Amazon Basin GIWA Regional Assessment 40B

Total Page:16

File Type:pdf, Size:1020Kb

Amazon Basin GIWA Regional Assessment 40B (1,1) -1- Cover 40b_only.indd 2004-04-05, 14:07:25 Global International Waters Assessment Amazon Basin GIWA Regional assessment 40b Barthem, R. B., Charvet-Almeida, P., Montag, L. F. A. and A. E. Lanna Global International Waters Assessment Regional assessments Global International Waters Assessment Regional assessment 40b Amazon Basin GIWA report production Series editor: Ulla Li Zweifel Report editor: David Souter Editorial assistance: Johanna Egerup and Malin Karlsson Maps & GIS: Niklas Holmgren Design & graphics: Joakim Palmqvist Global International Waters Assessment Amazon Basin, GIWA Regional assessment 40b Published by the University of Kalmar on behalf of United Nations Environment Programme © 2004 United Nations Environment Programme ISSN 1651-9402 University of Kalmar SE-391 82 Kalmar Sweden United Nations Environment Programme PO Box 30552, Nairobi, Kenya This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. CITATIONS When citing this report, please use: UNEP, 2004. Barthem, R. B., Charvet-Almeida, P., Montag, L. F. A. and Lanna, A.E. Amazon Basin, GIWA Regional assessment 40b. University of Kalmar, Kalmar, Sweden. DISCLAIMER The views expressed in this publication are those of the authors and do not necessarily reflect those of UNEP. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or cooperating agencies concerning the legal status of any country, territory, city or areas or its authority, or concerning the delimitation of its frontiers or boundaries. This publication has been peer-reviewed and the information herein is believed to be reliable, but the publisher does not warrant its completeness or accuracy. Printed and bound in Sweden by Sunds Tryck Öland AB. CONTENTS Contents Abbreviations and acronyms 9 Executive summary 11 Regional definition 14 Boundaries of the Amazon region 14 Physical characteristics 15 Socio-economic characteristics 19 Assessment 22 Freshwater shortage 22 Pollution 24 Habitat and community modification 26 Unsustainable exploitation of fish and other living resources 28 Global change 30 Priority concerns 31 Causal chain analysis of the Madeira River Basin 34 Introduction 34 System description 35 Causal model and links 38 Policy options of the Madeira River Basin 43 Definition of the problems 43 Construction of the policy options 45 Identification of the recommended policy options 46 Likely performance of recommended policies 46 References 48 Annexes 53 Annex I List of contributing authors and organisations 53 Annex II Detailed scoring tables 54 Annex III List of important water-related programmes in the region 58 Annex IV List of conventions and specific laws that affect water use in the region 59 The Global International Waters Assessment i The GIWA methodology vii CONTENTS Abbreviations and acronyms ACA Amazon Conservation Association ACT Amazon Cooperation Treaty ANA Brazilian National Water Agency BOD Biological Oxygen Demand CENDEPESCA Bolivian Centre for Fisheries Development COBRAPHI Brazilian Committee for the International Hydrological Programme EMBRAPA Brazilian Agricultural Research Corporation FAO Food and Agricultural Organization of the United Nations HiBAm Hydrology and Geochemistry of the Amazon Basin IBAMA Brazilian Institute of Environment IBGE Brazilian Institute of Geography and Statistics INPA The National Institute for Research in the Amazon INPE Brazilian National Institute for Space Research LBA Large Scale Biosphere-Atmosphere Experiment in Amazonia MERCOSUR Mercado Común del Sur (Southern Common Market) MINPES Peruvian Ministry of Fisheries MPEG The State of Pará Emílio Goeldi Museum PPG7 Protection of the Brazilian Rainforest PROVARZEA The Amazon Floodplains (Varzea) Project SECTAM The Pará State Secretariat for Science, Technology and Environment SENAMHI National Service of Meteorology SINCHI The Amazonic Institute of Scientific Research UA Amazonas University UFPA Federal University of Pará UFPB Federal University of Paraíba UNEP United Nations Environment Programme ABBREVIATIONS AND ACRONYMS 9 List of figures Figure 1 Geographical location of the Amazon, Orinoco and Paraná basins. 14 Figure 2 The Amazon Basin. 15 Figure 3 The drainage basins of the tributaries comprising the Amazon Basin.. 16 Figure 4 The main Amazon habitats. 19 Figure 5 A small urban stream blocked by solid wastes.. 25 Figure 6 The rivers of the Amazon Basin carry a large volume of trees, pieces of wood, branches, leaves and roots. 25 Figure 7 The Balbina Dam on the Uatumã River.. 27 Figure 8 Model indicating the inter-linkage and synergies between the concerns. 33 Figure 9 Deforested areas in the Madeira Basin. 35 Figure 10 Anthropogenic pressure in the Madeira River Basin. 36 Figure 11 Gold mining activity in the Madeira River headwaters. 36 Figure 12 Transport of timber (mahogany) in the Peruvian rivers. 37 Figure 13 Fishing activity in the Madre de Dios River. 37 Figure 14 Madeira River Basin causal chain analysis on Pollution. 41 Figure 15 Madeira River Basin causal chain analysis on Habitat and community modification. 42 List of tables Table 1 The Amazon River and its main tributaries. 16 Table 2 Countries within the Amazon Basin. 16 Table 3 Scoring table for the Amazon region. 22 Table 4 Population in relation to river basins.. 35 Table 5 Basic sanitation indicators in the Brazilian part of Madeira and Amazon basins. 38 Table 6 Water availability in the Brazilian part of the Madeira and Amazon basins.. 38 Table 7 Water demand in the Brazilian part of the Madeira and Amazon basins.. 38 Table 8 Organic load in the Brazilian part of the Madeira and Amazon basins. 38 10 GIWA REGIONAL ASSESSMENT 40B AMAZON BASIN Executive summary The Amazon Basin is the largest basin on the planet and also one of the are the most important products exported from the Amazon Basin. least understood. Its drainage area covers more than one third of the Timber exploitation focuses on a few species, particularly mahogany South American continent, and its discharge contributes almost one (Swietenia macrophylla). The primary environmental consequence of fifth of the total discharge of all rivers of the world. The headwaters of this exploitation is the depletion of natural populations of the exploited the Amazon River are located about 100 km from the Pacific Ocean and species. The construction of roads to facilitate the extraction of timber it runs more than 6 000 km before draining into the Atlantic Ocean. In from within the forest also provides access to farmers and other groups addition, the Amazon has 15 tributaries, including the Tocantins River, that colonise and expand into these newly accessible areas. Mining, that measure more than 1 000 km in length. The Madeira and Negro particularly of alluvial gold, and oil extraction activities are scattered rivers are the most important tributaries, contributing with more than throughout the Amazon region. The main environmental problems one third of the total water discharge. The Amazon Basin contains associated with mining are pollution and increased suspended a complex system of vegetation, including the most extensive and sediment loads caused by erosion which leads to the degradation preserved rainforest in the world. The rainforest, known as the Amazon of downstream habitats. Fishing is also an extractive activity that is Rainforest, is not confined to the Amazon Basin but also extends into traditional and important in the Amazon plains. Fish is a source of cheap, the Orinoco Basin and other small basins located between the mouths high quality protein for inhabitants of the Amazon Basin. Some selected of the Orinoco.
Recommended publications
  • Floristic Composition of Phytoplankton in Madeira River
    G.J.B.A.H.S.,Vol.3(1):110-119 (January – March,2014) ISSN: 2319 – 5584 BIOLOGICAL DIVERSITY OF PHYTOPLANKTON AND PHYTOPERIPHYTON IN THE MADEIRA RIVER BASIN, AMAZON, BRAZIL Fabio Aprile1, Assad J. Darwich2, Pedro A. S. Mera2, Rosaluz Tavera3 & Karla K. do A. Serique2 1 Western of Pará Federal University - Ufopa. Av. Marechal Rondon s/n Santarém - PA 68040-070 Brazil. 2 National Institute of Research of Amazonian - Inpa. Av. André Araújo 2936 Manaus - AM 69060-001 Brazil. 3 Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF 04510 México. 4 Post-graduation Program of the National Institute of Research of Amazonian – Inpa. Abstract Floristic composition, abundance, richness and many other ecological patterns of phytoplankton and phytoperiphyton were studied in the Madeira River basin, between the Abunã River and Porto Velho City (Rondônia - Brazil), taking into account the hydrological period of the region. The results were correlated with abiotic factors, + + 2+ 2+ - 3- including the nutrients Na , K , Ca , Mg , N-NO3 , P-PO4 and chlorophyll-a. 283 taxa on the Madeira River and 327 taxa in the tributaries were identified belonging to six divisions and nine taxonomic classes. It was observed a considerable complexity in floristic composition, with a greater contribution from the division Chlorophyta, especially during the high water periods, when there was greater species richness recorded. Ecological indexes and statistical analysis confirmed strong seasonal pattern and differentiation between the species present in the white and clear waters. Keywords: floristic composition, diversity index, species richness, landscape ecology, Amazonia. 1. Introduction The Madeira River basin is located in the southwestern Amazonian region, and draining an enormous watershed frequently covered by Tropical Rain- Forest.
    [Show full text]
  • ENVIRONMENTAL CRIME in the AMAZON BASIN: a Typology for Research, Policy and Action
    IGARAPÉ INSTITUTE a think and do tank SP 47 STRATEGIC PAPER 47 PAPER STRATEGIC 2020 AUGUST ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Adriana Abdenur, Brodie Ferguson, Ilona Szabo de Carvalho, Melina Risso and Robert Muggah IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 Index Abstract ���������������������������������������������������������� 1 Introduction ������������������������������������������������������ 2 Threats to the Amazon Basin ���������������������������� 3 Typology of environmental crime ����������������������� 9 Conclusions ���������������������������������������������������� 16 References ����������������������������������������������������� 17 Annex 1: Dimensions of Illegality ��������������������� 17 Cover photo: Wilson Dias/Agência Brasil IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Igarape Institute1 Abstract There is considerable conceptual and practical ambiguity around the dimensions and drivers of environmental crime in the Amazon Basin� Some issues, such as deforestation, have featured prominently in the news media as well as in academic and policy research� Yet, the literature is less developed in relation to other environmental crimes such as land invasion, small-scale clearance for agriculture and ranching, illegal mining, illegal wildlife trafficking, and the construction of informal roads and infrastructure that support these and other unlawful activities� Drawing on
    [Show full text]
  • Sustainable Landscapes in the Amazon and Congo Basin
    Sustainable Landscapes in the Amazon and Congo Basin ISSUE The Amazon and the Congo Basin are the world’s two largest remaining areas of tropical rainforests, covering 1.1 billion hectares. These forests have high levels of endemism and they harbor more than 200,000 million tons of carbon. Because they represent a large expanse of continuous forest, the Amazon and the Congo Basin exert a regional and global influence on climatic and rainfall patterns. Both ecosystems are also home to forest-dependent people (local communities and Indigenous People) with significant traditional knowledge of forests management. Sustainably managing the Amazon and the Congo Basin forests therefore remains a considerable challenge for humanity. Population growth, the extension of agriculture, energy development, mining and oil extraction, and the associated infrastructure to support this expansion are all placing increased pressures on ecosystems. Fragile governance and the absence of adequate institutions, policies, incentives, and land- use planning undermine the development of effective responses by Government and the private sector. More than 40% of the rainforest remaining on Earth Equally important, the Amazon plays a critical regional is found in the Amazon and it is home to at least 10% and global role in climate regulation. Amazon forests of the world’s known species. The Amazon River help regulate temperature and humidity, and are linked accounts for roughly 16% of the world’s total river to regional climate patterns through hydrological discharge into the oceans. The Amazon River flows cycles that depend on the forests. The Amazon for more than 6,600 km and, with its hundreds of contains 90-140 billion metric tons of carbon, the tributaries and streams, contains the largest number of release of even a portion of which could accelerate freshwater fish species in the world.
    [Show full text]
  • Russia's Boreal Forests
    Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard.
    [Show full text]
  • Venezuela Location Geography Food
    Venezuela Location Venezuela, officially the Republic of Venezuela, is a republic (1995 est. pop. 21,005,000), 352,143 sq mi. (912,050 sq. km), in the northern part of South America. With the Caribbean Sea in the north, Venezuela has a coastline of 1,750 long. It is bordered on the south by Brazil, on the west and southwest by Colombia, and on the east by Guyana. Dependencies include Margarita Island, Tortuga Island, and many smaller island groups in the Caribbean. Caracas is the capital and also the largest city in Venezuela. Geography Venezuela, a third larger than Texas, occupies most of the northern coast of South America on the Caribbean Sea. Mountain systems break Venezuela into four distinct areas: (1) the Maracaibo lowlands; (2) the mountainous region in the north and northwest; (3) the Orinoco basin, with the llanos (vast grass-covered plains) on its northern border and great forest areas in the south and southeast, and (4) the Guiana Highlands, south of the Orinoco, accounting for nearly half the national territory. Food The food in Venezuela is generally easy and flavorful. Caracas, the capital of Venezuela, claims to have a greater variety of restaurants than any other South American city, and it would certainly be a pleasure to try and prove it, even if you failed. Venezuelan cooking has European, indigenous, and African roots – a heterodox cuisine formed over the centuries by immigrants. Some of the native dishes include: Page 1 of 7 - Pabellon - stewed and shredded meat accompanied by rice, black beans, and baban -Hallaca - a traditional Christmas dish.
    [Show full text]
  • Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion
    REVIEWS IN FISHERIES SCIENCE 2018, VOL. 0, NO. 0, 1–21 https://doi.org/10.1080/23308249.2018.1463511 Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion Carolina R. C. Doria a,b, Fabrice Duponchelleb,c, Maria Alice L. Limaa, Aurea Garciab,d, Fernando M. Carvajal-Vallejosf, Claudia Coca Mendez e, Michael Fabiano Catarinog, Carlos Edwar de Carvalho Freitasc,g, Blanca Vegae, Guido Miranda-Chumaceroh, and Paul A. Van Dammee,i aLaboratory of Ichthyology and Fisheries – Department of Biology, Federal University of Rond^onia, Porto Velho, Brazil; bLaboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI – EDIA), Iquitos (Peru), Santa Cruz (Bolivia); cInstitut de Recherche pour le Developpement (IRD), UMR BOREA (IRD-207, MNHN, CNRS-7208, Sorbonne Universite, Universite Caen Normandie, Universite des Antilles), Montpellier, France; dIIAP, AQUAREC, Iquitos, Peru; eFAUNAGUA, Institute for Applied Research on Aquatic Resources, Sacaba- Cochabamba, Plurinational State of Bolivia; fAlcide d’Orbigny Natural History Museum, ECOSINTEGRALES SRL (Ecological Studies for Integral Development and Nature Conservation), Cochabamba, Plurinational State of Bolivia; gDepartment of Fisheries Science, Federal University of Amazonas, Manaus, Brazil; hWildlife Conservation Society, Greater Madidi Tambopata Landscape Conservation Program, La Paz, Bolivia; iUnit of Limnology and Aquatic Resources (ULTRA), University of San Simon, Cochabamba, Bolivia
    [Show full text]
  • FRESH-WATER SHRIMPS (CRUSTACEA, DECAPODA, NATANTIA) of the ORINOCO BASIN and the VENEZUELAN GUAYANA Gilberto Rodriguez the Guaya
    JOURNAL OF CRUSTACEAN BIOLOGY, 2(3): 378-391, 1982 FRESH-WATER SHRIMPS (CRUSTACEA, DECAPODA, NATANTIA) OF THE ORINOCO BASIN AND THE VENEZUELAN GUAYANA Gilberto Rodriguez ABSTRACT Shrimps of the families Sergestidae and Palaemonidae collected in the Orinoco basin, the upper Cuyuni River, and the upper and lower Rio Negro, are dealt with in this paper. New records and comments are given for Acetes paraguayensis, Macrobrachium amazonicum, M. brasiliense, M. jelskii, M. nattered, M. surinamicum, and Palaemonetes carteri. Two new palaemonids are described: Macrobrachium cortezi, a form related to M. nattereri, from several localities in the Orinoco River and upper Rio Negro, and M. aracamuni, from an altitude of 680 m in the Cerro Aracamuni in the drainage area of the upper Rio Negro. Another previously undescribed species of Macrobrachium is recorded but not named due to the lack of mature males. The Guayana highland is an ancient land mass extending from the Amazon River to the Atlantic coast of South America and includes the Guianas and parts of Venezuela and Brazil. The Venezuelan Guayana comprises 41,300 km2 of territory, mostly above 400 m that separate the Orinoco from the Amazon basin and forms a formidable barrier to the dispersion of the fresh-water fauna of the lowlands. The hydrology of the zone is defined by the Orinoco River that bounds the area to the west and north and its tributaries that generally flow north or northwesterly. A smaller portion to the east is drained by the Cuyuni River. The Orinoco and the Amazon basins are connected through the Brazo Casiquiare, while the inundated savannah of Rupununi allows intermittent connections be­ tween the Branco and the Esequibo Rivers (Lowe-McConnell, 1964).
    [Show full text]
  • Atlantic South America Section 1 MAIN IDEAS 1
    Name _____________________________ Class __________________ Date ___________________ Atlantic South America Section 1 MAIN IDEAS 1. Physical features of Atlantic South America include large rivers, plateaus, and plains. 2. Climate and vegetation in the region range from cool, dry plains to warm, humid forests. 3. The rain forest is a major source of natural resources. Key Terms and Places Amazon River 4,000-mile-long river that flows eastward across northern Brazil Río de la Plata an estuary that connects the Paraná River and the Atlantic Ocean estuary a partially enclosed body of water where freshwater mixes with salty seawater Pampas wide, grassy plains in central Argentina deforestation the clearing of trees soil exhaustion soil that has become infertile because it has lost nutrients needed by plants Section Summary PHYSICAL FEATURES The region of Atlantic South America includes four What four countries make countries: Brazil, Argentina, Uruguay, and up Atlantic South America? Paraguay. A major river system in the region is the _______________________ Amazon. The Amazon River extends from the _______________________ Andes Mountains in Peru to the Atlantic Ocean. The _______________________ Amazon carries more water than any other river in _______________________ the world. The Paraná River, which drains much of the central part of South America, flows into an estuary called the Río de la Plata and the Atlantic Ocean. The region’s landforms mainly consist of plains and plateaus. The Amazon Basin in northern Brazil What is the Amazon Basin? is a huge, flat floodplain. Farther south are the _______________________ Brazilian Highlands and an area of high plains _______________________ called the Mato Grosso Plateau.
    [Show full text]
  • Land Use Planning in the Amazon Basin: Challenges from Resilience Thinking
    Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance. Ruiz Agudelo, C. A., N. Mazzeo, I. Díaz, M. P. Barral, G. Piñeiro, I. Gadino, I. Roche, and R. Acuña. 2020. Land use planning in the Amazon basin: challenges from resilience thinking. Ecology and Society 25(1):8. https://doi.org/10.5751/ES-11352-250108 Insight, part of a Special Feature on Seeking sustainable pathways for land use in Latin America Land use planning in the Amazon basin: challenges from resilience thinking Cesar A. Ruiz Agudelo 1, Nestor Mazzeo 2,3, Ismael Díaz 3, Maria P. Barral 4,5, Gervasio Piñeiro 6, Isabel Gadino 3, Ingid Roche 3 and Rocio Juliana Acuña-Posada 7 ABSTRACT. Amazonia is under threat. Biodiversity and redundancy loss in the Amazon biome severely limits the long-term provision of key ecosystem services in diverse spatial scales (local, regional, and global). Resilience thinking attempts to understand the mechanisms that ensure a system’s capacity to recover in the face of external pressures, trauma, or disturbances, as well as changes in its internal dynamics. Resilience thinking also promotes relevant transformations of system configurations considered adverse or nonsustainable, and therefore proposes the simultaneous analysis of the adaptive capacity and the transformation of a system. In this context, seven principles have been proposed, which are considered crucial for social-ecological systems to become resilient. These seven principles of resilience thinking are analyzed in terms of the land use planning and land management of the Amazonian biome. To comprehend its main conflicts, challenges, and opportunities, we reveal the key aspects of the historical process of Latin America’s land management and the Amazon basin’s past and current land use changes.
    [Show full text]
  • Tribes of Eastern Bolivia and the Madeira Headwaters
    SMITHSONIAN INSTITUTION BUREAU OF AMERICAN ETHNOLOGY BULLETIN 143 HANDBOOK OF SOUTH AMERICAN INDIANS Julian H. Steward, Editor Volume 3 THE TROPICAL FOREST TRIBES Prepared in Cooperation With the United States Department of State as a Project of the Interdepartmental Committee on Scientific and Cultural Cooperation Extraído do volume 3 (1948) Handbook of South American Indians. Disponível para download em http://www.etnolinguistica.org/hsai UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1948 For aale by the Superintendent of Documents, U. S. Goyernment Frintinc Office. Washington 25, D. C. TRIBES OF EASTERN BOLIVIA AND THE MADEIRA HEADWATERS By Alfred Metraux THE CHIQUITOANS AND OTHER TRIBES OF THE PROVINCE OF CHIQUITOS TRIBAL DIVISIONS AND LANGUAGES It is extremely difficult to obtain a clear picture of the linguistic affili- ations or even of the exact locations of the tribes of the region known as the Province of Chiquitos, bordered on the south by the Chaco desert, on the east by the Paraguay River and by the marshes of its upper course, on the west by the Rio Grande (Guapay River), and on the north by a line more or less corresponding to lat. 15° W. (map 1, No. 2 ; map 4). The chronicles of the Conquest, the official documents and reports of local authorities, and later the letters and accounts of the Jesuits teem with names of tribes and subtribes, but seldom mention their linguistic affiliation and even their location. From the beginning of the Conquest, the Indians of the area just defined have been called Chiquito, "the small ones," irrespective of their linguistic family or culture.
    [Show full text]
  • Inventory Hints at the Future of African Forests
    News & views types. This includes climate-driven types of Ecology forest such as the Atlantic coastal evergreen forest in Gabon, which harbours tree spe- cies that prefer cool, dark areas for the dry season. Another grouping, semi-deciduous Inventory hints at the forest, is found along the northern margin of the Central African region studied, and is future of African forests characterized by species that can tolerate higher rates of water loss to the atmosphere Marion Pfeifer & Deo D. Shirima (evapotranspiration). Such spatial variability in the species com- An analysis of six million trees reveals spatial patterns in the position of Central African rainforests has vulnerability of Central African rainforests to climate change many implications. For example, it will affect and human activities. The maps generated could be used to forest vulnerability to climate change, how warming might interact with human pressures guide targeted actions across national boundaries. See p.90 to change biodiversity, and how it might affect the potential of these forests to mitigate the rise in atmospheric carbon. Global warming is Preserving the biodiversity of rainforests, and used approaches such as ecological niche projected to result in a drier, hotter environ- limiting the effects of climate change on them, models, which are mechanistic or correla- ment in Central Africa, and previous research are global challenges that are recognized in tive models that relate field observations of has suggested potentially dangerous impli- international policy agreements and commit- species with environmental variables to cations for the fate of the rainforests there8. ments1. The Central African rainforests are the predict habitat suitability.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2.
    [Show full text]