First-Pass Introduction to Microfabrication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life Cycle Analysis of High-Performance Monocrystalline Silicon Photovoltaic Systems: Energy Payback Times and Net Energy Production Value
27th European Photovoltaic Solar Energy Conference and Exhibition LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE Vasilis Fthenakis1,2, Rick Betita2, Mark Shields3, Rob Vinje3, Julie Blunden3 1 Brookhaven National Laboratory, Upton, NY, USA, tel. 631-344-2830, fax. 631-344-3957, [email protected] 2Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3SunPower Corporation, San Jose, CA, USA ABSTRACT: This paper summarizes a comprehensive life cycle analysis based on actual process data from the manufacturing of Sunpower 20.1% efficient modules in the Philippines and other countries. Higher efficiencies are produced by innovative cell designs and material and energy inventories that are different from those in the production of average crystalline silicon panels. On the other hand, higher efficiencies result to lower system environmental footprints as the system area on a kW basis is smaller. It was found that high efficiencies result to a net gain in environmental metrics (i.e., Energy Payback Times, GHG emissions) in comparison to average efficiency c-Si modules. The EPBT for the Sunpower modules produced in the Philippines and installed in average US or South European insolation is only 1.4 years, whereas the lowest EPBT from average efficiency c-Si systems is ~1.7 yrs. To capture the advantage of high performance systems beyond their Energy Payback Times, we introduced the metric of Net Energy Production Value (NEPV), which shows the solar electricity production after the system has “paid-off” the energy used in its life-cycle. The SunPower modules are shown to produce 45% more electricity than average efficiency (i.e., 14%) c-Si PV modules. -
New Challenges and Possibilities for Silicon Based Solar Cells
1 New challenges and possibilities for silicon based solar cells Marisa Di Sabatino Dept of Materials Science and Engineering NTNU 2 Outline -What is a solar cell? -How does it work? -Silicon based solar cells manufacturing -Challenges and Possibilities -Concluding remarks 3 What is a solar cell? • It is a device that converts the energy of the sunlight directly into electricity. CB PHOTON Eph=hc/λ VB Electron-hole pair 4 How does a solar cell work? 5 How does a solar cell work? Current Semiconductor Eg + - P-n junction Metallic contacts Turid Worren Reenaas 6 How does a solar cell work? - Charge generation (electron-hole pairs) - Charge separation (electric field) - Charge transport 7 - Charge generation (electron-hole pairs) - Charge separation (electric field) - Charge transport Eph>>Eg Eph<<Eg Eph>Eg Eg CB Eph VB 8 - Charge generation (electron-hole pairs) - Charge separation (electric field) - Charge transport p-type C - - - - Fermi level - + + + + + n-type n-p junction v + - Electric field 9 - Charge generation (electron-hole pairs) - Charge separation (electric field) - Charge transport Back and front side of a silicon solar cell 10 Semiconductors Materials for solar cells 11 Why Silicon? Silicon: abundant, cheap, well-known technology 12 Silicon solar cell value chain 13 Silicon solar cells value chain From sand to solar cells… Raw Materials Efficiency Crystallization Isc, Voc, FF Feedstock Solar cell process Photo: Melinda Gaal 14 Multicrystalline silicon solar cells Directional solidification 15 Monocrystalline silicon solar cells Czochralski process 16 Crystallization methods for PV silicon • Multicrystalline silicon ingots: – Lower cost than monocrystalline – More defects (dislocations and impurities) • Monocrystalline silicon ingots: – Higher cost and lower yield – Oxygen related defects – Structure loss 17 Czochralski PV single crystal growth • Dominating process for single crystals • Both p (B-doped) and n (P-doped) type crystals • Growth rate 60 mm/h Challenges: •Productivity low due to slow growth, long cycle time.. -
15Th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes
A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 Prepared under Task No. WO97G400 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or `process disclosed, or represents that its use would not infringe privately owned rights. -
MEMS Technology for Physiologically Integrated Devices
A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices AMY C. RICHARDS GRAYSON, REBECCA S. SHAWGO, AUDREY M. JOHNSON, NOLAN T. FLYNN, YAWEN LI, MICHAEL J. CIMA, AND ROBERT LANGER Invited Paper MEMS devices are manufactured using similar microfabrica- I. INTRODUCTION tion techniques as those used to create integrated circuits. They often, however, have moving components that allow physical Microelectromechanical systems (MEMS) devices are or analytical functions to be performed by the device. Although manufactured using similar microfabrication techniques as MEMS can be aseptically fabricated and hermetically sealed, those used to create integrated circuits. They often have biocompatibility of the component materials is a key issue for moving components that allow a physical or analytical MEMS used in vivo. Interest in MEMS for biological applications function to be performed by the device in addition to (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug their electrical functions. Microfabrication of silicon-based delivery. The key to many of these applications lies in the lever- structures is usually achieved by repeating sequences of aging of features unique to MEMS (for example, analyte sensitivity, photolithography, etching, and deposition steps in order to electrical responsiveness, temporal control, and feature sizes produce the desired configuration of features, such as traces similar to cells and organelles) for maximum impact. In this paper, (thin metal wires), vias (interlayer connections), reservoirs, we focus on how the biological integration of MEMS and other valves, or membranes, in a layer-by-layer fashion. The implantable devices can be improved through the application of microfabrication technology and concepts. -
Research Into Fabrication and Popularization of Organic Thin Film Solar Cells, Chemical Engineering Transactions, 55, 25-30 DOI:10.3303/CET1655005 26
25 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 55, 2016 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Tichun Wang, Hongyang Zhang, Lei Tian Copyright © 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-46-4; ISSN 2283-9216 DOI: 10.3303/CET1655005 Research into Fabrication and Popularization of Organic Thin Film Solar Cells Bin Zhang*a, Yan Lia, Shanlin Qiaob, Le Lic, Zhanwen Wanga a Hebei Chemical & Pharmaceutical College, No. 88 Fangxing Road, Shijiazhuang, Hebei Province, China; b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong Province, China c Shijiazhuang Naienph Chemical Technology Co., Ltd, No. 12 Shifang Road, Shijiazhuang, Hebei Province, China. [email protected] An analysis was conducted herein on the research status of several popular solar cells at the present stage, including silicon solar cell, thin film photovoltaic cell, and dye-sensitized solar cell (DSSC). In doing so, we concluded that the current situations provide a favorable objective environment for the popularization of organic thin film solar cells. Finally, we reviewed the merits and demerits of the organic thin film solar cell together with the major research focus on and progress of it, and summarized obstacles to and development trails of the popularization of organic thin film solar cells. 1. Introduction As the energy crisis further deepens in the 21st century, the existing development level for solar cells has already failed to satisfy increasing social demands for energy. This phenomenon is mainly reflected in the costly high-purity silicon solar panels, in the defects at new amorphous silicon (a-Si) during energy conversion, and in the limited theoretical energy conversion efficiency (around 25%) of silicon solar panels as well. -
SUMCO Products That Support Our Lives
SUMCO Products that Support Our Lives SUMCO manufactures silicon wafers, a key material in semiconductor devices. Semiconductor devices that use SUMCO’s silicon Trains, Bullet Trains Devices called power semiconductors are Medical Equipments In the medical field, medical equipment has wafers support our lives in a variety of ways, from electronic devices around us such as mobile phones, computers, smartphones used to control electric power. These devices continued to evolve, with the advent of high- and digital appliances to automobiles, medical equipment, industrial machinery control units, as well as the control of public are technically complex and require reliable precision diagnostic imaging equipment and transportation and infrastructure. control of large amounts of power and power surgery robots capable of precise control. saving performance, making this a specialized A large number of silicon wafers are used field. in these medical devices, and the silicon Power supply control for heavy electric wafers that serve as their substrates require machinery, in particular, such as electric trains high reliability, especially as human lives are that use power of over 1000V, requires special involved. SUMCO’s silicon wafers contribute to know-how for the silicon wafers, as well. the advance of medicine. Automobiles Numerous semiconductor devices Data Centers With smartphones and computers are at work inside motor vehicles. An (Server Rooms) becoming increasingly sophisticated, extremely high level of quality and vast quantities of data in the form of Power Generation reliability is required for silicon wafers high-quality photographs and vid- Smart Card Devices Facilities and Public to be used for motor control in electric eos are being processed in the cloud vehicles (EV) and hybrid vehicles (HV/ and stored in data centers. -
Design of a Microelectronic Manufacturing Laboratory
2006-1635: DESIGN OF A MICROELECTRONIC MANUFACTURING LABORATORY Stilson Applin, Montana State University Todd Kaiser, Montana State University Page 11.407.1 Page © American Society for Engineering Education, 2006 Design of a Microelectronic Manufacturing Laboratory Abstract The design of an undergraduate microelectronic manufacturing laboratory for teaching will be described in the following paper. This laboratory emphasizes learning the processes of semiconductor manufacturing and clean room protocol. The laboratory is housed in a 500 square foot, class 10,000 facility. In the laboratory the students, with a junior standing and a science based background, will use a pre-made six mask set to create P and N type transistors as well as inverters and diodes. The students will be conducting oxidization, RCA clean, photolithography, etching, diffusion, metallization and other processes. A brief description of these processes and the methods used to teach them will also be described. In addition to these processes students will also learn about clean room protocol, chemical safety, and testing devices. All of these skills will be marketable to future employers and graduate schools. These same skills and processes will be covered in a seminar course for educators, with the main purpose of inspiring the high school teachers to teach about semiconductor manufacturing. The cost effective design is what makes the laboratory unique. The expenditure control is important due to the size of the Electrical Engineering department. The department has only 250 undergraduates and 40 graduate students, thus internal funding is difficult to obtain. A user fee paid by the students will cover the funding. This fee will be small and manageable for any college student. -
Advanced Solar Technology Sample
ADVANCED SOLAR TECHNOLOGY SAMPLE TECHNOLOGY ACQUISITION REPORT CONTENTS Technology 1: Microsystems Enabled Photovoltaics (MEPV) - Photovoltaic solar concentrator ............... 4 Technology 2: Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell ............................................................................................................................................ 7 Technology 3: Photovoltaic cells with quantum dots with built-in-charge and methods of making same 10 Technology 4: Super-transparent electodes for photovoltaic applications ................................................. 13 Technology 5: Optical concentrator and associated photovoltaic devices ................................................. 15 Technology 6: Hybrid photovoltaic devices and applications thereof ........................................................ 18 Technology 7: Methods of manufacturing photovoltaic electrodes ............................................................ 20 Technology 8: Thin film photovoltaic cell structure, nanoantenna, and method for manufacturing ......... 23 Technology 9: Apparatuses, systems and methods for cleaning photovoltaic devices .............................. 26 Technology 10: Photovoltaic structures having a light scattering Interface layer and methods of making the same ....................................................................................................................................................... 28 Technology 11: Rapid thermal -
A Review of Current Methods in Microfluidic Device Fabrication And
inventions Review A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects Bruce K. Gale * ID , Alexander R. Jafek ID , Christopher J. Lambert ID , Brady L. Goenner, Hossein Moghimifam, Ugochukwu C. Nze ID and Suraj Kumar Kamarapu ID Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (A.R.J.); [email protected] (C.J.L.); [email protected] (B.L.G.); [email protected] (H.M.); [email protected] (U.C.N.); [email protected] (S.K.K.) * Correspondence: [email protected]; Tel.: +1-801-585-5944 Received: 30 June 2018; Accepted: 20 August 2018; Published: 28 August 2018 Abstract: Microfluidic devices currently play an important role in many biological, chemical, and engineering applications, and there are many ways to fabricate the necessary channel and feature dimensions. In this review, we provide an overview of microfabrication techniques that are relevant to both research and commercial use. A special emphasis on both the most practical and the recently developed methods for microfluidic device fabrication is applied, and it leads us to specifically address laminate, molding, 3D printing, and high resolution nanofabrication techniques. The methods are compared for their relative costs and benefits, with special attention paid to the commercialization prospects of the various technologies. Keywords: microfabrication; nanofabrication; microfluidics; nanofluidics; 3D printing; laminates; molding 1. Introduction Microfluidics is a growing field of research which pertains to the manipulation of fluids on the microscale level, and it is identified most commonly by devices with critical dimensions of less than 1 mm. -
A New Slicing Method of Monocrystalline Silicon Ingot by Wire EDM
cf~ Paper International Journal of Electrical Machining, No. 8, January 2003 A New Slicing Method of Monocrystalline Silicon Ingot by Wire EDM Akira OKADA *, Yoshiyuki UNO *, Yasuhiro OKAMOTO*, Hisashi ITOH* and Tameyoshi HlRANO** (Received May 28, 2002) * Department of Mechanical Engineering, Okayama University, Okayama 700-8530, Japan ** Toyo Advanced Technologies Co., Ltd., Hiroshima 734-8501, Japan Abstract Monocrystalline silicon is one of the most important materials in the semiconductor industry because of its many excellent properties as a semiconductor. In the manufacturing process of silicon wafers, inner diameter(lD) blade and multi wire saw have conventionally been used for slicing silicon ingots. However, some problems in efficiency, accuracy, slurry treatment and contamination are experienced when applying this method to large scale wafers of 12 or 16 inch diameter expected to be used in the near future. Thus, the improvement of conventional methods or a new slicing method is strongly required. In this study, the possibility of slicing a silicon ingot by wire EDM was discussed and the machining properties were experimentally investigated. A silicon wafer used as substrate for epitaxial film growth has low resistivity in the order of 0.01 g .cm, which makes it possible to cut silicon ingots by wire EDM. It was clarified that the new wire EDM has potential for application as a new slicing method, and that the surface roughness using this method is as small as that using the conventional multi wire saw method. Moreover, it was pointed out that the contamination due to the adhesion and diffusion of wire electrode material into the machined surface can be reduced by wire EDM under the condition of low current and long discharge duration. -
A Study on the Countermeasures and Suggestions of Technology
4th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2016) A Study on the Countermeasures and Suggestions of Technology Transfer in the Solar Cells Industry in China Lvcheng Lia, Guoping Chengb School of Management, Wuhan University of Technology, Wuhan 430070, China [email protected], [email protected] Keywords: solar cells; technology transfer; countermeasures and suggestions Abstract. This paper analyzes the development and industrialization of solar cells of three generations: mono-crystalline silicon and polycrystalline silicon solar cell, thin-film solar cell and nanocrystalline solar cell. It is believed that technology transfer and university-industry collaboration play important roles in the solar cells industry; and put forward reasonable suggestions for improvements from the aspects of financial subsidies, intellectual property, risk compensation system, technology transfer intermediary and cultivation of talents. 1. Introduction New energy technology is one of the most important topics for human's development in the 21st century. The traditional energy sources such as oil and natural gas, have some serious problems like pollution and storage, which cannot satisfy the requirements of human beings and conflict with the sustainable development. As an important component of new energy, solar energy exhibits the advantages of low carbon emission, clean production, flexibility and renewability, which is ideal to be applied as a new alternative energy and has become the focus of the scientific community and industry. Presently, the solar cells have already been used in national defense, communications, computers, transportation and many other fields. Due to China's unique geographical advantages, to develop the solar energy is the trend of the time. -
Microfabrication and Microfluidics for 3D Brain-On-Chip
Microfabrication and microfluidics for 3D brain-on-chip Bart Schurink Microfabrication and microfluidics for 3D brain-on-chip Bart Schurink i Members of the committee: Chairman Prof. dr. ir. J.M.W. Hilgenkamp (voorzitter) Universiteit Twente Promotor Prof. dr. J.G.E. Gardeniers Universiteit Twente Co-promotor/supervisor Dr. R. Luttge Universiteit Eindhoven Members Prof. dr. J.C.T. Eijkel University of Twente Prof. dr. H.B.J. Karperien University of Twente Prof. dr. A.S. Holmes Imperial College London Prof. dr. ir. J.M.J. den Toonder Technical University of Eindhoven Prof. dr. ir. R. Dekker Delft University of Technology The work in this thesis was carried out in the Mesoscale Chemical Systems group and MESA+ Institute for Nanotechnology, University of Twente. It is part of the MESOTAS project financially supported by ERC, Starting Grant no. 280281 Title: Microfabrication and microfluidics for 3D brain-on-chip Author: Bart Schurink ISBN: 978-90-365-4142-8 DOI: 10.3990/1.9789036541428 Publisher: Gildeprint, Enschede, The Netherlands Copyright © 2016 by Bart Schurink, Enschede, The Netherlands. No part of the this book may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without specific permission of the author. ii Microfabrication and microfluidics for 3D brain-on-chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, Prof. dr. H. Brinksma, volgens besluit van het College voor Promoties in het openbaar te verdedigen op donderdag 23 juni 2016 door Bart Schurink Geboren op 6 november 1982 te Oldenzaal, Nederland iii Dit proefschrift is goedgekeurd door de promotor: Prof.