УДК 552.14:004.942 REGIONAL STRUCTURAL-LITHOLOGICAL1MODELING OF SEDIMENTARY COVER D.P. Khrushchev Institute of Geological Sciences of NAS of , Kiev, Ukraine, E-mail: [email protected] Doctor of geological-mineralogical sciences, professor, senior research worker. The idea of the project is the construction of computer (digital) structural-lithological models (DSLM) of sedimentary cover for state territories on regional principle proceeding from the defi- nition of geological as a basic geostructural unit of Earth crust. Digital structural-lithological model – it is three-demensional computer representation of the geological objects, comprising it’s structural and qualitative characteristics. Methodological principles, methods, available de- velopments and modeling patterns are reflected to prove the feasibility of the project realization. Practical goal of modeling is the creation of integral geoinformatic foundation for multilateral cog- nitive image of an object and for information provision of all directories and kinds of human geo- logical activity (R&D) on multilateral use and protection (including geological hazards) of geological environment. The result achieved is obtaining of single united system of regional DSLM on state territorial level. The project proposed represents a part of conceptual compound project, the object of which has to comprise both sedimentary cover and magmatic, metamorphic for- mations. The achieved result of such a project is the developing of the integral digital structural- lithological-petrological model of Earth crust as a whole. Key words: sedimentary formations, sedimentary cover, computer modeling, geoinformatic sy- stem, geological environment use, geological environment protection.

РЕГІОНАЛЬНЕ СТРУКТУРНО-ЛІТОЛОГІЧНЕ МОДЕЛЮВАННЯ ОСАДОВОЇ ОБОЛОНКИ Д.П. Хрущов Інститут геологічних наук НАН України, Київ, Україна, E-mail: [email protected] Доктор геолого-мінералогічних наук, професор, старший науковий співробітник. Ідея запропонованого проекту полягає в розробці комп’ютерних (цифрових) структурно- літологічних моделей осадової оболонки державних територій на регіональному принципі, виходячи із визначення геологічних регіонів як базових геоструктурних одиниць земної кори. Цифрова структурно-літологічна модель – об’ємне комп’ютерне відображення гео- логічного об’єкта, яке охоплює його структурні та якісні характеристики. Представляються методологічні принципи, методи, існуючі напрацювання та приклади моделювання для об- ґрунтування реалізації проекту. Практична задача моделювання – створення суцільної гео- інформаційної основи для представлення всебічного гносеологічного образу об’єкта та інформаційного забезпечення всіх напрямів та видів геологічної діяльності з різнобічного використання та охорони (включаючи геологічні ризики) геологічного середовища. Очіку- ваний результат – отримання цільних регіональних цифрових структурно-літологічних мо- делей осадової оболонки на державно-територіальному рівні. Запропонований проект є частиною концептуальної складової проекту, об’єктом якого повинні бути як осадова обо- лонка, так і магматичні та метаморфічні утворення, тобто очікується розробка цифрової структурно-літолого-петрографічної моделі земної кори в цілому. Ключові слова: осадова оболонка, осадові формації, комп’ютерне моделювання, геоінфор- маційні системи, використання надр, охорона геологічного середовища.

© D.P. Khrushchev, 2015

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 27 РЕГИОНАЛЬНОЕ СТРУКТУРНО-ЛИТОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОСАДОЧНОЙ ОБОЛОЧКИ

Д.П. Хрущев

Институт геологических наук НАН Украины, Киев, Украина, E-mail: [email protected] Доктор геолого-минералогических наук, профессор, старший научный сотрудник.

Идея предлагаемого проекта состоит в разработке компьютерных (цифровых) структурно- литологических моделей осадочной оболочки государственных территорий на региональ- ном принципе, исходя из определения геологических регионов как базовых геоструктурных единиц земной коры. Цифровая структурно-литологическая модель – объемное компью- терное отображение геологического объекта, охватывающее его структурные и качествен- ные характеристики. Представляются методологические принципы, методы, имеющиеся наработки и примеры моделирования для обоснования реалистичности проекта. Практи- ческая задача моделирования – создание цельной геоинформационной основы для все- стороннего гносеологического образа объекта и информационного обеспечения всех направлений и видов геологической деятельности по разностороннему использованию и охране (включая геологические риски) геологической среды. Ожидаемый результат – по- лучение целостных региональных цифровых структурно-литологических моделей осадоч- ной оболочки на государственно-территориальном уровне. Предлагаемый проект является частью концептуального составного проекта, объектом которого должны быть как осадоч- ная оболочка, так и магматические и метаморфические образования, т.е. ожидается раз- работка цифровой структурно-литолого-петрографической модели земной коры в целом. Ключевые слова: осадочная оболочка, осадочные формации, компьютерное моделирова- ние, геоинформационные системы, использование недр, охрана геологической среды.

Introduction in it mineral resources vast majority, including Existing methods of geological activity informa- energy resources and groundwater, as well as tion provision in the form of traditional maps of its functional role in terms of underground and various visual forms and types, as well as various surface civil engineering, as well as all the main models (including computer ones, claiming 3D areas of social life. reflection) do not satisfy the requirements of The purpose of this publication – presenta- modern technological progress in the field of tion of methodological principles, techniques, technical activity. To overcome this discrepancy existing developments and examples of mod- it is necessary to introduce new principles for the eling to support a regional digital structural- structure and matter composition of the Earth lithological modeling of sedimentary cover, crust sedimentary cover reflection in the form of intended for information supervision of all areas complex multiscale structural-lithological mod- and types of human geological activity* associ- els that can be converted into target formats and ated with use and protection of the geological provide the basis for multipurpose information environment: provision of human geological activity. — With this objective, we have set the The object of the work is a sedimentary following tasks: shell of the biosphere, structured in the frames — presentation of existing premises, of sedimentary geological of Ukraine. development, global trends and analogies; Selecting an object is defined by the fact of the — presentation of the methodological absolute predominance of sedimentary cover framework, methods and opportunities of the on the earth’s surface and in the composition digital structural-lithological modeling; of the Earth crust as a whole, and localization — demonstrations of modeling examples;

* Geological activity is a set of actions of geological environment (medium) management. Geological management is a set of actions of it’s multilateral use and protection, including geoecological hazards (i.e. actions for their mitigation and consequences liquidation).

28 ISSN 0367–4290. Геол. журн. 2015. № 2 (351) — designation of the expected results, 2. Schemes of sedimentary regions forma- strategies and principles of the project imple- tional structure mentation. For all sedimentary regions of Ukraine The planned results of the project realiza- there exist schemes of sedimentary cover for- tion is to obtain a different scale digital struc- mational dismemberment. tural-lithological models of sedimentary cover Below is a list of sedimentary regions with of geological regions and their structural ele- bibliographic attribution of the most famous ments of various ranks, including promising patterns of formational dismemberment. geological objects, in Ukraine. -Donets depression (DDD): A.E. Lu - kin [Лукин, 1997] (28 formations are single 1. The idea, existing developments, don’t ); V.S. Antipov, 1997 and others. global trends and analogues Donets Basin: V.S. Popov (1964), I.A. Mai da- The idea is to transform the development of novich, A.J. Radziwill [Майданович, Радзивил, technology and experience in digital structural 1984] et al. and lithological models (DSLM) development Ukrainian shield (US): M.D. Elyanov [Эль- into regional, zonal and local scales, to develop янов, 1975], A.A. Goyzhevsky [Гойжевський, DSLM for entire volume of sedimentary cover 1975]. of geological regions with sedimentary filling. Volyn-Azov plate: M.I. Pavlyuk [Павлюк, Prerequisites, existing basis and obligatory Богаец, 1978]; L.G. Tkachuk et al. [Ткачук и conditions for project development. We con- др., 1975]; S.S. Kruglov (1988); G.N. Dolenko sider the following items that define the reality et al. [Доленко и др., 1984]. of the problem statement for the conditions of : M.I. Pavlyuk [Павлюк и др., Ukraine (and a majority of developed countries 1973]; S.S. Kruglov et al. [1988]; Geology of of the world community): the USSR [1969]. 1. The presence of a methodological Folded Carpathians: S.S. Kruglov et al. framework, methods set and computer tech- (1988) V.N. Utrobin [Утробин, 1977]; L.T.Boy- nologies for DSLM constructing. chevskaya (1984). 2. The presence of the final patterns of for- Carpathian foredeep: from one (D.V. Gur - mational structure for all sedimentary regions zhiy [Гуржий, 1975]) to 11 formations of Ukraine. (V.N. Utrobin [Утробин, 1977]) are singled out; 3. Sufficient geological study of the terri- D.P. Khrushchev revealed two formation tory of Ukraine sedimentary cover. (1988). 4. Convincing results of examples of tradi- Transcarpatian depression: M.I. Petra sh - tional and digital structural-lithological mode ling. kevich [Petrashkevich, 1971]; I.V. Venglinskiy, Below is a brief explanation of these items. V.A. Goretski [Венглинский, Горецкий, 1979]; 1. Methodology and methods of structural- D.P. Khrushchev (1988). lithological modeling Dobrudzhea depression: M.I. Pavlyuk, Methodology and methods of structural- A.T. Bogaets [Павлюк, Богаец, 1978], E.I. Pata - lithological modeling of sedimentary formations lakha (2002) and others. – author’s elaboration of interdepartmental Basic formational nomenclature and prin- scientific technical team (basic organization – cipal scheme of formational dismemberment IGN NAS). The methodology of structural-litho- of sedimentary cover for geological regions of logical modeling is based on a joining of tradi- Ukraine are listed in the monograph "The geo- tional formation analysis and copyright logical formations of oil and gas provinces of principles of sedimentary bodies structuring Ukraine" edited by G.N. Dolenko [Геологиче- (using a systems approach) and computer ские…, 1984]. technologies [Хрущев и др., 2010, etc.]. 3. Sufficient geological study of sedimen- These papers highlight methodological tech- tary cover in Ukraine niques for digital structural-lithological model- This item needs no comments. ing, which are based on the author's 4. The credibility of the results of traditional development of common approaches for static and digital structural-lithological modeling at modeling of sedimentary formations geologi- all levels of scale - from regional (small and cal objects. medium-sized) to the local (large-scale)

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 29 An example of the results of the traditional derivatives have been obtained: the structural- (two-dimensional) structural-lithological mod- lithological digital maps of salt formations of eling at the regional scale may be structural and DDD, Carpathians foredeep, Dobrudzhea de- lithological model of red-terrigenous Stebnik pression, and a map of the structural basis for formation (subformation), Carpathians fore- Lower Molassa formation in Carpathians fore- deep (Khrushchov, 1988). The results obtained deep, reflecting its blocky structure. An example allowed to solve of following regional problems: of the digital map for Kramatorskaya suite thick- against almost a century debate about the ori- nesses DDD (executed by A.P. Lobasov on our gin of Stebnik suite finally was realized its iden- order) is demonstrated (Fig. 1). tification as polyfacial marine formational unit Examples of specialized regional and zonal (subformation); the elaboration of cartographic modeling show structural and lithological maps (maps, profiles, block diagrams with reflection – derivatives of the digital models of specific of lithofacies and facies spatial location) that structural horizons in DDD, Carpatian foredeep allowed a prediction of lithofacies and facies and other regions of Ukraine, having been de- favorable for localization of stratiform copper veloped by A.P. Lobasov in the frames of the mineralization. This demand model can easily thematic works (state enterprise "Ukrnaftogaz- be digitized if demanded. nauka"). Examples of digital structural-lithological re- Even more impressive are the results of gional and zonal (i.e. more or less large part of large-scale digital modeling of promising local the region) scales models are already quite a lot. geological objects. As mentioned above, in the Only within the contractual works of IGN NAS, domestic and international practice already commissioned by the State Geological Survey – there exist many examples of large-scale mod- "The Atlas of salt formations of Ukraine" – a se- eling. In this paper we show examples of our ries of models have been developed. As their latest developments.

Fig. 1. Digital map of Kramatorskaya suit, Lower Permian, Dnieper-Donets depression (the derivative of DSLM, regional scale)

30 ISSN 0367–4290. Геол. журн. 2015. № 2 (351) Of course, the models of local geological magnesium salts) have been developed [Хру- objects are of target oriented character. By tar- щев и др., 2008; Khrushchov et al., 2010, etc.]. geting one can single out three principal direc- Two examples of the typical titanium-zirconium tions of the geological environment treatment: ores placer deposits are shown (Fig. 2, 3). the use of natural resources; underground The DSLM construction helped to solve fol- construction; geological environment protec- lowing the tasks aimed at development of de- tion (with subordinate directions) [Хрущев и posits of titanium-zirconium ores: the др., 2012]. determining of the spatial distribution of ore In the area of mineral resources use a num- bodies (in the volume of the deposit massif), as ber of DSLM promising objects amoung tita- well as the technological properties of the ore- nium-zirconium placers and gold bearing bearing massif (the content of the clay mate- formations (alluvial deposits and weathering rial, granulometric parameters, unwanted crust), saline formations (rock and potassium- mineral impurities - for example, siderite etc.);

Fig. 2. Zlobichy deposit of ilmenite. Distribution of ilme- nite contents and automatic calculation of ilmenite reso- urces in the crust of weathe- ring (DSLM derivatives of local scale [Хрущев и др., 2008])

Fig. 3. Krasnokutsk placer deposits of tita- nium-zirconium ores. DSLM derivative of local scale. Distribution of ilmenite concentrations (by O. Kravchenko and A. Lobasov)

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 31 automatic calculation of reserves of ore miner- structed, they can be easily converted into dig- als (ilmenite, zircon, ilmenite conditional etc.) ital form by a special author's technique [Ча- on the defined technological gradations; devel- банович, Хрущев, 2008 et al.]. oping of methods for forecasting and estima- An example of DSLM derivative (the map tion of deposits of the specific geological and profile) for Izmail area with designated site industrial type in neighboring territories. favorable for underground storage facility loca- In the direction of underground construc- tion, is shown (Fig. 4). tion (subdirection – construction of under- The modeling provides solution for the fol- ground storage facilities in rock salt) a number lowing tasks: selection and evaluation of un- of DSLM have been developed for salt massifs derground storages sites; selection of salt of different structural occurrence forms (bed- massif volumes, favorable for storage caverns ded, diapiric, folded) in several salt bearing re- construction; providing a basis for calculating gions of Ukraine. Traditional two-dimensional the long-term caverns sustainability and calcu- models for diapir structures have been con- lation of regulations for caverns construction.

Fig. 4. The derivative of DSLM for Izmail area with salt massif favorable for underground construction 1 - Neogene system, loam, clay; 2 - Jurassic system Chadyr-Lunga suite, variegated terrigenous formation; 3 - Jurassic system, lower Kimmeridgian, clay, limestone, rock salt; 4 - the area favorable for underground construction; 5 - halite lit- hofacies complex; 6 - isopachs lines of salt massif. DSLM is developed by A.P. Lobasov on our order in the frames of the contract of the State Geological Service of Ukraine

32 ISSN 0367–4290. Геол. журн. 2015. № 2 (351) In the direction of the protection of the Formation is a historical-genetic associa- geological environment DSLM has been tion of rocks having been naturally formed in a developed to solve complicated ecological- particular geotectonic structure at a particular mining-geological problems in areas de- stage of its geodynamic development. graded by salt industry mining activities. The The subject of regional modeling are struc- visualizations of DSLM for Solotvyno salt dome tural and qualitative characteristics of the for- (the area of ecological catastrophe occur- mations (and their subdivisions). rence) have been demonstrated. This catas- The ultimate goal of regional modeling – trophe is expressed by deformations of the the development of DSLM for sedimentary earth's surface, forming of a huge sinkholes cover of geological regions, i.e. their formation and flood of two rock salt mines with under- complexes filling. ground cameras of Allergic hospital [Босев - This goal comprises three hierarchical lev- ська, 2012; Хрущов та ін., 2010]. On the els of tasks, having different functional content: model profile of salt massif lithological types regional, zonal and local (corresponding to of rocks and functional types of rock salt with small, medium and large-scale levels) scale. favorable (blue color gamut) and unfavorable Models at the regional level are mainly of gen- (red color gamut) physical and mechanical eral information character, zonal and local lev- properties are shown (Fig. 5). On the basis of els are target oriented. this map the scheme with indicated sites, fa- Based on these definitions, methodologi- vorable for mining, was elaborated. cal principles for regional TSSLM are formu- Development of DSLM provides a frame- lated. work for constructing complex ecological min- As mentioned above, the methodology of ing-geological model for Solotvino rock salt digital structural-lithological modeling is gener- deposits territory and a prognostic map of geo- ally based on the combining of three traditional hazards in this area. methodological directions: the foundations of Global trends analogies. There exist no classical formation analysis, principles of sed- direct analogues of the proposed direction in imentary bodies structuring using a systematic the world massif of R&D reports and scientific approach (in the author's development) and papers as well as patents. But there exist close computer technologies in the proper target general ideas and similar ideological trends modification. "in the air". We have accepted the general idea Foundations of formation analysis, repre- of the International Geological Correlation senting the base of any direction of sedimen- Programme of UNESCO on Earth geospheres tary formations studies, and the experience of modeling, the idea of the global geology, its application are reflected in the huge number global geochemical mapping. Certain ideolog- of classical and modern publications in the ical analogies in a sence of the total approach area of lithology and allied disciplines. comprise: project of entire areal network System approach, which is the methodolo - drilling in Germany (Shneiderhen, 1933); the gical basis of our designated area of sedimen- project of profile drilling in Kryvbas area (by tary formations units modeling, is reflected in Acad. N.P. Semenenko); the idea of complex studies Y.N. Karagodin, A.D. Armand, A.E. Lukin, geological surveys; finally, examples of forma- V.A. Sadowski, A. Demetrius, Y.A. Kosygin, tional geological maps (1983). V.A. Solovyov and others. The structural aspect of formation analysis, which is the basic com- 2. Methodology, methods, ponent of our development, is presented procedural scheme in the writings of D.V. Nalivkin, N.S. Shatsky, 2.1. Methodological principles N.P. Kheraskov, L.B. Rukhin, A.E. Lukin, The object of regional modeling is a sedimen- Y.N. Karagodin et al. tary cover of geological regions with sedimen- The principles of mathematical and com- tary formations filling. puter modeling of formational units geological The basic object unit of modeling - a geo- structure and composition are based on the me - logical formation as a major taxonomic ele- thod of variations calculus (V.I. Aronov, A.I. Vis- ment of regional tectonic-formational (by A.E. telius, A.M. Volkov, F.A. Greybill, J.K. Griffiths, Lukin, 1997) complexes. W. Krambeyn et al.) and spatially static analysis.

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 33 Fig. 5. A. DSLM visualization for salt body. Slice on the absolute elevation – 50 m. 1:25 000 scale [Босевська, 2012]; B. The scheme of sites, favorable for exploitation (by L. Bosevska)

34 ISSN 0367–4290. Геол. журн. 2015. № 2 (351) By definition of Y.N. Karagodin (1985), the In preparing materials for computer pro- objectives of the structural and systemic analy- cessing primary goal (of research character) is sis of geological systems are to define their the ascertaining of geological object structure. structural organization, matter composition, It is quite difficult to define the structural ele- functioning, development, origin and interac- ments of geological object because method- tion with other systems. According to our ap- ological techniques differ for different tectonic proach, the basis for modeling has to include styles of sedimentary formations - bedded the elements of geological objects, that are re- (non dislocated) and weakly dislocated, lated to it’s structural organization and matter folded, fold-block and diapiric. Nevertheless composition, as they can serve as a subject to methodological techniques to solve these formalization. DSLM are static, i.e. they reflect problems of modeling have been worked out the state of the object at the moment (mean- [Хрущев и др., 2010, etc.]. while the genetic, dynamic, and other aspects Numerical models of structural and litho- as are used as auxiliary means for current is- logical parameters are stored in binary form in sues sollution). Static aspect displays primarily the structure of cartographic database soft- structural characteristics of the objects, namely ware package «Geomapping». Input informa- the structural properties represent the basis for tion of the system «Geomapping» is presented the model transformation into digital form. in the format shp GIS ArcView. The resulting computer model, i.e., DSLM, 2.2. The methodology and procedure is a virtual three-dimentional multilateral reflec- of modeling tion of geological object, containing it’s struc- Modeling technique is basically based on the tural and qualitative characteristics. target development of general principles for geological objects sedimentary formations 3. The program of the static modeling using copyright techniques for projected work database compilation, specialized structuring Estimated range of researches has to be based of geological objects and modified technolo- upon interdepartmental cooperation, integra- gies of computer processing. tion of geological and related disciplines, du- The procedure for DSLM constructing in- ration and multi-phase, multiple tasks and, in cludes two stages: preparation of the database general, hi-tech. The program of researches and the proper modeling. planned is elaborated (Khrushchov, 2013). It is The database is a factual basis for model- includes the schedule (milestones, issues and ing. It is essentially mapping and is developed tasks, termes), main organizations – execu- in the form of geographic information systems. tors, results expected. The database structure is traditional in nature The customer and the owner of the mate- (catalogs, maps, lithological sections and rials obtained should serve the State Service of other cartographic materials, cards of litholog- Geology of Ukraine. ical sections). Content of lithological sections card has to be modified depending on the for- Conclusion mation type. For the lithological characteristics The elaboration of above-cited project, con- the nomenclature classifiers have to be com- cerning for the present only sedimentary cover, piled, the content of which is also determined is only a part of planned compound project, by the type of formations. which has to comprise both sedimentary cover The modeling procedure covers the follow- and “crystalline” formation (i.e. magmatic and ing milestone tasks: preparation of input data, metamorphic). The results expected of this en- the development of a structural component of tire project has to be obtaining of DSLM for the model, lithological content of structural el- Earth Crust as a whole on regional principle for ements and computer processing. the territory of Ukraine. Computer processing of the raw data bulk The proposed project is aimed at solving produced by the database covers three suc- the problem of information provision for all cessive steps: equipment and data entry, com- areas of geological activity associated with puter processing by target largely copyright versatile use and protection of geological programs, model operation. environment.

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 35 The content of the project includes two lev- realism of the project tasks and plans of ambi- els of national strategic objectives in the field of tious scale. geological environment management: Expected practical importance of the project the level of state prerogatives in the field results implementing is significant enhancing of of general information provision for geological the efficiency and reducing of content (and vol- activity; ume) of labor-intensive, material, energy and the level of state prerogatives in the field of capital consuming traditional R&D in all areas of information provision for projects and activities the of geological environment management. aimed at solving of specific practical issues The project is long-term (and permanently of the geological environment management (in- acting in accordance with the principle of mod- vestment projects on the use of the geological eling), but the first practical results can be ob- environment, state and mixed projects for the tained in 2-3 years, that will mean the beginning protection for geological environment protec- of self-repayment consequently progressing. tion, etc.). This implies the estimate of state budgetary fi- The first level corresponds to the priority ob- nancing. Expenditure funding will be made only jectives of the project - the structural-lithologi- in the first years of the project. Targeted basic cal modeling of regional scale, having general research with the state budget financing should information orientation. be conducted throughout the continuation of The second level - the development of re- the project, but its self- repayment, expected gional DSLM derivatives: models of the zonal in a few years, will consequently to increase due and local scale, having a target destination. to increased effectiveness of all kinds of geo- The modeling of the first level is designed to logical activity and, accordingly, a manifestation provide the information for all geological R&D of of the direct and indirect effects – economic, regional level - State Geological Survey (primarily environmental, industrial, social. 1: 200 000), regional theme target studies, etc. The project is of a hi-tech character, which Modeling of the second level, as the target should be taken into account in its technical is aimed at information providing of all target assessment. areas of geological activity (target prognostic Particular attention should be given for the studies, search, exploration, exploitation of de- international publicity of the project. Demon- posit, R&D on the use of geological medium for strable progress of information technologies underground construction, the same – meas- suggests the inevitability of regional geological ures for the protection of the geological envi- modeling trends and ideas promoting, sooner ronment). or later, in one form or another in the world geo- Implementing of regional digital structural- sciences institutions. Manifestation of the lithological modeling as a modern high-technol- Ukrainian initiative of this project may be a pri- ogy actually is an innovative advance in the field ority with the appropriate prestigious effect. of information supervision of geological activity. Therefore, it seems appropriate to ensure inter- At the same time, the results, having been par- national cooperation with the initial stages of its tially demonstrated in this publication, justify the implementation.

References 1. Босевська Л.П. Структурно-літологічна 2. Венглинский И.В., Горецкий В.А. Страто- характеристика соляних діапірів Закарпаття типы миоценовых отложений Волыно-Подоль- (у зв’язку з проблемами створення підземних ской плиты Предкарпатского и Закарпатского сховищ, використання і охорони соляних ресур- прогибов. Киев: Наукова думка, 1979. 174 с. сів): автореф. дис. … канд. геол. наук: спец. Venglinskiy I.V., Goretski V.A., 1979. Strato- 04.00.21 «Літологія». Київ, 2012. 24 с. types of Miocene in Volyn- plate, Carpathian Bosevska L.P., 2012. Structural and lithological and Transcarpathian depresions. Kiev: Naukova characteristic of salt dіapіrіs Transcarpathia (in rela- Dumka, 174 p. (in Russian). tion to problems of underground storages construc- 3. Геологические формации нефтегазонос- tion, salt resources use and protection): Author. dis. ных провинций Украины / Доленко Г.Н., Бойчев- ... Cand. Geol. Sci.: spec. 04.00.21 "Lіtology". Kyiv, ская Л.Т., Галабуда Н.И. и др. Киев: Наукова 24 p. (in Ukrainian). думка, 1984. 232 с.

36 ISSN 0367–4290. Геол. журн. 2015. № 2 (351) Geological formation of oil and gas provinces in Pavlyuk M.I., Kopacz I.P., Perylyak A.I., 1973. Ukraine / Dolenko G.N., Boychevskaya L.T., Gala - Formational analysis and geological structure of buda N.I. et al. Kiev: Naukova Dumka, 1984, 232 p. plain Crimea: I Ukr. litol. Symposium "Sedimentary (in Russian). and sedimentary-volcanic formations of Ukraine 4. Геология СССР / гл. ред. акад. А.В. Сидо- and related minerals": Proc. rep. Kiev, p. 84-86 ренко. Москва: Недра, 1969. Т. 8: Крым. Ч. 1. Гео- (in Russian). логическое описание. 575 с. 11. Петрашкевич М.И. Геологическое строе- Geology of the USSR, 1969. (Editor-in-Chief ние Закарпатского внутреннего прогиба. Стра- Acad. A.V. Sidorenko). Moscow: Nedra, Vol. 8: тиграфия. Донеогеновые образования. В кн.: Crimea. Part 1. Geological Description, 575 p. Геологическое строение и горючие ископаемые (in Russian). Украинских Карпат. Москва: Недра, 1971. С. 219- 5. Гойжевский А.А. Зависимость литологиче- 225. (Тр. УкрНИГРИ; Вып. 25). ских особенностей и границ распространения Petrashkevich M.I., 1971. Geological structure мезо-кайнозойских отложений Украинского of the Transcarpathian internal trough. Stratigraphy. щита от тектонических движений. В кн.: Осадоч- Preneogene. In: Geology and Fuels of Ukrainian ные и осадочно-вулканогенные формации Carpathians. Moscow: Nedra, p. 219-225. (Prec. Украины и связанные с ними полезные ископае- UkrNIGRI; Iss. 25) (in Russian). мые. Киев: Наукова думка, 1975. С. 145-151. 12. Структурная карта по опорным горизон- Goyzhevsky A.A., 1975. The dependence of там осадочного чехла платформенных террито- lithological characteristics and boundaries of the рий СССР / гл. ред. В.В. Семенович; М-во Meso-Cenozoic deposits of the Ukrainian shield from геологии СССР. Москва: ПГО «Центргеология», tectonic movements. In: Sedimentary and sedimen- 1983. tary-volcanic formations of Ukraine and related min- Structure map of reference horizons of the sed- erals. Kiev: Naukova Dumka, p. 145-151 (in Russian). imentary cover for platform territories of the USSR, 6. Гуржий Д.В. Неогеновая молассовая 1983. Ministry of Geology of the USSR (Editor-in- формация Предкарпатского прогиба. Там же. Chief V.V. Semenovich). Moscow: PGO "Tsentrge- С. 138-144. ologiya" (in Russian). Gurzhiy D.V., Neogene molasse formation of 13. Тектоника Украины. Москва: Недра, 1988. Carpathians foredeep. Ibid., p. 138-144 (in Russian). 253 с. (Тр. УкрНИГРИ; Вып. 36). 7. Лукин А.Е. Литогеодинамические факторы Tectonics of the Ukraine, 1988. Moscow: Nedra, нефтегазонакопления в авлакогенных бассей- 253 p. (Prec. UkrNIGRI; Iss. 36) (in Russian). нах. Киев: Наукова думка, 1997. 223 с. Lukin A.E., 1997. Litogeodinamical factors in 14. Ткачук Л.Г., Жовинский Э.Я., Литов- the oil and gas forming in aulacogene basins. Kiev: ченко Е.И. Домезозойские осадочные и оса- Naukova Dumka, 223 p. (in Russian). дочно-вулканогенные формации юго-западной окраины Восточно-Европейской платформы. 8. Майданович И.А., Радзивилл А.Я. Особен- В кн.: Осадочные и осадочно-вулканогенные ности тектоники угольных бассейнов Украины. формации Украины и связанные с ними полез- Киев: Наукова думка, 1984. 119 с. ные ископаемые. Киев: Наукова думка, 1975. Maidanovich I.A., Radziwill A.Y., 1984. Tecton- С. 3-5. ics of features coal basins of Ukraine. Kiev: Naukova Tkachuk L.G., Zhovinsky E.Y., Litovchenko E.I., Dumka, 119 p. (in Russian). 1975. Pre-Mesozoic sedimentary and sedimentary- 9. Павлюк М.И., Богаец А.Т. Тектоника и фор- volcanic formations of south-western margin of the мации области сочленения Восточно-Европей- East European Platform. In: Sedimentary and sedi- ской платформы и Скифской плиты. Киев: mentary-volcanic formations of Ukraine and related Наукова думка, 1978. 146 c. minerals. Kiev: Naukova Dumka, p. 3-5 (in Russian). Pavlyuk M.I., Bogaets A.T., 1978. Tectonics and 15. Утробин В.Н. Глубинные структуры Пред- formations of the junction area of the East European карпатья, Карпат и Закарпатья. В кн.: Обоснова- platform and the Scythian plate. Kiev: Naukova ние направлений поисков нефти и газа в Dumka, 146 p. (in Russian). глубиннозалегающих горизонтах Украинских 10. Павлюк М.И., Копач И.П., Перыляк А.И. Карпат. Киев: Наукова думка, 1977. С. 14-63. Формационный анализ и геологическая струк- Utrobin V.N., 1977. Deep structures of Carpa- тура Равнинного Крыма: І Укр. литол. совещ. thian for deep and Transcarpathia. In: Justification «Осадочные и осадочно-вулканогенные форма- of directions for oil and gas exploration in deep hori- ции Украины и связанные с ними полезные ис- zons of Ukrainian Carpathians. Kiev: Naukova копаемые»: Тез. докл. Киев, 1973. С. 84-86. Dumka, p. 14-63 (in Russian).

ISSN 0367–4290. Геол. журн. 2015. № 2 (351) 37 16. Хрущов Д.П., Босевська Л.П., Костів І.Ю. 20. Чабанович Л.Б., Хрущев Д.П. Научно-тех- У чому ж сіль проблеми? Екологічна катастрофа нические основы сооружения и эксплуатации у селі Солотвине. Надзвичайна ситуація. 2010. подземных хранилищ в каменной соли. Киев: № 12. С. 18-21. Варта, 2008. 304 с. Khrushchev D.P., Bosevska L.P., Kostіv І.Yu., Chabanovich L.B., Khrushchev D.P., 2008. Sci- 2010. What is the salt of the problem? Ekologіcal entific and technical basis for the construction and disaster in Solotvino. Nadzvychaina sytuatsia, № 12, operation of underground storage facilities in rock p. 18-21 (in Russian). salt. Kiev: Varta, 304 p. (in Russian). 17. Хрущев Д.П., Ковальчук М.С., Реме - 21. Эльянов М.Д. Мощность и объем осадоч- зова Е.А. Компьютерное отображение струк- ных отложений Украинского щита. В кн.: Осадоч- туры, состава и состояния осадочных формаций: ные и осадочно-вулканогенные формации IV Міжнар. наук. конф. «Екологічна безпека: про- Украины и связанные с ними полезные ископае- блеми і шляхи вирішення»: Зб. наук. ст.: У 2 т. мые. Киев: Наукова думка, 1975. С. 75-82. Харків: Райдер, 2008. Т. 1. С. 139-144. Elyanov M.D., 1975. The sickness and volume Khrushchev D.P., Kovalchuk M.S., Remezova of Ukrainian Shield sediments. In: Sedimentary and E.A., 2008. Computer mapping of the structure, sedimentary-volcanic formations of Ukraine and re- composition and state of sedimentary formations: lated minerals. Kiev: Naukova Dumka, p. 75-82 (in IV International Scientific Conf. "Ekologіcal safety: Russian). the problems Roads Ahead": Collected papers: In 2 22. Khruschov D.P., Lobasov O.P., Kovalchuk vol. Kharkiv: Ryder, vol. 1, p. 139-144 (in Russian). M.S. Digital structural-lithological models of sedi- 18. Хрущев Д.П., Лобасов А.П., Гейченко М.В., mentary formations: a tool of informational-analyti- Ремезова Е.А., Босевская Л.П., Кирпач Ю.В., cal supervision for exploitation and protection of Степанюк А.В. Структурно-литологические мо- mineral resources and geological environment: Ab- дели перспективных осадочных формаций. stracts of International Conference "GeoDarmstadt Мінер. ресурси України. 2010. № 4. С. 39-44. 2010 - Geosciences Secure the Future". Darmstadt, Germany, 2010. Vol. 68. P. 306-307. Khrushchev D.P., Lobasov A.P., Geychenko Khruschov D.P., Lobasov O.P., Kovalchuk M.S., M.V., Remezova E.A., Bosevskaya L.P., Kyrpach 2010. Digital structural-lithological models of sedi- Yu.V., Stepaniuk A.V., 2010. Structural-lithological mentary formations: a tool of informational-analyti- models of promising sedimentary formations. Mіne - cal supervision for exploitation and protection of ralny resursy Ukrainy, № 4, p. 39-44 (in Russian). mineral resources and geological environment: 19. Хрущев Д.П., Лобасов А.П., Ковальчук М.С. Abstracts of International Conference "GeoDarm- Целевые экспертные системы геологической на- stadt 2010 - Geosciences Secure the Future". правленности. Геол. журн. 2012. № 2 (339). С. 87-99. Darmstadt, Germany, vol. 68, p. 306-307 (in English). Khrushchev D.P., Lobasov A.P., Kovalchuk M.S., 2012. Targeted expert systems of geological orientation. Geologichnyy zhurnal, № 2 (339), p. 87- Received 99 (in Russian). March 11, 2015

38 ISSN 0367–4290. Геол. журн. 2015. № 2 (351)