Small Hive Beetle - a Beekeeping AG1080 Pest ISSN 1329-8062 Russell Goodman, Knoxfield and Peter Kaczynski, Ararat

Total Page:16

File Type:pdf, Size:1020Kb

Small Hive Beetle - a Beekeeping AG1080 Pest ISSN 1329-8062 Russell Goodman, Knoxfield and Peter Kaczynski, Ararat Updated: September 2005 Small hive beetle - a beekeeping AG1080 pest ISSN 1329-8062 Russell Goodman, Knoxfield and Peter Kaczynski, Ararat results in a slime. This forms a sticky repellent Introduction substance on the combs and other components in the Small hive beetle (SHB) was detected in apiaries in north- hive. Contaminated honey is unsuitable for sale and west Victoria and the Goulburn Valley during August unacceptable to bees as bee food 2005. • honey bee queens may stop egg laying and the The beetle is a native of Africa where it is mostly a number of adult bees in the hive may quickly fall nuisance and secondary pest of beekeeping. In Africa, • the honey bee colony may abscond when SHB SHB occurs in tropical, sub-tropical and warm temperate infestations are heavy zones, mostly affecting weak honey bee colonies. • combs of honey removed from hives and put aside for In 1998, SHB was found in Florida, USA, where it is extracting at a later time may be ruined considered to be a destructive pest of honey bees. While the beetle is now found in 30 USA States, parts of the • stored combs, beeswax cappings, section comb honey USA most affected by SHB appear to be those that have a and bee collected pollen are prone to infestation. climate similar to the infested areas of Africa. Beetle Newly drawn combs appear to be more easily numbers are highest in the warm and humid coastal areas. damaged than older brood combs that have been toughened by several layers of honey bee pupal skins In October 2002, SHB was detected in New South Wales and Queensland, the first occurrence of this pest in • weak and queenless colonies appear to be most at risk. Australia. At the time of writing, SHB was present in In Florida, reports indicate that even strong colonies hives in a number of districts in NSW but no significant may be at risk when SHB numbers are high. SHB damage had been reported in areas away from the coast. Description and characteristics of life The full effect of SHB on Victorian beekeeping will only cycle stages be known as the beetles spread and their numbers increase. SHB may have up to five generations during the warm Beekeepers will need to change some beekeeping practices months of the year. Breeding usually ceases during cold (as described later) to minimize the effect of SHB. The winter months. SHB populations are likely to be highest in practice of removing combs of honey from hives and areas that have loose sandy or sandy-loam soil (see storing them for extracting at a later time will need to be ‘Pupae’ below) compared to areas with hard clay soils. changed. Eggs Damage caused by SHB • laid in irregular clusters in crevices and cavities in the SHB larvae are capable of causing significant damage to hive and near, or on combs. Eggs may also be found honey bee colonies, stored combs and apiary products. next to, or in cells that contain pollen The following examples of SHB activity and damage are • 1.4 mm long and 0.26 mm wide (about half the size of primarily based on reports from the USA: honey bee eggs). The clusters of eggs are not easily • larvae burrow and tunnel through comb, piercing and seen and it is better to search for larvae or adults when damaging the wax comb and cell caps looking for SHB. If you wear glasses for reading, you will certainly need them to see SHB eggs • larvae eat honey, pollen and live honey bee brood (eggs, larvae and pupae) • most eggs hatch within 2-4 days, but some hatching may occur anytime from 1 to 6 days. • larvae defecate in the honey causing it to ferment, froth and weep from the cells. The fermenting honey Larvae has an odor of decaying oranges. A combination of • 11.1 mm long and 1.6 mm wide when fully grown fermenting honey, SHB secretions and excrement • cream to white © State of Victoria, Department of Primary Industries Page 1 Small hive beetle - a beekeeping pest AG1080 • spines on the upper part of the body and two spines of Plant Industry, Florida Department of Agriculture and protruding from the rear of the larva Consumer Services). • 6 legs only, all at the front of the body • may survive without food for ten days (South Africa report) and may survive for up to 14 days without • eat honey, pollen and bee brood, the latter being an food or water (UK report) essential part of their diet • adults can overwinter in the winter honey bee cluster • most larvae mature within 10-16 days, but this period in hives. may be as long as 24 days. Inspecting hives for adult beetles and SHB larvae • remove the hive lid and check the under side of the lid for beetles • lift the hive mat (if present) and watch for quickly escaping beetles that will run down the face of the Photo 1. SHB larva (not actual size). Photo courtesy of Division combs and try to hide in cells of Plant Industry, Florida Department of Agriculture and • remove the super and place it on an upturned hive lid. Consumer Services. Wait 1-2 minutes and then remove the super and look Pupae for beetles in the lid where they will have moved from the combs to try to hide from the light • mature larvae move from the hive to pupate in the soil up to a depth of 200 mm (usually around 100 mm) • lift the bottom box and look for beetles on the bottom and generally within 900 mm of the hive (mostly at board, especially any rubbish and the back corners 300 mm from the hive) where it is dark • some may pupate under the hive • if the bottom box is fixed to the bottom board, remove all the combs from the box and then check the bottom • pupae are white at first, but turn brown as they mature board for beetles. Quickly check each comb for • adult SHB emerge from the soil generally within a beetles and larvae as it is removed from the box period of 15-60 days depending on soil temperature, • inspect all honey and brood combs for beetles and but at 10ºC this period may extend to 100 days. larvae. Larvae, when present, may be found on any Adults comb throughout the hive. However, larvae develop • broad and flattened with clubbed antennae under cell caps and may not be seen until the caps are removed • 5-7 mm long and 3-4.5 mm wide • examine pollen cakes for larvae and in-hive open • yellowish brown at first, sometimes turning reddish sugar syrup feeders for beetles. brown, then light brown to black • when the hive is opened they quickly run to hide in Spread of SHB dark places, though some may ‘play dead’ Beetles are reported to have flown 7 km from infested • may live up to 50 days when feeding on old empty areas in NSW. They can follow the migration of swarms. brood comb and approximately 6 months when SHB may be spread by the movement of beehives, nucleus feeding on honey hives, package bees, queen banks, all types of combs and used hive components, bee collected pollen, comb honey, slum gum and beeswax cappings and scraps yet to be rendered. Beetles can also be transferred on protective clothing and bee veils. Adults may also be present for extended periods in hives and combs that show no signs of damage by larvae. As SHB adults may survive for 5-14 days without food and water, there is potential for spread of adults by movement of used hive parts that offer no apparent food for SHB but have been recently removed from a hive. Pupae may be carried in soil removed from infested areas. Soil could possibly be carried from SHB infested sites on hive bottom boards and vehicle tyres. SHB is not spread by queen bees and escorts that are hand Photos 2 and 3 (not actual size). caught and placed in new queen cages for sale to beekeepers. Left - Natural view of beetle as found in hive. Right - Extended view of preserved beetle specimen. Photos courtesy of Division © State of Victoria, Department of Primary Industries Page 2 Small hive beetle - a beekeeping pest AG1080 Management to control and minimize the disease before uniting them. Avoid placing SHB infested impact of SHB combs and material onto colonies free of SHB because the infestation will soon spread throughout the entire hive. The prime aim is to reduce the number of beetles around the apiary and honey extracting plant and thereby reduce Weak colonies may be strengthened by adding one or two the level of infestation in hives. The adoption of the combs of sealed brood from strong healthy colonies. following practices will help to minimise the effect of Minimise opening the hive SHB infestations: The combined odors of honey, pollen and adult bees Extract combs of honey immediately after attract adult SHB to apiaries. Beetles are more attracted to robbing hives that have been opened. The opening of a hive and the manipulation of combs also appears to trigger female Combs of honey may appear free of infestation but could SHB adults already present in the hive to lay eggs, which have SHB eggs or very small larvae at the time of removal results in a rapid increase of SHB larvae. While it is a from the hive for extracting. Extract combs of honey recommendation that the opening of hives be kept to a immediately after removal from hives.
Recommended publications
  • Honey Bees: a Guide for Veterinarians
    the veterinarian’s role in honey bee health HONEY BEES: A GUIDE FOR VETERINARIANS 01.01.17 TABLE OF CONTENTS Introduction Honey bees and veterinarians Honey bee basics and terminology Beekeeping equipment and terminology Honey bee hive inspection Signs of honey bee health Honey bee diseases Bacterial diseases American foulbrood (AFB) European foulbrood (EFB) Diseases that look like AFB and EFB Idiopathic Brood Disease (IBD) Parasitic Mite Syndrome (PMS) Viruses Paralytic viruses Sacbrood Microsporidial diseases Nosema Fungal diseases Chalkbrood Parasitic diseases Parasitic Mite Syndrome (PMS) Tracheal mites Small hive beetles Tropilaelaps species Other disease conditions Malnutrition Pesticide toxicity Diploid drone syndrome Overly hygienic hive Drone-laying queen Laying Worker Colony Collapse Disorder Submission of samples for laboratory testing Honeybee Flowchart (used with permission from One Health Veterinary Consulting, Inc.) Additional Resources Acknowledgements © American Veterinary Medical Association 2017. This information has not been approved by the AVMA Board of Directors or the House of Delegates, and it is not to be construed as AVMA policy nor as a definitive statement on the subject, but rather to serve as a resource providing practical information for veterinarians. INTRODUCTION Honey bees weren’t on veterinarians’ radars until the U.S. Food and Drug Administration issued a final Veterinary Feed Directive (VFD) rule, effective January 1, 2017, that classifies honey bees as livestock and places them under the provisions of the VFD. As a result of that rule and changes in the FDA’s policy on medically important antimicrobials, honey bees now fall into the veterinarians’ purview, and veterinarians need to know about their care.
    [Show full text]
  • Effect of Wood Preservative Treatment of Beehives on Honey Bees Ad Hive Products
    1176 J. Agric. Food Chem. 1984. 32, 1176-1180 Effect of Wood Preservative Treatment of Beehives on Honey Bees and Hive Products Martins A. Kalnins* and Benjamin F. Detroy Effects of wood preservatives on the microenvironment in treated beehives were assessed by measuring performance of honey bee (Apis mellifera L.) colonies and levels of preservative residues in bees, honey, and beeswax. Five hives were used for each preservative treatment: copper naphthenate, copper 8-quinolinolate, pentachlorophenol (PCP), chromated copper arsenate (CCA), acid copper chromate (ACC), tributyltin oxide (TBTO), Forest Products Laboratory water repellent, and no treatment (control). Honey, beeswax, and honey bees were sampled periodically during two successive summers. Elevated levels of PCP and tin were found in bees and beeswax from hives treated with those preservatives. A detectable rise in copper content of honey was found in samples from hives treated with copper na- phthenate. CCA treatment resulted in an increased arsenic content of bees from those hives. CCA, TBTO, and PCP treatments of beehives were associated with winter losses of colonies. Each year in the United States, about 4.1 million colo- honey. Harmful effect of arsenic compounds on bees was nies of honey bees (Apis mellifera L.) produce approxi- linked to orchard sprays and emissions from smelters in mately 225 million pounds of honey and 3.4 million pounds a Utah study by Knowlton et al. (1947). An average of of beeswax. This represents an annual income of about approximately 0.1 µg of arsenic trioxide/dead bee was $140 million; the agricultural economy receives an addi- reported.
    [Show full text]
  • Bee Varroa Parasitosis Control
    15 November 2010 EMA/CVMP/EWP/324712/2010 Committee for Medicinal Products for Veterinary Use (CVMP) Overview of comments received on 'Guideline on veterinary medicinal products controlling varroa destructor parasitosis in bees' (EMEA/CVMP/EWP/459883/2008-CONSULTATION) Interested parties (organisations or individuals) that commented on the draft document as released for consultation. Stakeholder no. Name of organisation or individual 1 Danish Beekeepers Association 2 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. 1. General comments – overview Stakeholder General comment Outcome No. 1 The vast majority of beekeepers provide beeswax-foundation Indeed, some acaricides can lead to residues in honey. Honey always contains for their bees based on recycled beeswax from old comb. wax. Both water soluble and organic solvent soluble substances may end-up in honey. Some hydrophobic veterinary medicinal products or their metabolites may contaminate the beeswax and lead to In relation to the potential contamination of honey with residues transferred increasing levels by repeated recycles of beeswax from from wax it should be noted that the MRL set for honey does not distinguish treated colonies. The accumulation is dependent on the between residues incurred as a result of treatment and residues incurred as a stability of the compounds to the heat-treatment in the wax- result of transfer from wax. In addition, it is acknowledged that wax particles melting process.
    [Show full text]
  • Wax Worms (Galleria Mellonella) As Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D
    Wax Worms (Galleria mellonella) as Potential Bioremediators for Plastic Pollution Student Researcher: Alexandria Elliott Faculty Mentor: Danielle Garneau, Ph.D. Center for Earth and Environmental Science SUNY Plattsburgh, Plattsburgh, NY 12901 Plastic Pollution Life History Stages Results Discussion • 30 million tons of plastic Combination of holes in plastic and • Egg stage: average length (0.478mm) • waste is generated annually and width (0.394mm) and persists 3-10 nylon in frass suggests worms are in the USA (Coalition 2018). days (Kwadha et al. 2017)(Fig. 3). digesting plastic (Figs. 6,7). • Larval stage: max length (30mm), white Of the plastic pilot trials which • 50% landfill, < 10% cream in color, possess 3 apical teeth, exhibited signs of feeding, two were HDPE (Fig. 6). recycled (PlasticsEurope, and persists 22-69 days. A Plastics The Facts 2013) • Pre-pupal/Pupal stage: length (12- • Bombelli et al. (2017) and Yang et al. 20mm) and persists 3-12 and 8-10 days, (2014) found wax worms were capable respectively. All extremities are glued to of PE consumption. • 10% of world’s plastic waste body with molting substance. Common bond (CH -CH ) in PE is 2 2 ends up in ocean 70% • Moth stage: sexual dimorphism is same as that in beeswax (Bombelli et sinks 30% floats in Fig. 1. Plastic Use distinct. Moths max length (20mm) and Fig. 5. Change in worm weight as a function of plastic pilot trial. al. 2017). Fig. 9. PE degradation as currents (Gyres, Fig. 2). (Plastics Europe). persists on average 6-14 days (males) B • Greater negative change in worm weight (g)/day for all FT-IR shows degradation of PE (i.e., evidenced by FT-IR PE and 23 days (females).
    [Show full text]
  • Colony Collapse Disorder in Relation to Human-Produced Toxins: What's
    Colony Collapse Disorder in relation to human-produced toxins: What’s the buzz all about? Available at: http://www.sawyoo.com/postpic/2013/09/honey-bee-hives_77452.jpg Last accessed: 17/04/2017 Abstract: p2 Introduction: p3 Insecticides: p5 Herbicides & fungicides: p7 Miticides & other preventative measures: p9 “Inactive” ingredients: p10 Synergies between pesticides: p11 Conclusions: p12 Discussion: p12 References: p14 1 Abstract In recent years, the global population of pollinating animals has been in decline. The honey bee in particular is one of the most important and well known pollinators and is no exception.The Western honey bee Apis mellifera, the most globally spread honey bee species suffers from one problem in particular. Colony Collapse Disorder (CCD), which causes the almost all the worker bees to abandon a seemingly healthy and food rich hive during the winter. One possible explanation for this disorder is that it is because of the several human produced toxins, such as insecticides, herbicides, fungicides and miticides. So the main question is: Are human-produced toxins the primary cause of CCD? It seems that insecticides and, in particular, neonicotinoid insecticides caused increased mortality and even recreated CCD-like symptoms by feeding the bees with neonicotinoids. Herbicides seem relatively safe for bees, though they do indirectly reduce the pollen diversity, which can cause the hive to suffer from malnutrition. Fungicides are more dangerous, causing several sublethal effects, including a reduced immune response and changing the bacterial gut community. The levels of one fungicide in particular, chlorothalonil, tends to be high in hives. Miticides levels tend to be high in treated hives and can cause result in bees having a reduced lifespan.
    [Show full text]
  • Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment
    insects Communication Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment Éva Kolics 1,2, Zsófi Sajtos 3,4 , Kinga Mátyás 1, Kinga Szepesi 1, Izabella Solti 1, Gyöngyi Németh 1 , János Taller 1, Edina Baranyai 4, András Specziár 5 and Balázs Kolics 1,2,* 1 Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary; [email protected] (É.K.); [email protected] (K.M.); [email protected] (K.S.); [email protected] (I.S.); [email protected] (G.N.); [email protected] (J.T.) 2 Kolics Apiaries, H-8710 Balatonszentgyörgy, Hungary 3 Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; sajtos.zsofi@science.unideb.hu 4 Atomic Spectrometry Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] 5 Balaton Limnological Research Institute, ELKH, H-8237 Tihany, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-302629236 Simple Summary: Varroosis caused by the ectoparasitic mite Varroa destructor has been the biggest threat to managed bee colonies over recent decades. Chemicals available to treat the disease imply problems of resistance, inconsistent efficacy, and residues in bee products. Recently, alongside novel compounds to defeat the pest, lithium chloride has been found to be effective. In this study, we found Citation: Kolics, É.; Sajtos, Z.; that lithium treatments leave beeswax residue-free. The possibility of decontamination in adult bees, Mátyás, K.; Szepesi, K.; Solti, I.; bee bread, and uncapped honey was revealed.
    [Show full text]
  • Honey Bee from Wikipedia, the Free Encyclopedia
    Honey bee From Wikipedia, the free encyclopedia A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the Honey bees construction of perennial, colonial nests from wax. Currently, only seven Temporal range: Oligocene–Recent species of honey bee are recognized, with a total of 44 subspecies,[1] PreЄ Є O S D C P T J K Pg N though historically six to eleven species are recognized. The best known honey bee is the Western honey bee which has been domesticated for honey production and crop pollination. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.[2] Some other types of related bees produce and store honey, including the stingless honey bees, but only members of the genus Apis are true honey bees. The study of bees, which includes the study of honey bees, is known as melittology. Western honey bee carrying pollen Contents back to the hive Scientific classification 1 Etymology and name Kingdom: Animalia 2 Origin, systematics and distribution 2.1 Genetics Phylum: Arthropoda 2.2 Micrapis 2.3 Megapis Class: Insecta 2.4 Apis Order: Hymenoptera 2.5 Africanized bee 3 Life cycle Family: Apidae 3.1 Life cycle 3.2 Winter survival Subfamily: Apinae 4 Pollination Tribe: Apini 5 Nutrition Latreille, 1802 6 Beekeeping 6.1 Colony collapse disorder Genus: Apis 7 Bee products Linnaeus, 1758 7.1 Honey 7.2 Nectar Species 7.3 Beeswax 7.4 Pollen 7.5 Bee bread †Apis lithohermaea 7.6 Propolis †Apis nearctica 8 Sexes and castes Subgenus Micrapis: 8.1 Drones 8.2 Workers 8.3 Queens Apis andreniformis 9 Defense Apis florea 10 Competition 11 Communication Subgenus Megapis: 12 Symbolism 13 Gallery Apis dorsata 14 See also 15 References 16 Further reading Subgenus Apis: 17 External links Apis cerana Apis koschevnikovi Etymology and name Apis mellifera Apis nigrocincta The genus name Apis is Latin for "bee".[3] Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e.
    [Show full text]
  • Small Hive Beetle a Serious New Threat to European Apiculture
    68639_CENTSCILAB 6/4/03 20:48 Page 1 The Small Hive Beetle A serious new threat to European apiculture About this leaflet This leaflet describes the Small Hive Beetle (Aethina tumida), a potential new threat to UK beekeeping. This beetle, indigenous to Africa, has recently spread to the USA and Australia where it has proved to be a devastating pest of European honey bees. There is a serious risk of its accidental introduction into the UK. All beekeepers should now be aware of the fundamental details of the beetle’s lifecycle and how it can be recognised and controlled. 68639_CENTSCILAB 6/4/03 20:49 Page 2 Introduction: the small hive beetle problem The Small Hive Beetle, Aethina tumida It is not known how the beetle reached either (Murray) (commonly referred to as the 'SHB'), the USA or Australia, although in the USA is a major threat to the long-term shipping is considered the most likely route. sustainability and economic prosperity of UK By the time the beetle was detected in both beekeeping and, as a consequence, to countries it was already well established. agriculture and the environment through disruption to pollination services, the value of The potential implications for European which is estimated at up to £200 million apiculture are enormous, as we must now annually. assume that the SHB could spread to Europe and that it is likely to prove as harmful here The beetle is indigenous to Africa, where it is as in Australia and the USA. considered a minor pest of honey bees, and until recently was thought to be restricted to Package bees and honey bee colonies are that continent.
    [Show full text]
  • Synthesis and Secretion of Beeswax in Honeybees Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, Sp Kurstjens, Sl Vincent
    Synthesis and secretion of beeswax in honeybees Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, Sp Kurstjens, Sl Vincent To cite this version: Hr Hepburn, Rtf Bernard, Bc Davidson, Wj Muller, P Lloyd, et al.. Synthesis and secretion of beeswax in honeybees. Apidologie, Springer Verlag, 1991, 22 (1), pp.21-36. hal-00890889 HAL Id: hal-00890889 https://hal.archives-ouvertes.fr/hal-00890889 Submitted on 1 Jan 1991 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Synthesis and secretion of beeswax in honeybees HR Hepburn RTF Bernard BC Davidson WJ Muller P Lloyd SP Kurstjens SL Vincent 1 Rhodes University, Department of Zoology and Entomology, Grahamstown 6140; 2 University of the Witwatersrand, Department of Medical Biochemistry; 3 University of the Witwatersrand, Department of Physiology, Johannesburg, 2193, South Africa (Received 1 July 1990; accepted 15 November 1990) Summary &mdash; The ultrastructure of the cells of the wax gland complex in honeybee workers was studied in relation to the synthesis and secretion of beeswax. The hydrocarbon and fatty acid pro- files of epidermal cells and oenocytes were determined in relation to the ages of the bees.
    [Show full text]
  • Beeswax (Cera Alba) a Fundamental Requirement of the Colony a Colony Without Combs Combs Natural Hexagonal Formation Natural Hexagonal Formation
    Beeswax (Cera alba) A fundamental requirement of the colony A colony without combs Combs Natural hexagonal formation Natural hexagonal formation http://thelazybfarm.com/hauling-hay Physical force demonstration Rolled tightly Cut Through For bees, beeswax is a multiuse, expensive, expendable product • Home site • Food storage • Brood production • Dance floor • Pharmacy • Wintering structure • Communication device • Ladder/scaffolding Yet, all is abandoned if necessary A natural nest • Color range • Rendered wax color • Not combs all in use • Old comb thickened • Humidity control • Old comb attractive • Attractive to pests • Bottom degraders • Overall ecosystem Wax foundation Today, plastic inserts One season comb Seven season comb Seven season comb magnified Replace every 3-5 years • Honestly, I rarely do • I date frames as though I plan to… • Becoming a bit cranky as years pass • Comb replacement is work • Science to support? • However – weight increases One beekeeper’s comb replacement technique • Put old comb frames in a barrel • Encourage wax moths • Scrap webbing and residue • Pressure wash (improvise a holder) • Recoat with liquid beeswax • Heat gun as needed • Heating mats for wax coat leveling • Disinfectants? • Wax fate? Whiting or Whitening Wax production biology Wax glands at work https://www.bee-queen.com https://queenbcandles.wordpress.com Festooning • Free hang forming a net • Orients with gravity • Allows for wax scale transfer • Food and materials transfer • Construction stability • Mobility within hive Propolis mix Becomes
    [Show full text]
  • Small Hive Beetle Management in Mississippi Authors: Audrey B
    Small Hive Beetle Management in Mississippi Authors: Audrey B. Sheridan, Research/Extension Associate, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University; Harry Fulton, State Entomologist (retired); Jon Zawislak, Department of Entomology, University of Arkansas Division of Agriculture, Cooperative Extension Service. Cover photo by Alex Wild, http://www.alexanderwild.com. Fig. 6 illustration by Jon Zawislak. Fig. 7 photo by Katie Lee. All other photos by Audrey Sheridan. 2 Small Hive Beetle Management in Mississippi CONTENTS Introduction .............................................................................................................. 1 Where in the United States Do Small Hive Beetles Occur? .................................. 1 How Do Small Hive Beetles Cause Damage? .......................................................... 1 How Can Small Hive Beetles Be Located and Identifi ed in a Hive? .............................................................................................. 2 Important Biological Aspects of Small Hive Beetles ............................................. 5 Cleaning Up Damaged Combs ................................................................................ 8 Preventing Small Hive Beetle Damage in the Apiary ............................................ 9 Managing Established Small Hive Beetle Populations ....................................... 12 Protecting Honey Combs and Stored Supers During Processing ..............................................................................................
    [Show full text]
  • Bee-Buzz-Winter-2016.Pdf
    North Carolina Bee Buzz The Official Magazine of the NCSBA Beeswax Products Growing Beekeepers Cooking With Honey Recipes And Much, Much More... Wi nt er: Time to Reflect & Plan Winter 2016 North Carolina Bee Buzz Photo: Lane Kreitlow Lane Photo: Winter 2016 Features North Carolina State Beekeepers Association 13 Message from the President 5 Learning on the Internet 7 "Beefeeders" 8 AFB Treatments Soon To Be Hard To Get NCSBA Library Update 9 5CBA's HIP Updat e 10 Disast er Relief 11 17 Wolfpack's Waggle 12 Mast er Beekeeper Program 15 NCSBA Beekeeper 's Calendar 18 The Brood Chamber Cooking Wit h Honey Recipes 24 In the Apiary 26 21 Bee Love 30 Mem bership Not ice 31 Growing Beekeepers ON THE COVER Adapted from the 28 original photo by Bill Adney Blue Ribbon Winner Beeswax: Beekeeping 2016 NC State Fair Beyond Honey Black & White Photo NC Bee Buzz - Winter 2016 3 North Carolina State Beekeepers Association The mission of the NCSBA is to advance beekeeping in North Carolina through improved communication with members, improved education about beekeeping, and support of science enhancing the knowledge of beekeeping. 2017 Executive Committee President: Rick Coor 1st Vice President: Paul Madren 2nd Vice President: Doug Vinson Secretary: Lynn Wilson Treasurer: Bob Gaddis Membership Secretary: Suzy Spencer Education Coordinator: Dr. David R. Tarpy State Apiarist: Don Hopkins Past President: Julian Wooten Regional Directors Mountain Region Piedmont Region Coastal Region Senior: Allen Blanton Senior: Todd Walker Senior: Eric Talley Junior: Eugene
    [Show full text]