Hydrogen-Oxygen Fuel Cell Is the ‘Game Changer’
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Battery Life and How to Improve It
Battery Life and How To Improve It Battery and Energy Technologies Technologies Battery Life (and Death) Low Power Cells High Power Cells For product designers, an understanding of the factors affecting battery life is vitally important for managing both product Chargers & Charging performance and warranty liabilities particularly with high cost, high power batteries. Offer too low a warranty period and you won't Battery Management sell any batteries/products. Overestimate the battery lifetime and you could lose a fortune. Battery Testing Cell Chemistries FAQ That batteries have a finite life is due to occurrence of the unwanted chemical or physical changes to, or the loss of, the active materials of which Free Report they are made. Otherwise they would last indefinitely. These changes are usually irreversible and they affect the electrical performance of the cell. Buying Batteries in China Battery life can usually only be extended by preventing or reducing the cause of the unwanted parasitic chemical effects which occur in the cells. Choosing a Battery Some ways of improving battery life and hence reliability are considered below. How to Specify Batteries Battery cycle life is defined as the number of complete charge - discharge cycles a battery can perform before its nominal capacity falls below Sponsors 80% of its initial rated capacity. Lifetimes of 500 to 1200 cycles are typical. The actual ageing process results in a gradual reduction in capacity over time. When a cell reaches its specified lifetime it does not stop working suddenly. The ageing process continues at the same rate as before so that a cell whose capacity had fallen to 80% after 1000 cycles will probably continue working to perhaps 2000 cycles when its effective capacity will have fallen to 60% of its original capacity. -
Fuel Cell - Wikipedia 1 of 36
Fuel cell - Wikipedia 1 of 36 Fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen[1]) into electricity through a pair of redox reactions.[2] Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from metals and their ions or oxides[3] that are commonly already present in the battery, except in flow batteries. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied. The first fuel cells were invented by Sir William Grove in 1838. The first commercial use of fuel cells came more than a century later following the invention of the hydrogen–oxygen fuel cell by Francis Thomas Bacon in 1932. The alkaline fuel cell, also known as the Bacon fuel cell after its inventor, has been used in NASA space programs since the mid-1960s to Demonstration model of a direct- generate power for satellites and space capsules. Since then, methanol fuel cell (black layered cube) in fuel cells have been used in many other applications. Fuel its enclosure. cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines. There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows ions, often positively charged hydrogen ions (protons), to move between the two sides of the fuel cell. -
Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
University of Alberta Fueling Dreams of Grandeur: Fuel Cell Research and Development and the Pursuit of the Technological Panacea, 1940-2005 by Matthew Nicholas Eisler ff+\ A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of History and Classics Edmonton, Alberta Spring 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-45418-3 Our file Notre reference ISBN: 978-0-494-45418-3 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
Alkaline Fuel Cell - Wikipedia 1 of 4
Alkaline fuel cell - Wikipedia 1 of 4 Alkaline fuel cell The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%. NASA has used alkaline fuel cells since the mid-1960s, in the Apollo-series missions and on the Space Shuttle. Diagram of an Alkaline Fuel Cell: Contents 1. Hydrogen 2. Electron flow Chemistry 3. Load Electrolyte 4. Oxygen Basic designs 5. Cathode 6. Electrolyte Advantages over acidic fuel cells 7. Anode Commercial prospects 8. Water See also 9. Hydroxide Ions References External links Chemistry The fuel cell produces power through a redox reaction between hydrogen and oxygen. At the anode, hydrogen is oxidized according to the reaction: producing water and releasing electrons. The electrons flow through an external circuit and return to the cathode, reducing oxygen in the reaction: producing hydroxide ions. The net reaction consumes one oxygen molecule and two hydrogen molecules in the production of two water molecules. Electricity and heat are formed as by-products of this reaction. Electrolyte https://en.wikipedia.org/wiki/Alkaline_fuel_cell Alkaline fuel cell - Wikipedia 2 of 4 The two electrodes are separated by a porous matrix saturated with an aqueous alkaline solution, such as potassium hydroxide (KOH). Aqueous alkaline solutions do not reject carbon dioxide (CO2) so the fuel cell can become "poisoned" through the conversion of KOH to potassium carbonate (K2CO3). -
Water and Anion Transport in Electrochemical Devices Travis Omasta University of Connecticut - Storrs, [email protected]
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-4-2018 Water and Anion Transport in Electrochemical Devices Travis Omasta University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Omasta, Travis, "Water and Anion Transport in Electrochemical Devices" (2018). Doctoral Dissertations. 1808. https://opencommons.uconn.edu/dissertations/1808 Water and Anion Transport in Electrochemical Devices Travis John Omasta, Ph.D. University of Connecticut, 2018 In this thesis, the balance and transport of water, hydroxide, and carbonates in Anion Exchange Membrane Fuel Cells (AEMFCs) are investigated. First, macro-scale water is examined, and the need for high membrane conductivity, a predictor of water back diffusion, is demonstrated by operating at lower relative humidities to avoid catalyst layer flooding. Additionally, the distribution of water in the membrane, electrodes, and gas diffusion layers was directly imaged with neutron radiography in an operando fuel cell. The insight from the neutron images was combined with electrode diagnostics evaluating the kinetic, ohmic, and mass transport limitations of the cell, resulting in the ability to also control the micro- scale water through precise engineering of the anode catalyst layer. This understanding ultimately led to the ability reduce the Pt loading significantly, as well as use non-Pt catalysts, while still achieving > 1 W cm-2. Finally, the effects of CO2 and carbonation on AEMFCs was investigated, and the mechanism for carbonate inclusion in the AEM and removal are discussed. It was observed that the carbonation/decarbonation dynamics could allow for the purposeful use of carbonates in electrochemical devices, including current driven electrochemical CO2 separation, which were assembled and their performance characterized.