Basic Research Needs for Carbon Capture: Beyond 2020
Total Page:16
File Type:pdf, Size:1020Kb
The cover illustration depicts carbon dioxide, a gray carbon atom with two red oxygen atoms, being separated from a combustion stream containing a complex mixture of gases, including carbon dioxide, nitrogen (two blue atoms), water (two white hydrogen atoms and one red oxygen atom), methane (four white hydrogen atoms and one black carbon atom), sulfur dioxide (one yellow sulfur atom and two red oxygen atoms), and nitrous oxide (two blue nitrogen atoms and one red oxygen atom). BASIC RESEARCH NEEDS FOR CARBON CAPTURE: BEYOND 2020 Report of the Basic Energy Sciences Workshop for Carbon Capture: Beyond 2020 Co-chairs: Paul Alivisatos, Lawrence Berkeley National Laboratory Michelle Buchanan, Oak Ridge National Laboratory Panel Leads: Liquids-Based Absorption Peter Cummings, Vanderbilt University Bill Schneider, Notre Dame University Membranes Benny Freeman, University of Texas, Austin Samuel Stupp, Northwestern University Solid Sorbents Omar Yaghi, University of California, Los Angeles Chris Murray, University of Pennsylvania Crosscutting Theory, Modeling, and Simulation Berend Smit, University of California, Berkeley Paulette Clancy, Cornell University Crosscutting Analysis and Characterization Murray Gibson, Argonne National Laboratory Martin Zanni, University of Wisconsin, Madison Basic Energy Sciences Leads: Mary Galvin, Office of Science, Department of Energy Linda Horton, Office of Science, Department of Energy Technical Assistance (Technology Resource Document): Dave Cole, Oak Ridge National Laboratory Administrative Support: Cathy Cheverton, Oak Ridge National Laboratory Katie Perine, Office of Science, Department of Energy Communications/Web/Publication: Brenda Campbell, Deborah Counce, Kathy Jones, Brenda Smith, and Ernestine Sloan, all of Oak Ridge National Laboratory This report is available on the web at http://www.sc.doe.gov/bes/reports/files/CCB2020_rpt.pdf CONTENTS Page Figures........................................................................................................................................v Abbreviations, Acronyms, and Initialisms.............................................................................. vii Executive Summary ................................................................................................................. ix Introduction ................................................................................................................................1 Basic Research Needs for Carbon Capture ................................................................................7 Liquid Absorbents ............................................................................................................... 9 Solid Sorbents ................................................................................................................... 17 Membranes ........................................................................................................................ 25 Priority Research Directions ....................................................................................................37 Interfacial Processes and Kinetics .................................................................................... 39 Novel Solvents and Chemistries ....................................................................................... 43 Process Concepts Discovery ............................................................................................. 51 Design, Synthesis, and Assembly of Novel Material Architectures ................................. 57 Cooperative Phenomena for Low Net Enthalpy of Cycling ............................................. 63 Novel Hierarchical Structures in Membranes for Carbon Capture ................................... 69 Membranes Molecularly Tailored To Enhance Separation Performance ......................... 73 Alternative Driving Forces and Stimuli-Responsive Materials for Carbon Capture ........ 77 Crosscutting Science for Electrical Energy Storage ................................................................85 Crosscutting Analysis Tools ............................................................................................. 87 Crosscutting Computation .............................................................................................. 100 Section I: Expanding the Molecular Toolbox for Guest-host Interactions and Host Structure Materials ....................................................................................... 101 Section II: Thermodynamic and Transport Properties: Absorption/Adsorption and Diffusion ........................................................................................................ 106 Section III: In silico Search and Discovery of Novel Materials ............................... 108 Impact and Conclusions ............................................................................................ 110 Conclusion .............................................................................................................................113 Appendix A: Technology and Applied R&D Needs for Carbon Capture Beyond 2020 ...... A-1 Appendix B: Carbon Capture: Beyond 2020 ‒ Agenda .........................................................B-1 Appendix C: Carbon Capture: Beyond 2020 ‒ Attendees .....................................................C-1 iii FIGURES Figure Page 1. Releasing the pressure on a bottle of soda pop causes dissolved CO2 to leave the liquid—slowly under normal conditions, or spectacularly if the transfer is promoted with an appropriate accelerating additive.1 ..........................................9 2. Absorption gas separation using temperature-swing gas separation takes advantage of the high solubility of target gas at low temperature and lower solubility at high temperature. .................................................................................9 3. The adsorbent material can be designed to be highly size- and shape- selective..................................................................................................................19 4. Model nanoporous oxygen carriers. .......................................................................21 5. Schematic of a membrane separating a mixture of molecules. ..............................25 6. Comparison of a membrane unit with a conventional separation process (i.e., amine absorption system) for removing CO2 from natural gas. ............................26 7. Gas sizes (D), critical temperature (Tc), and common order of permeability coefficients of gas molecules in polymers. ............................................................29 8. Photomicrograph of a hollow fiber gas separation membrane showing the graded porosity in the wall of the fiber and the ultrathin (~100 nm) separating layer at the outer wall of the fiber. .......................................................30 9. Permeability/selectivity tradeoff as illustrated for the separation of mixtures of hydrogen and nitrogen. ......................................................................................31 10. Effect of membrane thickness and time on gas permeability properties of Matrimid®, a glassy polymer. ................................................................................32 11. Forming asymmetric hollow fiber membranes involves solution processing of polymers to a highly nonequilibrium state. .......................................................33 12. Snapshots (top and side views) of the solution–air interface of 1.2 M aqueous sodium halides from molecular dynamics simulations and number density profiles of water oxygen atoms and ions plotted vs distance from the center of the slabs in the direction normal to the interface, normalized by the bulk water density. .................................................................................................40 13. Schematic of CO2 selectively isolated by dissolving in a liquid and its subsequent chemical reaction with absorbent, A. ..................................................43 14. Systematic methodology for developing optimal liquid-solvent separation processes. ...............................................................................................................52 15. Currently used and researched sorbents and their capacity as a function of temperature. ...........................................................................................................58 16. Atomic simulation of 3D ordered architectures (a) and disordered architectures (b) and (c). ........................................................................................60 17. Multivariate MOF-5 structure with eight different functionalities. .......................60 18. Top: Quaternary structures of deoxyhemoglobin (T state) and oxyhemoglobin (R state), which demonstrate considerable structural change upon uptake of an O2 molecule. .............................................................................65 v 19. Scanning electron micrographs of nanoporous gold made by selective dissolution of silver from Ag-Au alloys immersed in nitric acid under free corrosion conditions. ..............................................................................................65 20. A hierarchical membrane formed from molecular constituents via a self- directed assembly process. .....................................................................................70 21. A bicontinuous mesoporous polymer monolith prepared by a large-area, low-cost phase-contrast lithography.