia c Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain Received 24 July 2006; revised 11 March 2007; accepted 11 March 2007 Abstract Unexpected stimuli are often able to distract us away from a task at hand. The present study seeks to explore some of the mechanisms underpinning this phenomenon. Studies of involun- tary attention capture using the oddball task have repeatedly shown that infrequent auditory changes in a series of otherwise repeating sounds trigger an automatic response to the novel or deviant stimulus. This attention capture has been shown to disrupt participants’ behavioral performance in a primary task, even when distractors and targets are asynchronous and pre- sented in distinct sensory modalities. This distraction effect is generally considered as a by-prod- uct of the capture of attention by the novel or deviant stimulus, but the exact cognitive locus of this effect and the interplay between attention capture and target processing has remained rel- atively ignored. The present study reports three behavioral experiments using a cross-modal oddball task to examine whether the distraction triggered by auditory novelty affects the pro- cessing of the target stimuli.
    [Show full text]
  • STUDY of the NEUTRON and PROTON CAPTURE REACTIONS 10,11B(N, ), 11B(P, ), 14C(P, ), and 15N(P, ) at THERMAL and ASTROPHYSICAL ENERGIES
    STUDY OF THE NEUTRON AND PROTON CAPTURE REACTIONS 10,11B(n, ), 11B(p, ), 14C(p, ), AND 15N(p, ) AT THERMAL AND ASTROPHYSICAL ENERGIES SERGEY DUBOVICHENKO*,†, ALBERT DZHAZAIROV-KAKHRAMANOV*,† *V. G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty, Kazakhstan †Institute of Nuclear Physics CAE MINT RK, 050032, str. Ibragimova 1, Almaty, Kazakhstan *[email protected][email protected] We have studied the neutron-capture reactions 10,11B(n, ) and the role of the 11B(n, ) reaction in seeding r-process nucleosynthesis. The possibility of the description of the available experimental data for cross sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model (MPCM) with forbidden states and accounting for the resonance behavior of the scattering phase shifts. In the framework of the same model the possibility of describing the available experimental data for the total cross sections of the neutron radiative capture on 11B at thermal and astrophysical energies were considered with taking into account the 21 and 430 keV resonances. Description of the available experimental data on the total cross sections and astrophysical S-factor of the radiative proton capture on 11B to the ground state of 12C was treated at astrophysical energies. The possibility of description of the experimental data for the astrophysical S-factor of the radiative proton capture on 14C to the ground state of 15N at astrophysical energies, and the radiative proton capture on 15N at the energies from 50 to 1500 keV was considered in the framework of the MPCM with the classification of the orbital states according to Young tableaux.
    [Show full text]
  • 124214015 Full.Pdf
    PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI DEFENSE MECHANISM ADOPTED BY THE PROTAGONISTS AGAINST THE TERROR OF DEATH IN K.A APPLEGATE’S ANIMORPHS AN UNDERGRADUATE THESIS Presented as Partial Fulfillment of the Requirements for the Degree of Sarjana Sastra in English Letters By MIKAEL ARI WIBISONO Student Number: 124214015 ENGLISH LETTERS STUDY PROGRAM DEPARTMENT OF ENGLISH LETTERS FACULTY OF LETTERS SANATA DHARMA UNIVERSITY YOGYAKARTA 2016 PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI DEFENSE MECHANISM ADOPTED BY THE PROTAGONISTS AGAINST THE TERROR OF DEATH IN K.A APPLEGATE’S ANIMORPHS AN UNDERGRADUATE THESIS Presented as Partial Fulfillment of the Requirements for the Degree of Sarjana Sastra in English Letters By MIKAEL ARI WIBISONO Student Number: 124214015 ENGLISH LETTERS STUDY PROGRAM DEPARTMENT OF ENGLISH LETTERS FACULTY OF LETTERS SANATA DHARMA UNIVERSITY YOGYAKARTA 2016 ii PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI A SarjanaSastra Undergraduate Thesis DEFENSE MECIIAMSM ADOPTED BY TITE AGAINST PROTAGOMSTS THE TERROR OT OTATTT IN K.A APPLEGATE'S AAUMORPHS By Mikael Ari Wibisono Student Number: lz4ll4}ls Defended before the Board of Examiners On August 25,2A16 and Declared Acceptable BOARD OF EXAMINERS Name Chairperson Dr. F.X. Siswadi, M.A. Secretary Dra. Sri Mulyani, M.A., ph.D / Member I Dr. F.X. Siswadi, M.A. Member2 Drs. HirmawanW[ianarkq M.Hum. Member 3 Elisa DwiWardani, S.S., M.Hum Yogyakarta, August 31 z}rc Faculty of Letters fr'.arrr s41 Dharma University s" -_# 1,ffi QG*l(tls srst*\. \ tQrtnR<{l
    [Show full text]
  • Efficient Capture of Circulating Tumor Cells with a Novel
    BIOMICROFLUIDICS 5, 034119 (2011) Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device Mary Nora Dickson,1,2,a) Pavel Tsinberg,1 Zhongliang Tang,1 Farideh Z. Bischoff,1 Timothy Wilson,1 and Edward F. Leonard2 1Biocept, Inc., 5810 Nancy Ridge Drive Suite 150, San Diego, California 92121, USA 2Columbia University School of Engineering and Applied Science, Department of Chemical Engineering, 801 Mudd, 500 W. 120th Street, New York, New York 10027, USA (Received 21 February 2011; accepted 19 July 2011; published online 22 August 2011) Ability to perform cytogenetic interrogations on circulating tumor cells (CTCs) from the blood of cancer patients is vital for progressing toward targeted, individualized treatments. CTCs are rare compared to normal (bystander) blood cells, found in ratios as low as 1:109. The most successful isolation techniques have been immunocytochemical technologies that label CTCs for separation based on unique surface antigens that distinguish them from normal bystander cells. The method discussed here utilizes biotin-tagged antibodies that bind selectively to CTCs. The antibodies are introduced into a suspension of blood cells intending that only CTCs will display surface biotin molecules. Next, the cell suspension is passed through a microfluidic channel that contains about 9000 transverse, streptavidin coated posts. A CTC making contact with a post has the opportunity to engage in a biotin-streptavidin reaction that immobilizes the cell. Bystander blood cells remain in suspension and pass through the channel. The goal of the present study is to establish the technical performance of these channels as a function of antigen density and operating conditions, especially flow rate.
    [Show full text]
  • The Capture Animorphs #6 K.A
    THE CAPTURE ANIMORPHS #6 K.A. Applegate Page set by Hebi no Me Chapter 1 Chapter 12 Chapter 2 Chapter 13 Chapter 3 Chapter 14 Chapter 4 Chapter 15 Chapter 5 Chapter 16 Chapter 6 Chapter 17 Chapter 7 Chapter 18 Chapter 8 Chapter 19 Chapter 9 Chapter 20 Chapter 10 Chapter 21 Chapter 11 Chapter 22 CHAPTER 1 I'm Jake. Just Jake. You don't need to know my last name, and I can't tell you, anyway. My story is full of small lies. I've changed people's names. I've changed the names of places. I've changed small details here and there. But the big stuff is true. All of it. The Yeerks are here. On Earth. That is true. The Yeerks have made Controllers of many humans. They have inserted their gross, sluglike bodies into people's brains, and made them into slaves - Controllers. That is true. Controllers are everywhere. My town. Your town. Everywhere. They can be anyone. The policeman on the corner. The teacher in your school. Your best friend. Your mother or father. Your brother. I know. Because my brother Tom is one of them. Tom is a Controller. A slave to the Yeerk in his head. If he knew who I really was - what I really was - he would have me killed. Or turned into a Controller, like him. That's what my world is like now. A world where the enemy is everywhere. Even sitting across from me at the breakfast table on a Saturday morning, which is when this part of the story begins.
    [Show full text]
  • Basic Research Needs for Carbon Capture: Beyond 2020
    The cover illustration depicts carbon dioxide, a gray carbon atom with two red oxygen atoms, being separated from a combustion stream containing a complex mixture of gases, including carbon dioxide, nitrogen (two blue atoms), water (two white hydrogen atoms and one red oxygen atom), methane (four white hydrogen atoms and one black carbon atom), sulfur dioxide (one yellow sulfur atom and two red oxygen atoms), and nitrous oxide (two blue nitrogen atoms and one red oxygen atom). BASIC RESEARCH NEEDS FOR CARBON CAPTURE: BEYOND 2020 Report of the Basic Energy Sciences Workshop for Carbon Capture: Beyond 2020 Co-chairs: Paul Alivisatos, Lawrence Berkeley National Laboratory Michelle Buchanan, Oak Ridge National Laboratory Panel Leads: Liquids-Based Absorption Peter Cummings, Vanderbilt University Bill Schneider, Notre Dame University Membranes Benny Freeman, University of Texas, Austin Samuel Stupp, Northwestern University Solid Sorbents Omar Yaghi, University of California, Los Angeles Chris Murray, University of Pennsylvania Crosscutting Theory, Modeling, and Simulation Berend Smit, University of California, Berkeley Paulette Clancy, Cornell University Crosscutting Analysis and Characterization Murray Gibson, Argonne National Laboratory Martin Zanni, University of Wisconsin, Madison Basic Energy Sciences Leads: Mary Galvin, Office of Science, Department of Energy Linda Horton, Office of Science, Department of Energy Technical Assistance (Technology Resource Document): Dave Cole, Oak Ridge National Laboratory Administrative Support: Cathy
    [Show full text]