Performance Prediction of a Solar District Cooling System in Riyadh, Saudi T Arabia – a Case Study ⁎ G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Economic and Environmental Analysis of Investing in Solar Water Heating Systems
sustainability Article Economic and Environmental Analysis of Investing in Solar Water Heating Systems Alexandru ¸Serban 1, Nicoleta B˘arbu¸t˘a-Mi¸su 2, Nicoleta Ciucescu 3, Simona Paraschiv 4 and Spiru Paraschiv 4,* 1 Faculty of Civil Engineering, Transilvania University of Brasov, 500152 Brasov, Romania; [email protected] 2 Faculty of Economics and Business Administration, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania; [email protected] 3 Faculty of Economics, Vasile Alecsandri University of Bacau, 157 Marasesti Street, 600115 Bacau, Romania; [email protected] 4 Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-721-320-403 Academic Editor: Francesco Asdrubali Received: 26 August 2016; Accepted: 2 December 2016; Published: 8 December 2016 Abstract: Solar water heating (SWH) systems can provide a significant part of the heat energy that is required in the residential sector. The use of SWH systems is motivated by the desire to reduce energy consumption and especially to reduce a major source of greenhouse gas (GHG) emissions. The purposes of the present paper consist in: assessing the solar potential; analysing the possibility of using solar energy to heat water for residential applications in Romania; investigating the economic potential of SWH systems; and their contribution to saving energy and reducing CO2 emissions. The results showed that if solar systems are used, the annual energy savings amount to approximately 71%, and the reduction of GHG emissions into the atmosphere are of 18.5 tonnes of CO2 over the lifespan of the system, with a discounted payback period of 6.8–8.6 years, in accordance with the savings achieved depending on system characteristics, the solar radiation available, ambient air temperature and on heating load characteristics. -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources. -
Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control
energies Article Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control Simone Buffa 1,*, Anton Soppelsa 1 , Mauro Pipiciello 1, Gregor Henze 2,3,4 and Roberto Fedrizzi 1 1 Eurac Research, Institute for Renewable Energy, Viale Druso 1, 39100 Bolzano, Italy; [email protected] (A.S.); [email protected] (M.P.); [email protected] (R.F.) 2 Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA; [email protected] 3 National Renewable Energy Laboratory, Golden, CO 80401, USA 4 Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA * Correspondence: simone.buff[email protected]; Tel.: +39-0471-055636 Received: 16 July 2020; Accepted: 11 August 2020; Published: 21 August 2020 Abstract: District heating and cooling (DHC) is considered one of the most sustainable technologies to meet the heating and cooling demands of buildings in urban areas. The fifth-generation district heating and cooling (5GDHC) concept, often referred to as ambient loops, is a novel solution emerging in Europe and has become a widely discussed topic in current energy system research. 5GDHC systems operate at a temperature close to the ground and include electrically driven heat pumps and associated thermal energy storage in a building-sited energy transfer station (ETS) to satisfy user comfort. This work presents new strategies for improving the operation of these energy transfer stations by means of a model predictive control (MPC) method based on recurrent artificial neural networks. The results show that, under simple time-of-use utility rates, the advanced controller outperforms a rule-based controller for smart charging of the domestic hot water (DHW) thermal energy storage under specific boundary conditions. -
Solar Community Energy and Storage Systems for Cold Climates
SOLAR COMMUNITY ENERGY AND STORAGE SYSTEMS FOR COLD CLIMATES by Farzin Masoumi Rad Bachelor of Applied Science (Mechanical Engineering), Shiraz University, Iran, 1986 Master of Applied Science (Mechanical Engineering), Ryerson University, Toronto, Canada, 2009 A dissertation presented to Ryerson University in partial fulfilment of the requirements for degree of Doctor of Philosophy in the program of Mechanical and Industrial Engineering Toronto, Ontario, Canada, 2016 © Farzin M. Rad 2016 Author’s Declaration I hereby declare that I am the sole author of this dissertation. This is a true copy of the dissertation, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my dissertation may be made electronically available to the public. ii SOLAR COMMUNITY ENERGY AND STORAGE SYSTEMS FOR COLD CLIMATES Farzin Masoumi Rad Doctor of Philosophy Department of Mechanical and Industrial Engineering Ryerson University, Toronto, Ontario, Canada, 2016 Abstract For a hypothetical solar community located in Toronto, Ontario, the viability of two separate combined heating and cooling systems were investigated. Four TRNSYS integrated models were developed for different cases. First, an existing heating only solar community was modeled and compared with published performance data as the base case with suggested improvements. The base case community was then used to develop a hypothetical solar community, located in Toronto, requiring both heating and cooling. -
Solar Combisystems
Method and comparison of advanced storage concepts A Report of IEA Solar Heating and Cooling programme - Task 32 “Advanced storage concepts for solar and low energy buildings” Report A4 of Subtask A December 2007 Jean-Christophe Hadorn Thomas Letz Michel Haller Method and comparison of advanced storage concepts Jean-Christophe Hadorn, BASE Consultants SA, Geneva, Switzerland Thomas Letz INES Education, Le Bourget du Lac, France Contribution on method: Michel Haller Institute of Thermal Engineering Div. Solar Energy and Thermal Building Simulation Graz University of Technology Inffeldgasse 25 B, A-8010 Graz A technical report of Subtask A BASE CONSULTANTS SA 8 rue du Nant CP 6268 CH - 1211 Genève INES - Education Parc Technologique de Savoie Technolac 50 avenue du Léman BP 258 F - 73 375 LE BOURGET DU LAC Cedex 3 Executive Summary This report presents the criteria that Task 32 has used to evaluate and compare several storage concepts part of a solar combisystem and a comparison of storage solutions in a system. Criteria have been selected based on relevance and simplicity. When values can not be assessed for storage techniques to new to be fully developped, we used more qualitative data. Comparing systems is always a very hard task. Boundary conditions and all paramaters must be comparable. This is very difficult to achieve when 9 analysts work around the world on similar systems but with different storage units. This report is an attempt of a comparison. Main generic results that we can draw with some confidency from the inter comparison of systems are: - The drain back principle increases thermal performances because it does not use of a heat exchanger in the solar loop and increases therefore the efficiency of the solar collector. -
District Cooling Systems
DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT TECHNOLOGICAL AND ECONOMIC EVALUATION OF DISTRICT COOLING WITH ABSORPTION COOLING SYSTEMS IN GÄVLE (SWEDEN) Elixabet Sarasketa Zabala June 2009 Master’s Thesis in Energy Systems uuir Master Programme in Energy Systems Examiner: Ulf Larsson Supervisor: Åke Björnwall Preface This investigation, as final Thesis Project of Master in Energy Systems (University of Gävle), was started to carry out in February, in collaboration with the company Gävle Energi AB. Many people have been involved answering my questions, providing me with information and so forth; some of those are mentioned below. First of all, I would like to thank Åke Björnwall, my supervisor at Gävle Energi AB, very much for his attention, help and support. His knowledge, comments, guidance and advices have been essential for the development of my work. Needless to say that I have learnt a lot from him. Secondly, I would like to thank the rest of workers at Gävle Energi AB, who have done everything they can to help me, in addition to make pleasant my stay in the company. I would also like to thank Ulf Larsson at the University of Gävle for his help. Furthermore, I am very grateful for all information I have received from other companies. Finally, I do not forget the invaluable support of my mother, Rosa, during all my studies. No one mentioned, no one forgotten. Gävle, June 2009 Elixabet Sarasketa Zabala Abstract Gävle Energi AB is a company which produces electricity as well as heat that is delivered through a district heating network in the municipality of Gävle. -
RESET CHAPTER 2: Development and Assessment of Methodologies to Improve Local Microclimate with the Use of RES Techniques
CONTENTS RESSET - Chapter 1: Collection and documentation of the input data and evaluation tools required to carry out the study................................................................................................................................ 4 1. Development and assessment of methodologies to improve local microclimate with the use of RES techniques............................................................................................................................................. 4 1.1. Introduction.................................................................................................................................... 4 1.2. Energy Balance of Settlements ...................................................................................................... 4 1.3. Microclimate in Settlements .......................................................................................................... 5 1.4. Use of Passive Cooling Techniques applied to Outdoor Spaces ................................................... 6 2. Passive solar heating and cooling and advanced glazing materials...................................................... 8 2.1. Introduction.................................................................................................................................... 8 2.2. Building-integrated PV .................................................................................................................. 8 2.3. Passive solar systems .................................................................................................................... -
District Energy Enters the 21St Century
TECHNICAL FEATURE This article was published in ASHRAE Journal, July 2015. Copyright 2015 ASHRAE. Posted at www.www.burnsmcd.com .org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. District Energy Enters The 21st Century BY STEVE TREDINNICK, P.E., MEMBER ASHRAE; DAVID WADE, P.E., LIFE MEMBER ASHRAE; GARY PHETTEPLACE, PH.D., P.E., MEMBER ASHRAE The concept of district energy is undergoing a resurgence in some parts of the United States and the world. Its roots in the U.S. date back to the 19th century and through the years many technological advancements and synergies have developed that help district energy efficiency. This article explores district energy and how ASHRAE has supported the industry over the years. District Energy’s Roots along with systems serving groups of institutional build- District energy systems supply heating and cooling ings, were initiated and prospered in the early decades to groups of buildings in the form of steam, hot water of the 1900s and by 1949 there were over 300 commercial or chilled water using a network of piping from one or systems in operation throughout the United States. Of more central energy plants. The concept has been used course, systems in the major cities of Europe also gained in the United States for more than 140 years with the favor in Paris, Copenhagen and Brussels. In many cases first recognized commercial district energy operation district steam systems were designed to accept waste originating in Lockport, N.Y. -
Integration of Micro-Cogeneration Units and Electric Storages Into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage
energies Article Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage Antonio Rosato * , Antonio Ciervo, Giovanni Ciampi , Michelangelo Scorpio and Sergio Sibilio Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy; [email protected] (A.C.); [email protected] (G.C.); [email protected] (M.S.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-081-501-0845 Received: 31 July 2020; Accepted: 9 October 2020; Published: 19 October 2020 Abstract: A micro-scale district heating network based on the operation of solar thermal collectors coupled to a long-term borehole thermal storage is modeled, simulated and investigated over a period of five years. The plant is devoted to covering the domestic hot water and space heating demands of a district composed of six typical residential buildings located in Naples (southern Italy). Three alternative natural gas-fueled back-up auxiliary systems (condensing boiler and two different technologies of micro-cogeneration) aiming at balancing the solar energy intermittency are investigated. The utilization of electric storages in combination with the cogeneration systems is also considered with the aim of improving the self-consumption of cogenerated electric energy; heat recovery from the distribution circuit is also evaluated to pre-heat the mains water for domestic hot water production. The performances of the proposed plant schemes are contrasted with those of a typical Italian decentralized heating plant (based on the utilization of natural gas-fueled non-condensing boilers). -
Thermal Storage Technology Assessment an Introductory Assessment of Thermal Storage in Residential Cold Climate Construction
Thermal Storage Technology Assessment An introductory assessment of thermal storage in residential cold climate construction February 2013 by Vanessa Stevens Colin Craven Bruno Grunau With funding from the Alaska Housing Finance Cor- poration & the Alaska Department of Commerce, Community, and Economic Development Acknowledgements The authors would like to acknowledge the many people who participated in interviews for this report, sharing their knowledge and expertise on the topic of thermal storage. Several of the systems built by these individuals appear in Appendix B. Also, thanks to the Alaska Department of Commerce, Community, and Economic Development and the Alaska Housing Finance Corporation for providing funding for this project. 3 Thermal Storage Technolog y Assessment www.cchrc.org Contents Acronyms ............................................................................................................................................................ 5 Introduction ........................................................................................................................................................ 6 1. Thermal Storage Fundamentals........................................................................................................................ 7 1.1 Definition ................................................................................................................................................... 7 1.2 Uses of thermal storage ............................................................................................................................ -
Production of District Heating, District Cooling, Electricity and Biogas Our
Our dream – a city free from fossil fuels Application – First Global District Energy Climate Awards Production of district heating, district cooling, electricity and biogas Borås Energi och Miljö AB, Sweden Borås Energi och Miljö AB, is a municipally owned company and part of Borås Stadshus AB. Contact: Jonas Holmberg – Head of Marketing, +46 33 35 72 20, [email protected] www.borasenergimiljo.se Part of Borås Stadshus AB Borås is Sweden’s 13th largest municipally. Around 64,000 people live in Borås City, and over 100,000 The accumulator tank. throughout the municipality. Borås Energi och Miljö AB (BEM) is a municipally owned company that handles refuse and the production of district heating, cooling and electricity in the municipality of Borås. The company has a vision of a city free from fossil fuels. BEM runs a number of facilities and services, all of which contribute to the reduction of greenhouse gas emissions in one way or another. The term “emissions” used in thes document usally refers to greenhouse gases. First off, please watch our company movie for a quick tour of our company. Click here to watch the movie. We harness all energy streams Whenever they sort their household waste, travel on Today Borås City is a pioneer when it comes to working biogas buses, relax at home with comfortable district in harmony with the biological cycle, and we look on heating or spend time at an office with pleasant district combustible household refuse as a valuable energy cooling, the inhabitants of Borås play an important role resource – energy that would otherwise be wasted. -
Dynamic Performance of a Solar Hybrid Heating Network Integrated with a Micro
________________________________________________________________________________________________ Dynamic Performance of a Solar Hybrid Heating Network Integrated with a Micro- Cogeneration Unit Serving a Small-Scale Residential District including Electric Vehicles Antonio Rosato, Antonio Ciervo, Giovanni Ciampi, Michelangelo Scorpio, Francesco Guarino, Sergio Sibilio University of Campania Luigi Vanvitelli, Department of Architecture and Industrial Design, Aversa, Italy Abstract (Angrisani et al., 2014). The micro-cogeneration devices applied in residential units generally operate under a heat- A solar hybrid district heating network integrated with a load following control strategy in response to variations seasonal borehole thermal energy storage is modelled, in heat demand (Sibilio and Rosato, 2015); in this case, a simulated and analyzed over a 5-year period. The system large fraction of the cogenerated electricity is usually is devoted to satisfying the thermal demand of a small- produced at times when the electric demand of the scale district consisting of 6 typical Italian single-family building is lower than MCHP electric output due to the houses in Naples (south of Italy); the charging of 6 plug- usual mismatch between electric and thermal demands in electric vehicles is also considered. The performance of (Ribberink and Entchev, 2014), requiring substantial the proposed plant is investigated by considering two amounts of electricity to be exported to the grid with low alternative natural gas-fueled back-up systems. The revenues. EVs consume considerable amounts of energy, environmental and economic performance of the electricity; they are mostly driven during the day and proposed plant are analyzed and compared with those charged at home during the night, so that the recharging associated to a conventional heating system in order to of EVs could be a way to increase the own use of assess the potential benefits.