Thorium-L0v0ya, Langesundfjord, Norway

Total Page:16

File Type:pdf, Size:1020Kb

Thorium-L0v0ya, Langesundfjord, Norway ,, 11,, , I ii ' "' ~-------- - -- Thorium-L0V0ya, Langesundfjord, Norway James L. Marshall Beta Eta '71 and Virginia R. Marshall Department of Chemistry, University of North Texas, Denton TX 76203-5070; [email protected]; Computer Technology, Denton ISO, Denton TX 76201 bout 100 kilometers to the southwest of "~ Oslo (Figure 1) lies the Langesund, one of ~ Athe beautiful fjords that encircle the coast Oslo of Norway (Figure 2). This area was home to Henrik Ibsen, the well-known nineteenth cen­ tury playwright who lived in Skien at the north­ ernmost reaches of this fjord. Hundreds of islands dot this inlet-measuring in size from a square kilometer to a mere boulder poking out of the water-rendering a boat necessary for a local traveler (Figure 3). One fateful day in early 1829, the pastor of Figure 1. The southeast part of Nmway (identified by the tcssam, c;i.pandcd in the next figure) played an Brevik was rowing around the rocky islands of important part in the discovery of some of the more wwsua/ c/emmts. the Langesundfjord, hunting for ducks.' As he drifted around L0v0)'a Island (see Figure 4), he thing they had seen before, and noticed a black mineral in the pegmatite boul­ the two Esmarks realized this ders. Curious, he eased his boat by the craggy might be something new. Esmark I 100 km I shore and scrambled ashore. He chipped off senior sent a sample to Jons some of the crystals and took them back to his Jakob Berzelius, the famous parish. The glimmering mineral that the pastor chemist in Stockholm, for a more collected would later be known as thorite, complete analysis, who later that Knaben ThSi04 (Figure 5), and thereby begins the story year discovered thorium in the Mine of the discovery of a new element. mineral (note 1). (Re) The curious pastor was Hans Morten The Kongsberg Mining • Thrane Esmark (1801- 1882), a true Academy (Kongelige Norske Evje Renaissance Man, who like Reverend William • Bergseminarium), the accompa- (Sc) Gregor' probed Nature in all disciplines to nying Norwegian Mining learn Her secrets. In addition to being a Museum (Norsk Bergverks­ Figure 2. Several elemf?11ts were originally found m southeast learned mineralogist, Esmark performed museum), and Kongsberg silver Norway. All of these sites have been visited by the authors, but chemical analyses; he was an expert in potato mines can be visited at only the Brevik area (Langesundjjord) is covered in the present diseases; he made a limestone kiln for the pro­ Kongsberg (Figure 2). The article. Brevik may be reached by automobile from Oslo by means duction of cement; he invented the exploding Academy where Jens Esmark of Kongsberg, where a historical silver mining museum may be harpoon (but didn't get credit for it), and taught still stands (note 2). In visited and where the old academy resides (where Hans Esmark's became the first mayor of Brevik.' And as a 1813 when the University of father was a professor). man of the doth he cared for his flock at the Christiana (note 3) was created, Brevik church (Figure 6). Jens Esmark joined that new university and the leagues-extensive global glaciation was not Esmark showed the interesting mineral to Kongsberg Mining Academy shut down. Jens recognized until Louis Agassiz's work in his father, Jens Esmark, who earlier had been Esmark in the 1820's suggested that Switzerland twenty years later. Professor at the famed Kongsberg Mining Scandinavia had once been covered with ice, Mr. Alf Olav Larsen (Figure 7), the leading Academy. The mineral appeared unlike any- but he was not taken seriously by his col- mineralogist of the Langcsundfjord area, was 70 THE HEXAGON Figure 3. Map of the La11ges1mdjjord area. The main cities are linked by highways, but the swarm ofi slands in the .fjord are accessible only by boat. Figure 4. The exact location of the "thorite hole," where vicar Esmark discovered the original thorium The three islands of main interest are Uro0ya, the mineral, is not known. This is a possible location (N 59• 03.45, E 09° 44.08) identified by Alf Olav Larsen, discovery site of thorite by vicar Esmark; Laven, the foremost mineralogist of the La11gesu11djjord area. the historic source of mosandrite, a source of /an­ tham1111; and Sylteroya, the location of vicar Figure 5. This 20-cm specimen is from the Esmark's church. About 15 kilometers north.is Langesundjjord area. The dark thorite (ThSiO,J is Skieri (not shown), the home of the playwright in a matrix of syenite pegmatite, an alkali feldspar Henrik Ibsen. rock mixed with hornblende and other minerals but lacking quartz. Figure 6. Brevik kirke (N 59' 03.16, E 09' 42.15) on Sylteroya, an island linked to the mainland part of Brevik by a bridge. This stone church our host for our visit to Nonvay and led us on a found. only a few candidates, close to the shore replaces two earlier wooden churches, demolished retracing of Esmark's discovery. There is no rou­ where the ice would have formed. In the old in 1879 and burnt down in 1960, respedively. tine ferry service to Uw0)'a, and Alf took us in days the locality was called the 'thorite hole' his outboard for a tour of the islands in the (Figure 9)." As Alf maneuvered the boat to dock panorama of geological variety. From the mid­ fjord. He headed from his home in Stathelle at a mineralized headland, an eider hen scurried dle of the fjord, we scanned the horizon and (Figure 8), through the Brevik harbor, and then away with her brood. viewed almost a billion years of history, from straight to L0Veya (Figure 4)."Today we do not Unfortunately no more thorite can be found: preCambrian to Permian. The thorite itself was know exactly where Esmark discovered the "After Auer von Welsbach invented his incade­ found in Pennian pegmatites.To one side of the mineral. Alf was telling us as we cruised scent mantle which uses the refractory thorium fjord an Ordovician limestone quarry lay, through Brevik harbor." Esmark mentioned in a oxide, there was a 'gold rush' in 1895-1896, marked by a smokestack of an accompanying letter to Berzelius that when he returned after which essentially deaned out the thorite in the cement factory; to the other side a ~nnian cliff the winter thaw, he assumed that ice had Langesundfjord islands." (note 4). of blue syenitc loomed over the horizon. "This weathered out some of the minerals. That In his boat, Alf toured us across the open is the famous blue schillerizing larvikite used in means it was dose to the shore."Alf told us that water of the fj ord to gain a larger view. The so many buildings of the world." Alf told us he had scoured the whole of L0V0)'a and had scenery in Langesundfjord displayed an ancient (note 5). W1NTER2001 71 beloved Brevik in 1850 to move to Ramnes, 40 km north-east of Brevik, where he served as vicar until retirement in 1870. The case of Esmark exemplifies the large network always responsible for important advances. Time blurs details, and history cele­ brates the discoverer but forgets the supporting cast. Hans Esmark, the pastor, was well known throughout Europe and supplied mineral sam­ ples to many scientists in other countries for their researches. He was the only amateur who has been granted honorary fellowship in the Mineralogical Society of England. A mineral species, esmarkite, was named in his honor (note 6). Upon his death his mineral collection was donated to the University of Tromso, Norway. Figure 7. Mr. Alf Olav Larsen (left) is showing a The Brevik Bymuseum (City Museum) specimen of alvite (hafnium-rich sample of zircon) resides in the old city hall, about 100 meters to one of the authors Jim Marshall (right). This downhill from Esmark's old church (Figure 10). photograph is taken at the Tangen Mine near Inside are beautiful montages, antiques, paint­ Kragem, another site visited by Dr. Larsen and ings, and photographs that describe the history the authors. of the area. And on the wall arc the past thirty mayors of Brevik-the first, at the top, being Esmark wanted to call the new mineral Hans MortenThrane Esmark (Figure 11). Loved 'berzelite,' but the ever gracious and modest by his people, his memory lives on with his (Figure 9) Jenny Marshall, one of the authors, community, which celebrated his 200th birth­ Berzelius declined, preferring to name it 'thor­ poses in Alf Olav's boat beside what 1s suspected day on August 21, 2001. 0 ite,' after the Viking's god of thunder.' Berzelius to be the original"thon'te hole" where vicar and Esmark developed a strong friendship over Esmark discovered thorite. In the foreground to the years, well documented by a series of letters the right can be seen a rich myriad of embedded between the two.' As one peruses the exchange Acknowledgments minerals, including zircon (ZrSiO.i), magnetite of correspondence, one is saddened by late Gratitude is extended to Alf Olav Larsen of (FeFe 0-iJ, aegirine (NaFeSip ), and molybdenite developments in Esmark's life. He solicited the Stathellc, Nol'Way, recognized as the foremost 2 6 (MoS ). aid of Berzelius to write a letter of recommen - mineralogist of the Langesundfjord area, who 2 dation for a post as vicar of Eidanger, the parish extended his hospitality and expertise to the adjacent to Brevik, so that he could remain in authors-not only for the Langesundfjord area, Notes the district and also cam more money, since but also Kragcrn (original source of hafnium), 1.
Recommended publications
  • Jens Esmark's Mountain Glacier Traverse 1823 À the Key to His
    bs_bs_banner Jens Esmark’s mountain glacier traverse 1823 À the key to his discovery of Ice Ages GEIR HESTMARK Hestmark, G. 2018 (January): Jens Esmark’s mountain glacier traverse 1823 À the key to his discovery of Ice Ages. Boreas, Vol. 47, pp. 1–10. https://doi.org/10.1111/bor.12260. ISSN 0300-9483. The discovery of Ice Ages is one of the most revolutionary advances made in the Earth sciences. In 1824 Danish- Norwegian geoscientist Jens Esmark published a paper stating that there was indisputable evidence that Norway and other parts of Europe had previously been covered by enormous glaciers carving out valleys and fjords, in a cold climate caused by changes in the eccentricity of Earth’s orbit. Esmark and his travel companion Otto Tank arrived at this insight byanalogous reasoning: enigmatic landscape features theyobserved close to sea level alongtheNorwegian coast strongly resembled features they observed in the front of a retreating glacier during a mountain traverse in the summer of 1823. Which glacier they observed up close has however remained a mystery, and thus an essential piece of information in the story of this discovery has been missing. Based on previously unknown archive sources, supplemented by field study, I here identify the key locality as the glacier Rauddalsbreen. This is the northernmost outlet glacier from Jostedalsbreen, the largest glacier in mainland Europe. Here the foreland exposed byglacier retreat since the Little Ice Age maximum around AD 1750 contains a rich collection of glacial deposits and erosional forms. The point of enlightenment is more precisely identified to be a specific moraine and its distal sandur at 61°53026″N, 7°26043″E.
    [Show full text]
  • Jens Esmark – Meteorologist
    1 2 Jens Esmark’s Christiania (Oslo) meteorological observations 3 1816-1838: The first long term continuous temperature record 4 from the Norwegian capital homogenized and analysed 5 6 7 Geir Hestmark1 and Øyvind Nordli2 8 9 1 Centre for Ecological and Evolutionary Synthesis, CEES, Department of 10 Biosciences, Box 1066 Blindern, University of Oslo, N-0316 Oslo, Norway 11 2 Norwegian Meteorological Institute (MET Norway), 12 Research and Development Department, Division for Model and Climate Analysis, 13 P.O. Box 43 Blindern, N-0313 Oslo, Norway 14 15 Correspondence to: Geir Hestmark ([email protected]) 16 17 Abstract 18 In 2010 we rediscovered the complete set of meteorological observation protocols 19 made by professor Jens Esmark (1762-1839) during his years of residence in the 20 Norwegian capital of Oslo (then Christiania). From 1 January 1816 to 25 January 21 1839 Esmark at his house in Øvre Voldgate in the morning, early afternoon and 22 late evening recorded air temperature with state of the art thermometers. He also 23 noted air pressure, cloud cover, precipitation and wind directions, and 24 experimented with rain gauges and hygrometers. From 1818 to the end of 1838 he 25 twice a month provided weather tables to the official newspaper Den norske 26 Rigstidende, and thus acquired a semi-official status as the first Norwegian state 27 meteorologist. This paper evaluates the quality of Esmark’s temperature 28 observations, presents new metadata, new homogenization and analysis of monthly 29 means. Three significant shifts in the measurement series were detected, and 30 suitable corrections are proposed.
    [Show full text]
  • Glacial Geomorphology☆ John Menzies, Brock University, St
    Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed.
    [Show full text]
  • Historical Mineral Collections in the Silver Mining Town of Kongsberg, Norway
    Historical mineral collections in the silver mining town of Kongsberg, Norway F.S. Nordrum & B.I. Berg F.S. Nordrum & Berg, B.I. Historical mineral collections in the silver mining town of Kongsberg, Nor• way. In: Winkler Prins, CF. & Donovan, S.K. (eds.), VII International Symposium 'Cultural Heritage in Geosciences, Mining and Metallurgy: Libraries - Archives - Museums': "Museums and their collections", Leiden (The Netherlands), 19-23 May 2003. Scripta Geológica Special Issue, 4: 229-235, 4 figs.; Leiden, August 2004. F.S. Nordrum & B.I. Berg, Norwegian Mining Museum, P.O. Box 18, NO-3602 Kongsberg, Norway ([email protected]; [email protected]). Key words — old geological collections, silver mines, mining officers, mining academy, Kongsberg. The discovery of native silver deposits at Kongsberg, Norway, in 1623 created interest for silver speci• mens and mineral collecting, also among mining officers. Large collections were donated by J. Hiort, M.T. Brünnich and J. Esmark to the Mining Academy at Kongsberg. The Academy's collections were in 1814 transferred to the University of Oslo. From 1841 The Kongsberg Silver Mines built up their own collections. Contents Introduction 229 Early mineral collections at Kongsberg 230 The Kongsberg Silver Mines' mineral collection (1841-1958) 233 Acknowledgements 234 References 234 Introduction The Kongsberg Silver Mines were established in 1623 and the Kongsberg mining town was founded in 1624 by the Danish-Norwegian king Christian IV. The ore, dominated by native silver, was a sensation at the time. Specimens of native silver became popular collecting items. Most fine specimens, however, went to members of the royalty in Copenhagen.
    [Show full text]
  • Hans Morten Thrane Esmark (Figure 11)
    Thorium-Lovoya, Langesundfj ord, Norway James L. Marshall Beta Eta '71 and Virginia R. Marshall Department of Chemistry, University of North Texas, Denton TX 76203-5070; jimm@unt. edu; Computer Technology, Denton ISD, Denton TX 76201 About 100 kilometers to the southwest of 0 Oslo (Figure 1) lies the Langesund, one of the beautiful fjords that encircle the coast Oslo of Norway (Figure 2). This area was home to Henrik Ibsen, the well-known nineteenth cen- tury playwright who lived in Skien at the north- ernmost reaches of this fjord. Hundreds of islands dot this inlet-measuring in size from a square kilometer to a mere boulder poking out of the water-rendering a boat necessary for a local traveler (Figure 3). One fateful day in early 1829, the pastor of Figure 1. The southeast part of Norway (identified by the tessara, expanded in the next figure) played an Brevik was rowing around the rocky islands of important part in the discovery of some of the more unusual elements. the Langesundfjord, hunting for ducks.' As he Oslo drifted around Loveya Island (see Figure 4), he thing they had seen before, and noticed a black mineral in the pegmatite boul- the two Esmarks realized this Kongsberg ders. Curious, he eased his boat by the craggy might be something new. Esmark 10 ) km rishus shore and scrambled ashore. He chipped off senior sent a sample to Jbns (He) some of the crystals and took them back to his Jakob Berzelius, the famous parish. The glimmering mineral that the pastor chemist in Stockholm, for a more Brevik collected would later be known as thorite, complete analysis, who later that Knaben (Th, La ThSiO 4 (Figure 5), and thereby begins the story year discovered thorium in the Mine of the discovery of a new element.
    [Show full text]
  • Ice Age Megafauna and Time Notes Contents
    Ice Age megafauna and time notes Contents 1 Ice age 1 1.1 Origin of ice age theory ........................................ 1 1.2 Evidence for ice ages ......................................... 2 1.3 Major ice ages ............................................ 3 1.4 Glacials and interglacials ....................................... 4 1.5 Positive and negative feedback in glacial periods ........................... 5 1.5.1 Positive feedback processes ................................. 5 1.5.2 Negative feedback processes ................................. 5 1.6 Causes of ice ages ........................................... 5 1.6.1 Changes in Earth’s atmosphere ................................ 6 1.6.2 Position of the continents ................................... 6 1.6.3 Fluctuations in ocean currents ................................ 7 1.6.4 Uplift of the Tibetan plateau and surrounding mountain areas above the snowline ...... 7 1.6.5 Variations in Earth’s orbit (Milankovitch cycles) ....................... 7 1.6.6 Variations in the Sun’s energy output ............................. 8 1.6.7 Volcanism .......................................... 8 1.7 Recent glacial and interglacial phases ................................. 8 1.7.1 Glacial stages in North America ............................... 8 1.7.2 Last Glacial Period in the semiarid Andes around Aconcagua and Tupungato ........ 9 1.8 Effects of glaciation .......................................... 9 1.9 See also ................................................ 10 1.10 References .............................................
    [Show full text]
  • IAEA TECDOC SERIES World Thorium Occurrences, Deposits and Resources
    IAEA-TECDOC-1877 IAEA-TECDOC-1877 IAEA TECDOC SERIES World Thorium Occurrences, Deposits and Resources Deposits and Resources Thorium Occurrences, World IAEA-TECDOC-1877 World Thorium Occurrences, Deposits and Resources International Atomic Energy Agency Vienna ISBN 978–92–0–103719–0 ISSN 1011–4289 @ WORLD THORIUM OCCURRENCES, DEPOSITS AND RESOURCES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY PAKISTAN ALBANIA GHANA PALAU ALGERIA GREECE PANAMA ANGOLA GRENADA PAPUA NEW GUINEA ANTIGUA AND BARBUDA GUATEMALA PARAGUAY ARGENTINA GUYANA PERU ARMENIA HAITI PHILIPPINES AUSTRALIA HOLY SEE POLAND AUSTRIA HONDURAS PORTUGAL AZERBAIJAN HUNGARY QATAR BAHAMAS ICELAND REPUBLIC OF MOLDOVA BAHRAIN INDIA BANGLADESH INDONESIA ROMANIA BARBADOS IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAINT LUCIA BELIZE ISRAEL SAINT VINCENT AND BENIN ITALY THE GRENADINES BOLIVIA, PLURINATIONAL JAMAICA SAN MARINO STATE OF JAPAN SAUDI ARABIA BOSNIA AND HERZEGOVINA JORDAN SENEGAL BOTSWANA KAZAKHSTAN SERBIA BRAZIL KENYA SEYCHELLES BRUNEI DARUSSALAM KOREA, REPUBLIC OF SIERRA LEONE BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE MALAYSIA TRINIDAD
    [Show full text]
  • Centre for Ecological and Evolutionary Synthesis University of Oslo
    Centre for Ecological and Evolutionary Synthesis University of Oslo The Editor, Climate of the Past Date: 17 October 2016 Dear Editor, Thank you for your comment 14 October on our paper on Jens Esmark’s Christiania-series. Re your wish to include Hertzberg’s data from Ullensvang by the Hardangerfjord: It would really have been a great advantage if we had a reliable series overlapping Esmark’s series in the opposite direction to Stockholm. The problem with Hertzberg’s observations is that the original data are lost. It is however known that Hertzberg observed various times during the day, from three to six times. For each day he calculated a “daily mean value”. However, these values are not real daily means. It seems that he considered day temperature more important than night temperature, and it is not known how he performed his calculations. With varying observation time during the day it is very likely that Hertzberg’s “daily means” are inhomogenous. Also, Hertzberg was often on voyages so that there are gaps in his series. These were filled by Birkeland by the help of other stations, it is not clear which. It is understandable that MET Norway has given the digitalization of Hertzberg’s “daily means” low priority so they are not digitized. It would be easy for us to plot the annual means calculated by Birkeland in Fig. 12, but we are reluctant to do so because wee are afraid that it could mislead readers rather than add value to our article. Birkeland was a pioneer for his time, so all honor to him.
    [Show full text]
  • Jens Esmark, Datolite..And Thulite
    To discover, yes, but to publish...? Jens Esmark, datolite..and thulite Geir Hestmark Introduction In August 1806 German geologist Johann Friedrich Ludwig Hausmann (1782-1859), arrived at Kongsberg on a trip through Scandinavia, and here met Jens Esmark (1762-1839) who held a position as Assessor in the central mining administration - the Oberbergamt - and also served as Inspector and lecturer in mineralogy, geology (geognosy) and physics at the Berg-Seminarium, the mining academy established in connection with the Silver Mines at Kongsberg in 1757. In his Scandinavian travelogue Hausmann described Esmark as an excellent geognost, and outstanding in many other skills. "Esmark possesses a very instructive collection for the external characters of the minerals for the needs of his lectures, and many splendid Nordic minerals, among which many new are probably present, of which the closer examination and publication every mineralogist so more must be desirous, as Esmark's sharp eye has already demonstrated itself through several interesting discoveries, among others that of the datolite." "Esmark besitzt eine sehr instruktive Sammlung filr die iiusseren Kennzeichen der Fossifien zum Behuf seiner Vorlesungen und viele treffliche, nordischen Mineralien, unter welche manche neue sich befinden dilrfen, auf deren niihere Untersuchung und Bekanntmachung jeder Mineralog um so begieriger seyn muss, da sich Esmark's Scharfblick schon durch mehrere interessante Entdeckungen, wie u. A. durch die des Dato/iths bewiihrt hat." (Hausmann 1811-18, Vol. 2: 38). Esmark's discovery of datolite poses a number interesting questions regarding the discovery, credit for and publication of new minerals. Collection The collection of datolite happened on an inspection trip Esmark made from mid-June to mid-July 1804 in the company of his colleague at the Oberbergamt, Assessor Ole Henckel (1748-1824) to the Egeland Iron Work close to Ris0r town on the south Norwegian coast (Doc 1).
    [Show full text]
  • A 10Be Chronology of Southwestern Scandinavian Ice Sheet History
    JOURNAL OF QUATERNARY SCIENCE (2014) 29(4) 370–380 ISSN 0267-8179. DOI: 10.1002/jqs.2710 A 10Be chronology of south-western Scandinavian Ice Sheet history during the Lateglacial period JASON P. BRINER,1* JOHN INGE SVENDSEN,2 JAN MANGERUD,2 ØYSTEIN S. LOHNE2 and NICOLA´ S E. YOUNG3 1Department of Geology, University at Buffalo, Buffalo, NY 14260, USA 2Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway 3Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA Received 22 December 2013; Revised 12 March 2014; Accepted 29 March 2014 ABSTRACT: We present 34 new cosmogenic 10Be exposure ages that constrain the Lateglacial (Bølling–Preboreal) history of the Scandinavian Ice Sheet in the Lysefjorden region, south-western Norway. We find that the classical Lysefjorden moraines, earlier thought to be entirely of Younger Dryas age, encompass three adjacent moraines attributed to at least two ice sheet advances of distinctly different ages. The 10Be age of the outermost moraine (14.0 Æ 0.6 ka; n ¼ 4) suggests that the first advance is of Older Dryas age. The innermost moraine is at least 2000 years younger and was deposited near the end of the Younger Dryas (11.4 Æ 0.4 ka; n ¼ 7). After abandonment of the innermost Lysefjorden Moraine, the ice front receded quickly towards the head of the fjord, where recession was interrupted by an advance that deposited the Trollgaren Moraine at 11.3 Æ 0.9 ka (n ¼ 5). 10Be ages from the inboard side of the Trollgaren Moraine suggest final retreat by 10.7 Æ 0.3 ka (n ¼ 7).
    [Show full text]
  • Early History of Petroleum Exploration Offshore Norway and Its Impact on Geoscience Teaching and Research
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-2 Early history of petroleum exploration offshore Norway and its impact on geoscience teaching and research Knut Bjørlykke1 1Department of Geosciences, University of Oslo. P.B. 1047, 0316 Oslo.. E-mail corresponding author (Knut Bjørlykke): [email protected] The Norwegian government and also the universities were unprepared for an offshore oil province. Very little information about the offshore geology was then available due to the thick cover of Quaternary and Tertiary sediments in the North Sea basins. The potential for oil and gas in the North Sea could not have been predicted before the Norwegian Continental Shelf (NCS) was opened for petroleum exploration and drilling in 1965. Statements from the Geological Survey of Norway (NGU) in 1958 that there was no potential for oil offshore Norway referred specifically to the coastal areas, where no oil has been found. The midline principle was introduced in 1964, through an agreement with the UK. A continental shelf committee led by Jens Evensen from 1963 to1965 prepared the legal aspects and the regulations applicable for oil companies applying for licences to explore and produce oil and gas offshore Norway. A proposal for a Norwegian petroleum-related research project in 1964 was not funded and it took several years before petroleum-related teaching and research were established. After several dry wells the Ekofisk Field was discovered late 1969–early 1970, making it clear that Norway would become a significant oil-producing country. However, at that time nearly all the expertise was inside the major international oil companies and petroleum-related research at Norwegian universities and research institutes had a slow start.
    [Show full text]
  • History of Geology in Norden
    185 by Björn Sundquist1, Ilmari Haapala2, Jens Morten Hansen3, Geir Hestmark4, and Sigurdur Steinthorsson5 History of Geology in Norden 1 Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden. E-mail: [email protected] 2 Department of Geology, University of Helsinki, P.O.Box 64, FI-00014 Helsinki, Finland. E-mail: ilmari.haapala@helsinki.fi 3 Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 København K, Denmark. E-mail: [email protected] 4 Institute of Biology, University of Oslo, P.O.Box 1066 Blindern, NO-0316 Oslo, Norway. E-mail: [email protected] 5 Department of Earth Sciences, University of Iceland, Jardarhaga 2-6, IS-107 Reykjavík, Iceland. E-mail: [email protected] The Nordic countries of Denmark, Finland, Iceland, This brief chapter on the history of geology in Norden will cast Norway, and Sweden have been closely connected for light on some problems and endeavours engaging people—natural scientists, as well as physicians and clergy in the early days—in the many centuries, not least from a geological point of Nordic countries contributing to this process. view. Scientific cooperation as well as contentions have been common. The earliest known records of “geologi- cal” treatises are from the 16th century, but especially A brief outline up to 1800 in the 18th century, when the natural sciences flourished Basic knowledge about rocks, ores and soils were of course achieved all over Europe, Nordic scholars were in the forefront in from generations of experience in mining and agriculture. An early geochemistry, mineralogy, and paleontology.
    [Show full text]