Seletracetam (UCB 44212)

Total Page:16

File Type:pdf, Size:1020Kb

Seletracetam (UCB 44212) Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics Seletracetam (UCB 44212) Barbara Bennett,* Alain Matagne,† Philippe Michel,‡ Michèle Leonard,§ Miranda Cornet,§ Marie-Anne Meeus,¶ and Nathalie Toublanc¶ *CNS Clinical Development, UCB Atlanta, Smyrna, Georgia 30080; †Preclinical CNS, ‡Chemistry, §Non-clinical Development, and ¶Clinical Pharmacology, UCB Braine-l’Alleud, Belgium Summary: Better pharmacotherapies for epilepsy are needed demonstrates low plasma protein binding (Ͻ10%), which sug- for patients who are refractory to or have tolerability difficulties gests a low potential for drug–drug interactions. Initial studies with current treatments. Seletracetam, a new drug in epilepsy in humans demonstrated first-order monocompartmental kinet- development, is a pyrrolidone derivative structurally related to ics with a half-life of 8 h and an oral bioavailability of Ͼ90%. levetiracetam (trade name Keppra). It was discovered because Studies in healthy volunteers showed that the treatment emer- of its high binding affinity to the synaptic vesicle 2A (SV2A) gent adverse events were of mild to moderate severity, were protein, which is now known to be the binding site for this mostly of CNS origin and were resolved within 24 h. Alto- family of compounds. Seletracetam shows very potent seizure gether, these results suggest that seletracetam represents a suppression in models of acquired or genetic epilepsy, as well promising new antiepileptic drug candidate, one that demon- as high CNS tolerability in various animal models. Pharmaco- strates a potent, broad spectrum of seizure protection and a high kinetic studies in animals suggest that seletracetam is rapidly CNS tolerability in animal models, with initial clinical findings and highly absorbed, with linear and time-independent phar- suggestive of straightforward pharmacokinetics and good tol- macokinetics. Seletracetam appears neither to inhibit nor to erability. Key Words: Seletracetam, epilepsy, SV2A, pharma- induce the major human drug metabolizing enzymes, and it cokinetics, kindled, anticonvulsant INTRODUCTION Pharmacotherapy is the primary treatment for epileptic patients; however, despite the introduction of second- Epilepsy and the need for new antiepileptic drugs generation anticonvulsants, refractory epilepsy is still a Epilepsy is a chronic, often lifelong, neurological dis- significant clinical problem. Outcome studies examining order that requires continuous pharmacotherapy to main- tain seizure control. The age-adjusted incidence of epi- either traditional or newer anticonvulsants show that lepsy in developed countries is approximately 50 per fewer than 50% of patients with epilepsy become sei- 1 zure-free after beginning an initial antiepileptic medica- 100,000 persons per year, with a lifetime chance of 4 getting epilepsy of 3–5%.2 Epilepsy has a tremendous tion. Approximately 30% of patients (adults and chil- impact not only on the individuals afflicted with this dren) with partial onset seizures cannot be adequately disease, but also on their families, as well as on society controlled with existing antiepileptic drugs (AEDs), be- 5 in general, because of the resultant personal and financial cause of either lack of efficacy or toxicity. Most refrac- burdens. Epilepsy is characterized by recurrent involun- tory patients have partial epilepsy; the generalized epi- 6 tary seizures, caused by disturbances in the normal elec- lepsies tend to respond better to current AED therapy. trical activity of the brain, that affect awareness, move- Furthermore, these refractory patients are at risk for cog- ment, or sensations.3 These seizures may occur in just nitive and psychiatric disorders, suicide, accidental inju- one area of the brain (partial seizures) or may affect ries, and sudden death. There continues to be a need for neuronal networks throughout the brain (generalized sei- new antiepileptic drugs, both to improve upon the estab- zures). lished drugs and also to treat those refractory to current pharmacotherapies. Address correspondence and reprint requests to: Barbara A. Bennett, Current drugs for the treatment of epilepsy Ph.D., UCB, Inc., Clinical Development, Neurology/Psychiatry Ther- apeutic Area, 1950 Lake Park Drive, Smyrna, GA 30080. E-mail: Classical (or first-generation) anticonvulsants, such as [email protected]. phenobarbital, phenytoin, carbamazepine, and valproate, Vol. 4, 117–122, January 2007 © The American Society for Experimental NeuroTherapeutics, Inc. 117 118 BENNETT ET AL. the other known binding sites within the CNS (e.g., receptors, uptake systems, and ion channel proteins).9 Thus, it appears that SV2A represents a novel molecular target that seems to have an important role in the phar- macological activity of seletracetam. The effect of seletracetam on several voltage-depen- dent ionic and receptor-gated currents has been charac- terized. Seletracetam, like levetiracetam, does not appear to have any effect on voltage-dependent Naϩ channels.12 Likewise, seletracetam (1–100 ␮mol/L) had no effect on FIG. 1. Structural formula for seletracetam. voltage-gated Kϩ currents (both the A-type and the de- layed rectifier) recorded in mouse hippocampal neurons are used as standard therapy in partial epilepsy. Clinical in culture.13 Seletracetam, like levetiracetam, appears to problems associated with these drugs include nonlinear inhibit high-voltage-activated (HVA) Ca2ϩ currents, but pharmacokinetics, narrow therapeutic index, significant does not appear to modulate the low-voltage-activated drug interactions, and adverse central nervous system (T-type) Ca2ϩ currents.14 Levetiracetam has been shown effects.7 The entrance to the market of vigabatrin, fel- to inhibit the N-type channel15 and possibly the P-type bamate, lamotrigine, oxcarbazepine, topiramate, zoni- channel to a much smaller extent.16 samide, gabapentin, levetiracetam, tiagabine, and pre- Seletracetam was found to be devoid of any direct gabalin increased the therapeutic options and improved effect on GABA- and strychnine-sensitive glycine-elic- treatment. However, most of these new drugs have a ited currents, similarly to levetiracetam.17 In contradis- limited tolerability profile. Serious toxicity problems tinction, seletracetam revealed a selectivity toward the have been identified, including fatal idiosyncratic hepatic glycine receptors (levetiracetam affects both). At phar- failure and aplastic anemia with felbamate, fatal allergic macologically relevant concentrations, seletracetam did rashes with lamotrigine, and serious visual field defects not modify NMDA-, kainate-, or AMPA-induced cur- with vigabatrin. New AEDs with improved risk–benefit rents. These data suggest that the pharmacological prop- ratios are therefore needed for refractory epilepsy pa- erties of seletracetam may derive principally from the tients,8 both as adjunctive treatment and in monotherapy. potent and selective interaction of seletracetam with the SV2A protein, as well as from the moderate effects of the SELETRACETAM drug on calcium channels and strychnine-sensitive gly- Preclinical beginnings cine receptors. The interface between the CNS binding Seletracetam is a small-molecule AED (FIG. 1), non- site, SV2A, and these cellular effects is not known; cor- ionized in water, and with solubility properties not ex- respondingly, whether any alleged interaction would ex- pected to lead to any solubility- or dissolution-related ist, direct or indirect, is also unknown. absorption problems after oral administration. Activity in animal models of seizures and epilepsy Pharmacological background Seletracetam, like levetiracetam, shows no anticonvul- Seletracetam is a structural analog of the antiepileptic sant activity in the two classical screening tests for drug levetiracetam, and its pharmacological activity ap- AEDs: the maximal electroshock test (MES; tonic con- pears to relate principally to an interaction with a novel vulsions in the hind limbs) and the pentylenetetrazol test binding site, synaptic vesicle protein 2A (SV2A).9,10 (PTZ; generalized clonic convulsions), both acute sei- Seletracetam binds selectively, stereospecifically, and zure models.18 In distinct contrast, seletracetam shows with high affinity (10-fold greater affinity than levetirac- potent seizure suppression in models of acquired or ge- etam) to SV2A, which is thought to be involved with netic epilepsy (TABLE 1).18 Seletracetam displayed po- synaptic vesicle exocytosis and neurotransmitter release. tent protection against secondary generalized motor sei- Both classic AEDs, such as carbamazepine, phenytoin, zures in fully corneally kindled mice (ED50 of 0.31 mg/ valproate, phenobarbital, and clonazepam, and new kg) and hippocampally kindled rats (minimal active AEDs, such as gabapentin, tiagabine, vigabatrin, felbam- dose, MAD, of 0.23 mg/kg).18 ate, and zonisamide, are devoid of significant affinity for The genetically sound-susceptible mouse model is SV2A. (S)-stereoisomer analogs of levetiracetam show a an experimental genetic model of epilepsy, mimicking rank order of affinity for [3H]levetiracetam binding that generalized reflex convulsive epilepsy in humans. Sele- correlates with their seizure protection,10,11 suggesting a tracetam provided dose-dependent protection in the ge- functional correlation between binding and anticonvul- netically sound-susceptible mouse against clonic convul- sant activity. Seletracetam did not induce a significant sions induced by an acoustic stimulus with an ED50 of displacement
Recommended publications
  • Nootropics: Boost Body and Brain? Report #2445
    NOOTROPICS: BOOST BODY AND BRAIN? REPORT #2445 BACKGROUND: Nootropics were first discovered in 1960s, and were used to help people with motion sickness and then later were tested for memory enhancement. In 1971, the nootropic drug piracetam was studied to help improve memory. Romanian doctor Corneliu Giurgea was the one to coin the term for this drug: nootropics. His idea after testing piracetam was to use a Greek combination of “nous” meaning mind and “trepein” meaning to bend. Therefore the meaning is literally to bend the mind. Since then, studies on this drug have been done all around the world. One test in particular studied neuroprotective benefits with Alzheimer’s patients. More tests were done with analogues of piracetam and were equally upbeat. This is a small fraction of nootropic drugs studied over the past decade. Studies were done first on animals and rats and later after results from toxicity reports, on willing humans. (Source: https://www.purenootropics.net/general-nootropics/history-of-nootropics/) A COGNITIVE EDGE: Many decades of tests have convinced some people of how important the drugs can be for people who want an enhancement in life. These neuro-enhancing drugs are being used more and more in the modern world. Nootropics come in many forms and the main one is caffeine. Caffeine reduces physical fatigue by stimulating the body’s metabolism. The molecules can pass through the blood brain barrier to affect the neurotransmitters that play a role in inhibition. These molecule messengers can produce muscle relaxation, stress reduction, and onset of sleep. Caffeine is great for short–term focus and alertness, but piracetam is shown to work for long-term memory.
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • PR2 2009.Vp:Corelventura
    Pharmacological Reports Copyright © 2009 2009, 61, 197216 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences Review Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions Jarogniew J. £uszczki1,2 Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, PL 20-950 Lublin, Poland Correspondence: Jarogniew J. £uszczki, e-mail: [email protected]; [email protected] Abstract: This review briefly summarizes the information on the molecular mechanisms of action, pharmacokinetic profiles and drug interac- tions of novel (third-generation) antiepileptic drugs, including brivaracetam, carabersat, carisbamate, DP-valproic acid, eslicar- bazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, and valrocemide. These novel antiepileptic drugs undergo intensive clinical investigations to assess their efficacy and usefulness in the treatment of patients with refractory epilepsy. Key words: antiepileptic drugs, brivaracetam, carabersat, carisbamate, DP-valproic acid, drug interactions, eslicarbazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pharmacokinetics, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, valrocemide Abbreviations: 4-AP
    [Show full text]
  • Pharmaceutical Composition Comprising Brivaracetam and Lacosamide with Synergistic Anticonvulsant Effect
    (19) TZZ __T (11) EP 2 992 891 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.03.2016 Bulletin 2016/10 A61K 38/04 (2006.01) A61K 31/4015 (2006.01) A61P 25/08 (2006.01) (21) Application number: 15156237.8 (22) Date of filing: 15.06.2007 (84) Designated Contracting States: (71) Applicant: UCB Pharma GmbH AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 40789 Monheim (DE) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (72) Inventor: STOEHR, Thomas 2400 Mol (BE) (30) Priority: 15.06.2006 US 813967 P 12.10.2006 EP 06021470 (74) Representative: Dressen, Frank 12.10.2006 EP 06021469 UCB Pharma GmbH 22.11.2006 EP 06024241 Alfred-Nobel-Strasse 10 40789 Monheim (DE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: Remarks: 07764676.8 / 2 037 965 This application was filed on 24-02-2015 as a divisional application to the application mentioned under INID code 62. (54) PHARMACEUTICALCOMPOSITION COMPRISING BRIVARACETAM AND LACOSAMIDE WITH SYNERGISTIC ANTICONVULSANT EFFECT (57) The present invention is directed to a pharmaceutical composition comprising (a) lacosamide and (b) brivara- cetam for the prevention, alleviation or/and treatment of epileptic seizures. EP 2 992 891 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 992 891 A1 Description [0001] The present application claims the priorities of US 60/813.967 of 15 June 2006, EP 06 021 470.7 of 12 October 2006, EP 06 021 469.9 of 12 October 2006, and EP 06 024 241.9 of 22 November 2006, which are included herein by 5 reference.
    [Show full text]
  • Antiepileptic Potential of Ganaxolone Antiepileptički Potencijal Ganaksolona
    Vojnosanit Pregl 2017; 74(5): 467–475. VOJNOSANITETSKI PREGLED Page 467 UDC: 615.03::616.853-085 GENERAL REVIEW https://doi.org/10.2298/VSP151221157J Antiepileptic potential of ganaxolone Antiepileptički potencijal ganaksolona Slobodan Janković, Snežana Lukić Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia Key words: Ključne reči: ganaxolone; epilepsies, partial; neurotransmitter ganaksolon; epilepsije, parcijalne; neurotransmiteri; agents; child; adult. deca; odrasle osobe. Introduction New anticonvulsants With its estimated prevalence of 0.52% in Europe, The drug resistant epilepsy has been recently defined by 0.68% in the United States of America and up to 1.5% in de- the International League Against Epilepsy as “a failure of veloping countries, epilepsy makes a heavy burden on indi- adequate trials of two tolerated, appropriately chosen and viduals, healthcare systems and societies in general all over used antiepileptic drug schedules (whether as monotherapies the world 1, 2. Despite long history of epilepsy treatment with or in combination) to achieve sustained seizure free- dom” 11.The mechanisms of drug resistance in epilepsy are medication, efficacy and effectiveness of available antiepi- still incompletely understood, and none of the anticonvul- leptic drugs as monotherapy were unequivocally proven in sants with current marketing authorization has demonstrated clinical trials only for partial-onset seizures in children and superior efficacy in the treatment of drug resistant epilepsy 12. adults (including elderly), while generalized-onset tonic- Using new anticonvulsants as add-on therapy lead to free- clonic seizures in children and adults, juvenile myoclonic dom from seizures in only 6% of patients with drug resistant epilepsy and benign epilepsy with centrotemporal spikes are epilepsy 13.
    [Show full text]
  • Transcript of “Hacking Your Ph, LED Lighting, and Smart Drugs with Steve Fowkes Part 2”
    Transcript of “Hacking Your pH, LED Lighting, and Smart Drugs with Steve Fowkes Part 2” Bulletproof Radio podcast #95 © The Bulletproof Executive 2013 Bulletproof Toolbox Podcast #95, Steve Fowkes Warning and Disclaimer The statements in this report have not been evaluated by the FDA (U.S. Food & Drug Administration). Information provided here and products sold on bulletproofexec.com and/or upgradedself.com and/or betterbabybook.com are not intended to diagnose, treat, cure, or prevent any disease. The information provided by these sites and/or by this report is not a substitute for a face-to-face consultation with your physician, and should not be construed as medical advice of any sort. It is a list of resources for further self-research and work with your physician. We certify that at least one statement on the above-mentioned web sites and/or in this report is wrong. By using any of this information, or reading it, you are accepting responsibility for your own health and health decisions and expressly release The Bulletproof Executive and its employees, partners, and vendors from from any and all liability whatsoever, including that arising from negligence. Do not run with scissors. Hot drinks may be hot and burn you. If you do not agree to the above conditions, please do not read further and delete this document. 2 Bulletproof Toolbox Podcast #95, Steve Fowkes Dave: Hey, everyone, Dave Asprey, Bulletproof Executive Radio. You’re listening to a special episode. If you caught the last one, in fact, if you’re haven’t caught the episode before this one, you need to go back and listen to it, because this is part two of my epic interview with Steve Fowkes who doesn’t like it when I call him a bio-hacking badass, even though that's what he is.
    [Show full text]
  • Telemetric EEG and the Rat: a Guide for Neuroscientists
    Editorial Telemetric EEG and the Rat: A Guide For Neuroscientists Jafri Malin AbdullAh1, Mohammad RAfiqul islAm2 1 Malaysian Journal of Medical Sciences, Universiti Sains Malaysia Press, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia 2 Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia Abstract Telemetric EEG in the rat’s brain has been used for experiments which tests the effects of an antiepileptic compound on it’s antiseizures activity. A simple classification correlating epileptiform discharge and Racine’s behavioral activity is discussed. Keywords: electroencephalogram, neuroscience, rat, telemetry Animal models for seizures and epilepsy scale for the assessment of seizure intensities in have played a fundamental role in advancing our other epilepsy or seizure models is justifiable, understanding of basic mechanisms underlying given the well known relation between activated ictogenesis and epileptogenesis and have been brain part and corresponding expressed behavior instrumental in the discovery and preclinical of Sprague Dawley rats (160–350 g) which are development of novel antiepileptic drugs. suitable animals to induce status epilepticus Despite the successful development of various models and to record continuous EEG spikes and new antiepileptic drugs in recent decades, the wave discharges (4–6). search for new therapies with better efficacy and We used a total of 10 male Sprague Dawley tolerability remains an important goal (1). The and 6 Genetic Absence Epilepsy Rats from discovery and development of a new antiepileptic Strasbourg (GAERS) rats (7), four to six months drug relies heavily on the preclinical use of animal of age and weighing 187–325 g.
    [Show full text]
  • The Use and Impact of Cognitive Enhancers Among University Students: a Systematic Review
    brain sciences Systematic Review The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review Safia Sharif 1 , Amira Guirguis 1,2,* , Suzanne Fergus 1,* and Fabrizio Schifano 1 1 Psychopharmacology, Substance Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; [email protected] (S.S.); [email protected] (F.S.) 2 Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, Wales, UK * Correspondence: [email protected] (A.G.); [email protected] (S.F.) Abstract: Introduction: Cognitive enhancers (CEs), also known as “smart drugs”, “study aids” or “nootropics” are a cause of concern. Recent research studies investigated the use of CEs being taken as study aids by university students. This manuscript provides an overview of popular CEs, focusing on a range of drugs/substances (e.g., prescription CEs including amphetamine salt mixtures, methylphenidate, modafinil and piracetam; and non-prescription CEs including caffeine, cobalamin (vitamin B12), guarana, pyridoxine (vitamin B6) and vinpocetine) that have emerged as being misused. The diverted non-prescription use of these molecules and the related potential for dependence and/or addiction is being reported. It has been demonstrated that healthy students (i.e., those without any diagnosed mental disorders) are increasingly using drugs such as methylphenidate, a mixture of dextroamphetamine/amphetamine, and modafinil, for the purpose of increasing their alertness, concentration or memory. Aim: To investigate the level of knowledge, perception and impact of the use of a range of CEs within Higher Education Institutions.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0021786 A1 Schenkel Et Al
    US 2011 0021786A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0021786 A1 Schenkel et al. (43) Pub. Date: Jan. 27, 2011 (54) PHARMACEUTICAL SOLUTIONS, PROCESS (86). PCT No.: PCT/EP09/524.54 OF PREPARATION AND THERAPEUTC USES S371 (c)(1), (2), (4) Date: Oct. 6, 2010 (75) Inventors: Eric Schenkel, Brussels (BE): Claire Poulain, Brussels (BE); (30) Foreign Application Priority Data Bertrand Dodelet, Brussels (BE): Domenico Fanara, Brussels (BE) Mar. 3, 2008 (EP) .................................. O8OO3915.9 Correspondence Address: Publication Classification MCDONNELL BOEHNEN HULBERT & BERG HOFF LLP (51) Int. Cl. 300 S. WACKER DRIVE, 32ND FLOOR C07D 207/27 (2006.01) CHICAGO, IL 60606 (US) (52) U.S. Cl. ........................................................ 548/SSO (73) Assignee: UCB PHARMA, S.A., Brussels (BE) (57) ABSTRACT (21) Appl. No.: 12/920,524 The present invention concerns a stable pharmaceutical solu tion, a process of the preparation thereof and therapeutic uses (22) PCT Filed: Mar. 2, 2009 thereof. US 2011/002 1786 A1 Jan. 27, 2011 PHARMACEUTICAL SOLUTIONS, PROCESS 0006 Seletracetam is effective in the treatment of epi OF PREPARATION AND THERAPEUTC lepsy. USES 0007. Until now, brivaracetam and seletracetam have been formulated in Solid compositions (film coated tablet, gran ules). 0008. However, an oral solution would be particularly desirable for administration in children and also in some adult 0001. The present invention concerns stable liquid formu patients. An injectable Solution could be advantageously used lations of 2-oxo-1-pyrrolodine derivatives, a process of the in case of epilepsy crisis. preparation thereof and therapeutic uses thereof. 0009 Moreover, administration of an oral dosage form is 0002 International patent application having publication the preferred route of administration for many pharmaceuti number WO 01/62726 discloses 2-oxo-1-pyrrolidine deriva cals because it provides for easy, low-cost administration.
    [Show full text]
  • Cognitive Enhancers
    Cognitive enhancers Memory enhancers are often referred to as "smart drugs", "study drugs",[1] "smart nutrients", "cognitive enhancers", "brain enhancers" or in the scientific literature as nootropics.[2] They are drugs that are purported to improve human cognitive abilities.[3][4] The term covers a broad range of substances including drugs, nutrients and herbs with purported cognitive enhancing effects. The word nootropic was coined in 1964 by Dr. Corneliu E. Giurgea, derived from the Greek words noos, or "mind," and tropein meaning "to bend/turn". Typically, nootropics are thought to work by altering the availability of the brain's supply of neurochemicals (neurotransmitters, enzymes, and hormones), by improving the brain's oxygen supply, or by stimulating nerve growth. However the efficacy of nootropic substances in most cases has not been conclusively determined. This is complicated by the difficulty of defining and quantifying cognition and intelligence. Contents 1 Availability 2 Examples 2.1 Stimulants 2.2 Replenishing and increasing neurotransmitters 2.2.1 Cholinergics 2.2.1.1 Piracetam 2.2.1.2 Aniracetam 2.2.1.3 Other cholinergics 2.2.1.4 Acetylcholinesterase inhibitors 2.2.2 Dopaminergics 2.2.3 Serotonergics 2.3 Anti-depression, adaptogenic (antistress), and mood stabilization 2.4 Brain function and improved oxygen supply 2.5 Purported memory enhancement and learning improvement 2.6 Nerve growth stimulation and brain cell protection 2.7 Recreational drugs with purported nootropic effects 2.8 Dietary nootropics 2.9 Other nootropics 2.9.1 Contentious or possibly unsafe nootropics 3 See also 3.1 Brain and neurology 3.2 Thought and thinking (what nootropics are used for) 3.3 Health 4 References 5 External links Availability Currently there are several drugs on the market that improve memory, concentration, planning and reduce impulsive behavior.
    [Show full text]
  • World of Cognitive Enhancers
    ORIGINAL RESEARCH published: 11 September 2020 doi: 10.3389/fpsyt.2020.546796 The Psychonauts’ World of Cognitive Enhancers Flavia Napoletano 1,2, Fabrizio Schifano 2*, John Martin Corkery 2, Amira Guirguis 2,3, Davide Arillotta 2,4, Caroline Zangani 2,5 and Alessandro Vento 6,7,8 1 Department of Mental Health, Homerton University Hospital, East London Foundation Trust, London, United Kingdom, 2 Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom, 3 Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea, United Kingdom, 4 Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy, 5 Department of Health Sciences, University of Milan, Milan, Italy, 6 Department of Mental Health, Addictions’ Observatory (ODDPSS), Rome, Italy, 7 Department of Mental Health, Guglielmo Marconi” University, Rome, Italy, 8 Department of Mental Health, ASL Roma 2, Rome, Italy Background: There is growing availability of novel psychoactive substances (NPS), including cognitive enhancers (CEs) which can be used in the treatment of certain mental health disorders. While treating cognitive deficit symptoms in neuropsychiatric or neurodegenerative disorders using CEs might have significant benefits for patients, the increasing recreational use of these substances by healthy individuals raises many clinical, medico-legal, and ethical issues. Moreover, it has become very challenging for clinicians to Edited by: keep up-to-date with CEs currently available as comprehensive official lists do not exist. Simona Pichini, Methods: Using a web crawler (NPSfinder®), the present study aimed at assessing National Institute of Health (ISS), Italy Reviewed by: psychonaut fora/platforms to better understand the online situation regarding CEs.
    [Show full text]
  • Discovery of E1r: a Novel Positive Allosteric Modulator of Sigma-1 Receptor
    Edijs Vāvers DISCOVERY OF E1R: A NOVEL POSITIVE ALLOSTERIC MODULATOR OF SIGMA-1 RECEPTOR Doctoral Thesis for obtaining the degree of Doctor of Pharmacy Speciality − Pharmaceutical Pharmacology Scientific supervisor: Dr. pharm., Professor Maija Dambrova Riga, 2017 ANNOTATION Sigma-1 receptor (Sig1R) is a new drug target. Notably, the International Union of Basic and Clinical Pharmacology included Sig1R in its list of receptors only in 2013. It is believed that Sig1R ligands are potential novel drug candidates for the treatment of central and peripheral nervous system diseases. The aim of this thesis was to evaluate the pharmacological activity of novel Sig1R ligands and to search for their possible clinical applications. Methylphenylpiracetam (2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide) was synthesised in the Latvian Institute of Organic Synthesis. There are two chiral centres in the molecular structure of methylphenylpiracetam; therefore, it is possible to isolate four individual stereoisomers, which are denoted E1R, T1R, E1S and T1S. The activity of E1R was profiled using commercially available screening assays, which showed that the compound selectively modulates Sig1R activity but does not affect the other investigated neuronal receptors and ion channels. The following detailed in vitro studies, in which more selective Sig1R ligands were used, provided solid evidence that E1R is a positive allosteric modulator of Sig1R. It was found that the enantiomers with the R-configuration at the C-4 chiral centre in the 2-pyrrolidone ring (E1R and T1R) are more effective positive allosteric modulators of Sig1R than their optical antipodes. Since Sig1R agonists demonstrate neuroprotective properties and are effective in the treatment of cognitive disorders of various origins, the activity of E1R was tested in experimental models in vivo.
    [Show full text]