LUNAR and PLANETARY INFORMATION BULLETIN The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Guide to the Robert W. Jackson Collection, 1964-1999 PP03.02
Guide to the Robert W. Jackson Collection, 1964-1999 PP03.02 NASA Ames History Office NASA Ames Research Center Contact Information: NASA Ames Research Center NASA Ames History Office Mail-Stop 207-1 Moffett Field, CA 94035-1000 Phone: (650) 604-1032 Email: [email protected] URL: http://history.arc.nasa.gov/ Collection processed by: Leilani Marshall, March 2004 Table of Contents Descriptive Summary.......................................................................................................... 2 Administrative Information ................................................................................................ 2 Biographical Note ............................................................................................................... 3 Scope and Content .............................................................................................................. 4 Series Description ............................................................................................................... 5 Indexing Terms ................................................................................................................... 6 Container List...................................................................................................................... 7 Jackson Collection 1 Descriptive Summary Title: Robert W. Jackson Collection, 1964-1999 Collection Number: PP03.02 Creator: Robert W. Jackson Dates: Inclusive: 1964-1999 Bulk: 1967-1988 Extent: Volume: 1.67 linear feet Repository: NASA Ames History -
Effect of Target Properties on the Impact Cratering Process
WORKSHOP PROGRAM AND ABSTRACTS LPI Contribution No. 1360 BRIDGING THE GAP II: EFFECT OF TARGET PROPERTIES ON THE IMPACT CRATERING PROCESS September 22–26, 2007 Saint-Hubert, Canada SPONSORS Canadian Space Agency Lunar and Planetary Institute Barringer Crater Company NASA Planetary Geology and Geophysics Program CONVENERS Robert Herrick, University of Alaska Fairbanks Gordon Osinski, Canadian Space Agency Elisabetta Pierazzo, Planetary Science Institute SCIENTIFIC ORGANIZING COMMITTEE Mark Burchell, University of Kent Gareth Collins, Imperial College London Michael Dence, Canadian Academy of Science Kevin Housen, Boeing Corporation Jay Melosh, University of Arizona John Spray, University of New Brunswick Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1360 Compiled in 2007 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2007) Title of abstract. In Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process, p. XX. LPI Contribution No. 1360, Lunar and Planetary Institute, Houston. -
Impact Melt Flows on the Moon: Observations and Models
EPSC Abstracts Vol. 13, EPSC-DPS2019-1067-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Impact melt flows on the Moon: observations and models Natalia Artemieva (1,2), Veronica Bray (3) (1) Planetary Science Institute, Arizona, USA, (2) Institute for Dynamics of Geospheres ([email protected]) , (3) Lunar and Planetary Laboratory, University of Arizona, USA Abstract topography. Our numerical modeling explores this supposition. We compare modeling results with observed melt flows in the extended ejecta blanket of the Pierazzo crater on the Moon. Surface flow dynamics of ballistically deposited melts depends on its viscosity, deposition velocity (i.e., distance from the parent crater), local topography, and the amount of entrained cold materials. 1. Introduction This work concentrates on the analysis of Pierazzo crater (9.2 km in diameter) located on the far side of the Moon (259.7E, 3.25N) [1]. This crater has extensive LRO Narrow Angle Camera (NAC) coverage and a visible ray system extending beyond 450 km from the crater rim - suggesting a relatively young age. We analyse and model melt flows within the discontinuous ejecta at distances 11-40 km from the crater rim. 1.1 Mapping LROC images extending ~ 40km from the Pierazzo crater rim were mosaicked and melt flows and ponds mapped (Fig 1A). The largest flows show clear melt- like morphology: cooling cracks, channelling, lobate toe and pooling in low topography (Fig 1B/C). Fig. 1: A) Simplified mapping of [1] to show only the Fractal dimensions of several flows were recorded (D lobate flows present around Pierazzo crater (black). -
ANTIFATT 15RAEL:C'f, 2 SALLYPORT-NOVEMBER
UN:VER:3I Association of Rice Alumni • November 1978 • Volume 35, Number 2 PIECING' _3,800yym 91-II5Ton ATTtLARIEK ANTIFATT 15RAEL:c'f, 2 SALLYPORT-NOVEMBER Dec. 7 North Harris Pc County — 5:30 St] Dec. 9 Angelina College — co; 5:30 — Away coi Jan. 12 St. Mary's — did 7:30 — Away ter Jan. 13 San Antonio fin 1:00 — Away MU SIC Jan. 16 SMU — ART 5:30 The Shepherd School of Music will continue te 18 Jan. Lamar — 7:00 its Fall Concert Season. All concerts take th 20 Nov. 1- "Pattern and Decoration," Jan. TCU — 2:00 place in Hanunan Hall at 8 P.M. unless an of 22 U of Houston — Dec. 13 featuring the works fifteen New Jan. otherwise noted. Concerts are free except his Away York artists. Sewall Gallery. 5:45 — when in conjunction with the Houston Friends by Jan. 8- "The Architecture of Gunnar As- Jan. 24 San Jacinto — 7:00 of Music. For more information call the Jan. 26 St. — Feb. 9 plund," an exhibition of the work of Mary's 7:00 Shepherd School Concert Line at 527-4933. Sweden's leading architect between Jan. 29 SMU — 5:00 — Away Nov. 28 Warren Deck, tuba. the two World Wars. A lecture by Mr. Jan. 31 Prairie View — 5:30 Paul Ellison, double bass. Stuart Wrede, curator of the exhibit Feb. 3 Lamar — 5:15 — Away Nov. 30 SYZYGY. Modern Art, for the Museum of New Swimming Dec. 4 Rice Symphony Orchestra. York, is planned. Sewall Gallery, Nov. 17 Rice Relays(W&M) Dec. -
Impact Cratering: Bridging the Gap Between Modeling and Observations
IMPA_ CRATERING: BRIDGING THE GAP B_EEN MODELING AND OBSERVATIONS IIllll ..................... ,, ,, ,,, ,,,,,,,, ,r, II I I II I Houston, T<xas -- F_bruary 7-9, 2003 Abstract Volume LPI LPI Contribution No. 1155 Impact Cratering: Bridging the Gap Between Modeling and Observations February 7-9, 2003 Houston, Texas Sponsor Lunar and Planetary Institute National Aeronautics and Space Administration Conveners Robert Herrick, Lunar and Planetary Institute Elisabetta Pierrazzo, Planetary Science Institute Scientific Organizing Committee Bevan French, Natural History Museum Kevin Housen, Boeing Corporation William McKinnon, Washington University Jay Melosh, University of Arizona Michael Zolensky, NASA Johnson Space Center Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1155 Compiled in 2003 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2003) Title of abstract. In Impact Cratering: Bridging the Gap Between Modeling and Observations, p. XX. LPI Contribution No. 1155, Lunar and Planetary Institute, Houston. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. -
Abundance and Size-Frequency Distributions of Boulders in Linné Crater's Ejecta (Moon)
Abundance and size-frequency distributions of boulders in Linné crater’s ejecta (Moon) Maurizio Pajola1, Riccardo Pozzobon2, Alice Lucchetti1, Sandro Rossato2, Emanuele Baratti3, Valentina Galluzzi4, Gabriele Cremonese1 1 INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy. 2 Geosciences Department, University of Padova, Padova, Italy. 3 School of Civil Engineering, Department DICAM, University of Bologna, Bologna, Italy. 4 INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy. Abstract---------------------------------------------------------------------------------------------------- This paper presents the abundances and the size-frequency distributions (SFD) of the ejected boulders surrounding the Linnè crater, located on the Moon’s Mare Serenitatis basin. By means of Lunar Reconnaissance Orbiter Camera high-resolution images we prepare a context geological map of the Linné crater as well as we identify ~12000 boulders ≥ 4.4 m, with a maximum measured size of 30.8 m. The cumulative number of boulders per km2 is fitted with a power-law curve with index - 4.03 +0.09/-0.10. By studying the radial ejecta abundances, we find that the largest ones are located within the first 2 km from the crater’s centre, while few tens of boulders with sizes < 8 m are detectable above 5 km from the crater’s rim. We find that the Linné proximal ejecta blanket is slightly asymmetrical, as indicated in the geological map too, showing a density increase in the NE-SW direction. This may be the result of an oblique impact emplacement of the original impactor, or it may be explained with a perpendicular impact in the Mare Serenitatis location, but on a surface with lunar basalts with different local mechanical properties. -
Constraining the Size of the South Pole-Aitken Basin Impact ⇑ R.W.K
Icarus 220 (2012) 730–743 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Constraining the size of the South Pole-Aitken basin impact ⇑ R.W.K. Potter a, , G.S. Collins a, W.S. Kiefer b,c, P.J. McGovern b,c, D.A. Kring b,c a Impacts and Astromaterials Research Centre, Dept. of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK b Center for Lunar Science and Exploration, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA c NASA Lunar Science Institute article info abstract Article history: The South Pole-Aitken (SPA) basin is the largest and oldest definitive impact structure on the Moon. To Received 13 October 2011 understand how this immense basin formed, we conducted a suite of SPA-scale numerical impact simu- Revised 21 May 2012 lations varying impactor size, impact velocity, and lithospheric thermal gradient. We compared our Accepted 23 May 2012 model results to observational SPA basin data to constrain a best-fit scenario for the SPA basin-forming Available online 13 June 2012 impact. Our results show that the excavation depth-to-diameter ratio for SPA-scale impacts is constant for all impact scenarios and is consistent with analytical and geological estimates of excavation depth Keywords: in smaller craters, suggesting that SPA-scale impacts follow proportional scaling. Steep near-surface ther- Impact processes mal gradients and high internal temperatures greatly affected the basin-forming process, basin structure Cratering Moon and impact-generated melt volume. In agreement with previous numerical studies of SPA-scale impacts, Collisional physics crustal material is entirely removed from the basin center which is instead occupied by a large melt pool of predominantly mantle composition. -
The Shape and Appearance of Craters Formed by Oblique Impact on the Moon and Venus
Meteoritics & Planetary Science 38, Nr 11, 1551–1578 (2003) Abstract available online at http://meteoritics.org The shape and appearance of craters formed by oblique impact on the Moon and Venus Robert R. HERRICK 1* and Nancy K. FORSBERG-TAYLOR 2† 1Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA 2Department of Geology, Hofstra University, Hempstead, New York 11550, USA †Present Address: Department of Earth and Planetary Sciences, Washington University in St. Louis, One Brookings Drive, Campus Box 1169, St. Louis, Missouri 63130, USA *Corresponding author. E-mail: [email protected] (Received 23 August 2002; revision accepted 12 November 2003) Abstract–We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3-dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin 2Q dependence for the cumulative fraction of craters forming below angle Q, on the Moon, the following transitions occur: <~45 degrees, the ejecta blanket becomes asymmetric; <~25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; <~15 degrees, the rim becomes saddle-shaped; <~10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. -
The Importance of Continuing Solar System-Wide Impact Crater Studies
white paper on The Importance of Continuing Solar System-Wide Impact Crater Studies primary authors Stuart J. Robbins Southwest Research Institute — [email protected] — (303)-918-5589 Michelle R. Kirchoff Southwest Research Institute — kirchoff@boulder.swri.edu co-authors Nadine G. Barlow (Northern Arizona University), Clark R. Chapman (Southwest Research Institute), Simone Marchi (Southwest Research Institute), Elizabeth A. Silber (Western University), and Angela M. Stickle (The Johns Hopkins University Applied Physics Laboratory) endorsers / co-signers Jennifer L. B. Anderson, Chimira N. Andres, Maria E. Banks, Olivier Barnouin, Daniel C. Berman, Edward Bierhaus, Joseph M. Boyce, Donald M. Burt, Veronica J. Bray, Mark J. Cintala, Christopher J. Cline II, Bob Craddock, David A. Crawford, Ingrid Daubar, Luke Dones, Brian Enke, Ronald A. Fevig, Travis S.J. Gabriel, James W. Head, Ken Herkenhoff, Rachael R. Hoover, Ya Huei Huang, Jose M. Hurtado Jr., Abderrahmane Ibhi, Thomas Kenkmann, David T. King Jr., Edwin Kite, Christian Klimczak, Christian Koeberl, Graham Lau, Anna Losiak, Alice Lucchetti, Elena Martellato, Matteo Massironi, Moses P. Milazzo, Yasunori Miura, Miki Nakajima, Michael C. Nolan, Jessica Noviello, Jens Ormö, Lillian R. Ostrach, Maurizio Pajola, Samantha Peel, Divya M. Persaud, Cynthia Phillips, Jennifer Piatek, Vidhya G. Rangarajan, Jamie D. Riggs, Frances Rivera-Hernández, Christoph M. Schäfer, Paul Schenk, Katherine Shirley, Kelsi N. Singer, David E. Stillman, Marshall J. Styczinski, Seiji Sugita, Jessica M. Sunshine, Anne Verbiscer, Wes A. Watters, Jean-Pierre Williams, Paul F. Wren, Michael F. Zeilnhofer, and Nicolle Zellner This view of the lunar crater Pierazzo (3.3°N, 100.2°W, D≈9km) was taken by NASA's Lunar Reconnaissance Orbiter Camera's Narrow Angle Camera in late 2017. -
Impact Impacts on the Moon, Mercury, and Europa
IMPACT IMPACTS ON THE MOON, MERCURY, AND EUROPA A dissertation submitted to the graduate division of the University of Hawai`i at M¯anoain partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in GEOLOGY AND GEOPHYSICS March 2020 By Emily S. Costello Dissertation Committee: Paul G. Lucey, Chairperson S. Fagents B. Smith-Konter N. Frazer P. Gorham c Copyright 2020 by Emily S. Costello All Rights Reserved ii This dissertation is dedicated to the Moon, who has fascinated our species for millennia and fascinates us still. iii Acknowledgements I wish to thank my family, who have loved and nourished me, and Dr. Rebecca Ghent for opening the door to planetary science to me, for teaching me courage and strength through example, and for being a true friend. I wish to thank my advisor, Dr. Paul Lucey for mentoring me in the art of concrete impressionism. I could not have hoped for a more inspiring mentor. I finally extend my heartfelt thanks to Dr. Michael Brodie, who erased the line between \great scientist" and \great artist" that day in front of a room full of humanities students - erasing, in my mind, the barrier between myself and the beauty of physics. iv Abstract In this work, I reconstitute and improve upon an Apollo-era statistical model of impact gardening (Gault et al. 1974) and validate the model against the gardening implied by remote sensing and analysis of Apollo cores. My major contribution is the modeling and analysis of the influence of secondary crater-forming impacts, which dominate impact gardening. -
NASA News National Aeronautics and Space Administration Washington, D.C
NASA News National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 For Release THURSDAY July 27, 1978 Pr6SS Kit Project Pioneer Venus 2 RELEASE NO: 78-101 CNASA-Ne»s-Eelease-78-101) SECOND VENOS N78-28105 SPACECBAFT SET FOB LAUNCH {National Aeronautics and Space Administration) 120 p CSCL 22A CJnclas 00/1_2 27327 Contents V* i GENERAL RELEASE ^At^S^T. 1-6 MISSION PROFILE 7-24 Pioneer Venus Multiprobe Mission 13-24 THE PLANET VENUS 25-40 MAJOR QUESTIONS ABOUT VENUS 41-42 HISTORICAL DISCOVERIES ABOUT VENUS 43-45 EXPLORATION OF VENUS BY SPACECRAFT 46-47 THE PIONEER VENUS SPACECRAFT 48-62 The Orbiter Spacecraft 53-58 The Multiprobe Spacecraft 58-62 VENUS ATMOSPHERIC PROBES 63-76 The Large Probe 63-70 The Small Probe 70-76 11 SCIENTIFIC INVESTIGATIONS 77-97 Orbiter 77-85 Orbiter Radio Science 85-88 Large Probe Experiments 88-92 Large and Small Probe Instruments 92-93 Small Probe Experiments 94 Multiprobe Bus Experiment 94-95 Multiprobe Radio Science Experiments 95-96 PRINCIPAL INVESTIGATORS AND SCIENTIFIC INSTRUMENTS 97-100 LAUNCH VEHICLE 101-102 LAUNCH FLIGHT SEQUENCE 102 LAUNCH VEHICLE CHARACTERISTICS , . 103 ATLAS CENTAUR FLIGHT SEQUENCE (AC-50) 104 LAUNCH OPERATIONS 105 MISSION OPERATIONS 105-107 DATA RETURN, COMMAND AND TRACKING 108-111 PIONEER VENUS TEAM 112-114 CONTRACTORS 114-117 VENUS STATISTICS 118 NOTE TO EDITORS; This press kit covers the launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft. Much of the material is also pertinent to the Venus encounter, but an updated press kit will be issued shortly before arrival at the planet in December 1978.