21 Metatheory of Logics and the Characterization Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logic and Its Metatheory
Logic and its Metatheory Philosophy 432 Spring 2017 T & TH: 300-450pm Olds Hall 109 Instructor Information Matthew McKeon Office: 503 South Kedzie Hall Office hours: 1-2:30pm on T & TH and by appointment. Telephone: Dept. Office—355-4490 E-mail: [email protected] Required Text Courseware Package (Text plus CD software): Jon Barwise and John Etchemendy. Language, Proof and Logic. 2nd edition. Stanford, CA: CLSI Publications, 2011. The courseware package includes several software tools that students will use to complete homework assignments and the self-diagnostic exercises from the text. DO NOT BUY USED BOOKS, BECAUSE THEY LACK THE CD, WHICH CONTAINS THE SOFTWARE. The software, easy to learn and use, makes some of the more technical aspects of symbolic logic accessible to introductory students and it is fun to use (or so I think). It is OK to have an earlier edition of the text as long as you have the CD with the password key that will allow you to access the text’s online site (https://ggweb.gradegrinder.net/lpl). Here you can update the software suite and download the 2nd edition of the text. At the site you can also purchase the software and an electronic version of the text. Primary Course Objectives • Deepen your understanding of the concept of logical consequence and sharpen your ability to see that one sentence is a logical consequence of others. • Introduce you to the basic methods of proof (both formal and informal), and teach you how to use them effectively to prove that one sentence is a logical consequence of others. -
Mechanized Metatheory Revisited
Journal of Automated Reasoning manuscript No. (will be inserted by the editor) Mechanized metatheory revisited Dale Miller Draft: August 29, 2019 Abstract When proof assistants and theorem provers implement the metatheory of logical systems, they must deal with a range of syntactic expressions (e.g., types, for- mulas, and proofs) that involve variable bindings. Since most mature proof assistants do not have built-in methods to treat bindings, they have been extended with various packages and libraries that allow them to encode such syntax using, for example, de Bruijn numerals. We put forward the argument that bindings are such an intimate aspect of the structure of expressions that they should be accounted for directly in the underlying programming language support for proof assistants and not via packages and libraries. We present an approach to designing programming languages and proof assistants that directly supports bindings in syntax. The roots of this approach can be found in the mobility of binders between term-level bindings, formula-level bindings (quantifiers), and proof-level bindings (eigenvariables). In particular, the combination of Church's approach to terms and formulas (found in his Simple Theory of Types) and Gentzen's approach to proofs (found in his sequent calculus) yields a framework for the interaction of bindings with a full range of logical connectives and quantifiers. We will also illustrate how that framework provides a direct and semantically clean treatment of computation and reasoning with syntax containing bindings. Some imple- mented systems, which support this intimate and built-in treatment of bindings, will be briefly described. Keywords mechanized metatheory, λ-tree syntax, mobility of binders 1 Metatheory and its mechanization Theorem proving|in both its interactive and automatic forms|has been applied in a wide range of domains. -
PHIL 677 Lec 01 Metalogic Fall Term 2019 MW 14:00–15:15, Math Sciences 319
PHIL 677 Lec 01 Metalogic Fall Term 2019 MW 14:00–15:15, Math Sciences 319 Course Outline Instructor: Richard Zach (he/him) Email: [email protected] Oce: Social Sciences 1230 Oce Hours: MW 13:00–13:50, or by appointment Phone: (403) 220–3170 Teaching Assistant: Weidong Sun (he/him) Email: [email protected] Oce: Social Sciences 1242 Oce Hours: T 15:40-16:40, R 10:00–11:00 Phone: (403) 220–6464 Email is preferred over phone. However please keep the following in mind: 1. Please ensure that “Phil 677” or some other clearly identifying term occurs in the subject line. Otherwise there is a strong possibility that your message will be deleted unread as spam. 2. If you email to make an appointment please indicate the times when you are available. 3. Please make sure your first and last names are clearly included in the body of any email message. 4. We will not respond to email after 7pm or on weekends. 1 Course Information Formal logic has many applications both within philosophy and outside (espe- cially in mathematics, computer science, and linguistics). This second course will introduce you to the concepts, results, and methods of formal logic neces- sary to understand and appreciate these applications as well as the limitations of formal logic. It will be mathematical in that you will be required to master abstract formal concepts and to prove theorems about logic; but it does not presuppose any (advanced) knowledge of mathematics. We will start from the basics. We will begin by studying some basic formal concepts: sets, relations, and functions, and the sizes of infinite sets. -
Notes on Incompleteness Theorems
The Incompleteness Theorems ● Here are some fundamental philosophical questions with mathematical answers: ○ (1) Is there a (recursive) algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is true? ○ (2) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of Peano or Robinson Arithmetic? ○ (3) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of pure (first-order) logic? ○ (4) Is there a complete (even if not recursive) recursively axiomatizable theory in the language of first-order arithmetic? ○ (5) Is there a recursively axiomatizable sub-theory of Peano Arithmetic that proves the consistency of Peano Arithmetic (even if it leaves other questions undecided)? ○ (6) Is there a formula of arithmetic that defines arithmetic truth in the standard model, N (even if it does not represent it)? ○ (7) Is the (non-recursively enumerable) set of truths in the language of first-order arithmetic categorical? If not, is it ω-categorical (i.e., categorical in models of cardinality ω)? ● Questions (1) -- (7) turn out to be linked. Their philosophical interest depends partly on the following philosophical thesis, of which we will make frequent, but inessential, use. ○ Church-Turing Thesis:A function is (intuitively) computable if/f it is recursive. ■ Church: “[T]he notion of an effectively calculable function of positive integers should be identified with that of recursive function (quoted in Epstein & Carnielli, 223).” ○ Note: Since a function is recursive if/f it is Turing computable, the Church-Turing Thesis also implies that a function is computable if/f it is Turing computable. -
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem Yannick Forster Dominik Kirst Gert Smolka Saarland University Saarland University Saarland University Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] [email protected] Abstract like decidability, enumerability, and reductions are avail- We formalise the computational undecidability of validity, able without reference to a concrete model of computation satisfiability, and provability of first-order formulas follow- such as Turing machines, general recursive functions, or ing a synthetic approach based on the computation native the λ-calculus. For instance, representing a given decision to Coq’s constructive type theory. Concretely, we consider problem by a predicate p on a type X, a function f : X ! B Tarski and Kripke semantics as well as classical and intu- with 8x: p x $ f x = tt is a decision procedure, a function itionistic natural deduction systems and provide compact д : N ! X with 8x: p x $ ¹9n: д n = xº is an enumer- many-one reductions from the Post correspondence prob- ation, and a function h : X ! Y with 8x: p x $ q ¹h xº lem (PCP). Moreover, developing a basic framework for syn- for a predicate q on a type Y is a many-one reduction from thetic computability theory in Coq, we formalise standard p to q. Working formally with concrete models instead is results concerning decidability, enumerability, and reducibil- cumbersome, given that every defined procedure needs to ity without reference to a concrete model of computation. be shown representable by a concrete entity of the model. -
Classical Metalogic an Introduction to Classical Model Theory & Computability
Classical Metalogic An Introduction to Classical Model Theory & Computability Notes by R.J. Buehler January 5, 2015 2 Preface What follows are my personal notes created in preparation for the UC-Berkeley Group in Logic preliminary exam. I am not a computability theorist, nor a model theorist; I am a graduate student with some knowledge who is–alas–quite fallible. Accordingly, this text is made available as a convenient reference, set of notes, and summary, but without even the slight hint of a guarantee that everything contained within is factual and correct (indeed, some areas are entirely unchanged from the moment I copied them off the blackboard). This said, if you find a serious error, I would greatly appreciate it if you would let me know so that it can be corrected. The material for these notes derives from a wide variety of sources: Lectures by Wes Holliday Lectures by Antonio Montalban Lectures by John Steel Kevin Kelly’s computability theory notes David Marker’s “Model Theory: An Introduction” Wilfrid Hodge’s “A Shorter Model Theory” Robert Soare’s “Recursively Enumerable Sets and Degrees" Richard Kaye’s “Models of Peano Arithmetic” Chang and Keisler’s “Model Theory" While I certainly hope my notes are beneficial, if you’re attempting to learn the contained material for the first time, I would highly suggest picking up (at least) a copy of Marker and Soare’s texts in addition. To those Group in Logic students who may be using these notes to help themselves prepare for their preliminary exam, chapters 1-5, 7, and 9-18 contain relevant material, as well as chapter 8, section 3. -
Preparing for Research: Metatheoretical Considerations
Chapter 3 In Chapter 2 a distinction was made between international and comparative librarianship and the scope of these two fields was outlined. In a sense we were running a little ahead of our material, since any such delimitation rests on certain Preparing for research: metatheoretical basic assumptions. These assumptions, of which we may or may not be aware, can be broadly labeled metatheoretical. They underlie methodological decisions and considerations the design and selection of research methods and techniques for specific projects. Such assumptions do not apply only to research, but are also worth bringing to the Outline surface in the context of international activities and relations in LIS. International initiatives that are undertaken without reflection on the assumptions held by the Metatheory, methodology and method partners risk unanticipated difficulties. Wertheimer (2009) recently illustrated this Metatheories in a discussion of the influence of North American educators on LIS education in Positivism Asia and pointed out that a critical understanding of library contexts in other Postpositivism countries is necessary. Interpretivism Multiple metatheories In this chapter1, the main emphasis is on the assumptions underlying research in The sociological dimension comparative librarianship. To a somewhat lesser extent they are also relevant to Disciplinary and paradigmatic influences Ethnocentricity research and professional practice in international librarianship. Extensive use is Language made here of literature from other comparative fields, especially comparative Multinational research education, which was a major early influence on comparative librarianship. The teleological dimension Positivism and postpositivism Interpretivism Metatheory, methodology and method Applied research The ontological dimension Hjørland (2005b:5) defines metatheories as “...theories about the description, Ontological stances investigation, analysis or criticism of the theories in a domain. -
METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence. -
MAT 440: Mathematical Logic
Program Cover Sheet --- MAT 440: Mathematical Logic I. Basic Course Information MAT 440: Mathematical Logic is an upper level course scheduled for two 80-minute lecture periods. Sophomore standing or above is a prerequisite. Every upper level math course is designed in part to increase a student’s ability to reason logically, and this 400-level Mathematical Logic course is no different. Despite its name, however, it is not particularly designed for this goal. Instead, this course is designed to take a mathematical and philosophical view at the mechanisms of logical reasoning. There will be three major themes: the process, characteristics and limits of logical reasoning. Much of the mathematical content and processes that will be used in this course will already have been introduced somewhere else in the curriculum, most directly in our Discrete Mathematics which serves as an introduction to techniques of proof. The most notable exception to this is that we will require some knowledge of set theory, in particular, infinite sets and cardinalities. II. Learning Goals The learning goals of this course reflect its major themes. Students will learn the process of logic by exploring propositional and first-order logic languages. Students will learn how to work inside these languages to derive proofs of statements. Secondly, students will study these languages from outside, in the language of metalogic. Here, students will learn the characteristics of these languages. For example, the different notions of ‘truth’ and ‘proof’ will be compared and contrasted. Lastly, students will learn the limits of mathematics in the context of completeness and consistency. -
Mental Metalogic: a New Paradigm in Psychology of Reasoning
Mental MetaLogic: A New Paradigm in Psychology of Reasoning Yingrui Yang & Selmer Bringsjord [email protected] [email protected] Dept. of Philosophy, Psychology &• Cognitive Science (S.B. & Y.Y.) The Minds & Machines Laboratory (S.B. & Y.Y.) Department of Computer Science (S.B.) Rensselaer Polytechnic Institute Troy NY USA Abstract mental logic theory claims that logically untrained hu- mans reason using domain-independent inference rules We introduce a new theory of reasoning, Mental Meta- or schemas (e.g., that from p q and p one can infer to q; Logic (MML), which uni®es the mental logic and men- proponents of mental logic would_ say: that something like tal models theories currently deadlocked in opposition to each other. MML, as we explain, is based on the ªpsychol- this particular rule is operative in the case of our hypo- ogizingº of all of symbolic logic Ð which includes a syn- thetical Smith). On the other hand, mental model theory tactic component (proof theory) with which mental logic holds that ordinary humans reason using not abstract syn- is associated, a semantic component (model theory and tactic rules, but semantic possibilities they in some sense its relatives) with which mental models is associated, and a ªmetaº component (metatheory or metalogic), hitherto imagine. Scientists on both sides are incontestably sem- largely ignored in the psychology of reasoning. We set inal and proli®c, and the content offered by each is pow- out the seven research questions that MML is designed to erful. But the two sides stand vehemently apart, and as a enable answers to, present the research agenda that arises result the science of reasoning is, in a real sense, funda- from the goal of answering three of these questions, and mentally paralyzed.2 MML will end this paralysis. -
The Art of Metascience; Or, What Should a Psychological Theory Be?
First published in Towards Unification in Psychology, J. R. Royce (ed.), 1970. Extract, pp. 54–103. Toronto: University of Toronto Press. The Art of Metascience; or, What Should a Psychological Theory Be? Introduction In order not to lay false claims upon your attention, let me confess at once that the subtitle of this paper is intended more as a stimulus to curiosity than as a serious synopsis of the subject here to be addressed. I shall indeed be concerned at considerable length with the methodological character of psychological theories, but my prescriptions will focus upon process rather than product. Specifically, I shall offer some detailed judgments on how theorizing must be done—or, more precisely, what sorts of metatheorizing must accompany it—if the enterprise is to make a genuine contribution to science; and while on first impression these may seem like no more than the standard broad-spectrum abstractions of one who has nothing specific to say, I assure you that they envision realizable operations which, if practiced, would have a profound effect on our conceptual efficiency as psychologists. There are at least two formal dimensions along which discussions of psycho- logical theory can vary. One is level of abstraction, or substantivity of concern, with attention to specific extant theories (e.g. pointing out an inconsistency or clarifying an ambiguity in John Smiths’ theory of binocular psychokinesis) at one extreme, and philosophy-of-science type concerns for the nature and functioning of idealized theories in general, detached from any real-life instances, at the other. Distinct from this, though not wholly orthogonal to it, is a second dimension of metatheory which might be called acuity or penetration, and which concerns the degree to which the discussion makes a serious, intellectually responsible attempt to further our understanding of the matter with which it deals. -
PHI 1130 Environmental Ethics Cr
PHI 1130 Environmental Ethics Cr. 3 PHI - PHILOSOPHY Satisfies General Education Requirement: Cultural Inquiry, Philosophy Letters PHI 1010 Introduction to Philosophy Cr. 4 Is the natural world something to be valued in itself, or is its value Satisfies General Education Requirement: Cultural Inquiry, Philosophy exhausted by the uses human beings derive from it? This course Letters introduces students to some of the major views on the subject, Survey of some major questions that have occupied philosophers anthropocentric (human-centered) and non-anthropocentric. Offered throughout history, such as Does God exist? What is a good person? Do Yearly. we have free will? Is the mind the same as the brain? What can we really Restriction(s): Enrollment is limited to Undergraduate level students. know? Course will acquaint students with major figures both historical PHI 1200 Life and Death Cr. 3 and contemporary. Offered Every Term. Satisfies General Education Requirement: Cultural Inquiry, Philosophy PHI 1020 Honors Introduction to Philosophy Cr. 3-4 Letters Satisfies General Education Requirement: Cultural Inquiry, Honors Central philosophical and religious questions about life and death, and Section, Philosophy Letters the enterprise of answering these questions through reasoning and Survey of some major questions that have occupied philosophers argument. What is it to be alive, and to die? Do we cease to exist when throughout history, such as Does God exist? What is a good person? we die, or might we continue to exist in an afterlife following our deaths? Do we have free will? What can we really know? Course will acquaint Should we fear or regret the fact that we will die someday, or should we students with major figures both historical and contemporary.