Implications of GNSS-Inferred Tropopause Altitude Associated with Terrestrial Gamma-Ray Flashes

Total Page:16

File Type:pdf, Size:1020Kb

Implications of GNSS-Inferred Tropopause Altitude Associated with Terrestrial Gamma-Ray Flashes remote sensing Article Implications of GNSS-Inferred Tropopause Altitude Associated with Terrestrial Gamma-ray Flashes Tao Xian 1,2 , Gaopeng Lu 1,3,4,*, Hongbo Zhang 5, Yongping Wang 1, Shaolin Xiong 6, Qibin Yi 6,7, Jing Yang 1 and Fanchao Lyu 8 1 School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China; [email protected] (T.X.); [email protected] (Y.W.); [email protected] (J.Y.) 2 Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Hefei 210044, China 4 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 5 Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] 6 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (S.X.); [email protected] (Q.Y.) 7 School of Physics and Optoelectronics, Xiangtan University, Yuhu District, Xiangtan 411105, China 8 Nanjing Joint Institute for Atmospheric Sciences, Chinese Academy of Meteorological Sciences, Nanjing 210000, China; [email protected] * Correspondence: [email protected] Citation: Xian, T.; Lu, G.; Zhang, H.; Abstract: The thermal structure of the environmental atmosphere associated with Terrestrial Gamma- Wang, Y.; Xiong, S.; Yi, Q.; Yang, J.; ray Flashes (TGFs) is investigated with the combined observations from several detectors (FERMI, Lyu, F. Implications of GNSS-Inferred RHESSI, and Insight-HXMT) and GNSS-RO (SAC-C, COSMIC, GRACE, TerraSAR-X, and MetOp-A). Tropopause Altitude Associated with The geographic distributions of TGF-related tropopause altitude and climatology are similar. The Terrestrial Gamma-ray Flashes. regional TGF-related tropopause altitude in Africa and the Caribbean Sea is 0.1–0.4 km lower than Remote Sens. 2021, 13, 1939. https:// the climatology, whereas that in Asia is 0.1–0.2 km higher. Most of the TGF-related tropopause doi.org/10.3390/rs13101939 altitudes are slightly higher than the climatology, while some of them have a slightly negative bias. The subtropical TGF-producing thunderstorms are warmer in the troposphere and have a colder Academic Editor: and higher tropopause over land than the ocean. There is no significant land–ocean difference in the Guillermo Gonzalez-Casado thermal structure for the tropical TGF-producing thunderstorms. The TGF-producing thunderstorms Received: 14 March 2021 have a cold anomaly in the middle and upper troposphere and have stronger anomalies than the Accepted: 7 May 2021 deep convection found in previous studies. Published: 16 May 2021 Keywords: Terrestrial Gamma-ray Flashes (TGFs); tropopause; deep convection; GNSS-radio Publisher’s Note: MDPI stays neutral occultation with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond bursts of energetic MeV gamma-ray photons produced in the troposphere that can be detected on the low-Earth Copyright: © 2021 by the authors. orbit [1–5] or even at ground level [6,7]. It is known that TGFs are forged inside thunder- Licensee MDPI, Basel, Switzerland. storms and related to the initial upward leader development of intra-cloud (IC) lightning This article is an open access article flashes [8–11], or downward propagating negative leaders [12–14]. However, the charac- distributed under the terms and teristic charge structure of TGF-producing thunderstorms and the associated convection conditions of the Creative Commons properties remain an open question to be investigated. The authors of [15] found a prefer- Attribution (CC BY) license (https:// ence for TGF-producing thunderstorms for larger values of surface convective available creativecommons.org/licenses/by/ potential energy (CAPE), whereas the authors of [16] recently found no difference in CAPE 4.0/). Remote Sens. 2021, 13, 1939. https://doi.org/10.3390/rs13101939 https://www.mdpi.com/journal/remotesensing Remote Sens. 2021, 13, 1939 2 of 12 between tropical TGF-producing thunderstorms and local monthly climatology. The au- thors of [17] showed that TGF-producing thunderstorms contain higher concentrations of both cloud water and ice and precipitation water and ice, which results in more vigor- ous lightning activity. Using the observations from the World-Wide Lightning Location Network (WWLLN) and Next Generation Weather Radars (NEXRAD), the authors of [18] found that 24 oceanic TGF-producing thunderstorms had a variety of convective strengths, ranging from relatively weak to deep convection, without distinct features. Although African thunderstorms have the highest lightning density in the world [19], they produce a relatively low TGF-to-lightning ratio in comparison with the TGF-producing thunder- storms in America and Southeast Asia, attributed by [20] to the relatively small spacing between layered charge regions in the parent thunderstorms. Since the tropopause imposes a constraint on the vertical development of convection in thunderstorms [21], the authors of [22] found that TGFs are usually associated with a relatively high tropopause using the climatology monthly NCEP/NCAR reanalysis of tropopause altitudes for the TGF observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Based on radiosonde observations, the authors of [23] recently showed that there is no considerable difference in tropopause altitudes between TGF-producing equatorial thunderstorms and those in South China (with latitude between 20◦N and 26◦N). Considering the inter-annual variability and the significant bias in tropopause altitude from reanalysis [24,25], using tropopauses derived from high vertical resolution temperature observations associated with TGF-producing thunderstorms from Global Navigation Satellite System–Radio Occultation (GNSS–RO) would improve our understanding of the thermal structures of the environmental atmosphere associated with TGF generation. The GNSS–RO technique provides global-scale high-resolution (≤0.1 km) accurate (with error less than 1 ◦C) temperature profiles under all weather conditions [26], which is ideal for the studies of tropopause and thermal structure associated with TGF- producing thunderstorms. To evaluate the relationship between atmospheric thermal structure and TGF genesis on a global scale, we will address the following questions in this paper: Is the tropopause associated with TGFs substantially higher than the climatology? How does the TGF- related tropopause compare over land and over ocean, and over different regions? What are the thermal structure patterns of the environmental atmosphere of TGF-producing thunderstorms? How does their intensity compare to the deep convection mentioned in previous studies [27,28] on a statistical basis? 2. Data and Methodology In this work, we adopt the TGF observations from three space-borne missions: the RHESSI project from April 2006 to November 2013 [2], Fermi Gamma-ray Burst Monitor (GBM) from August 2008 to December 2019 [4,5], and Insight Hard X-ray Modulation Telescope (Insight-HXMT) from July 2017 to September 2019 [29]. We use the quality-controlled temperature profiles from the following four missions and time periods: SAC-C (Scientific Applications Satellite C, [30]) from March 2006 to August 2011, COSMIC (Formosa Satellite Mission 3/Constellation Observing System for Meteorology, Ionosphere, and Climate, [26]) from April 2006 to present, GRACE (Gravity Recovery and Climate Experiment, [31]) from March 2007 to November 2017, TerraSAR- X[32] from February 2008 to present, MetOp-A (October 2007–December 2019), and MetOp-B (February 2013–December 2019) [33–35]. All data are available from the Uni- versity Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC) and are provided at 0.1 km vertical resolution from the surface to about 40 km altitude. SAC-C and TerraSAR-X acquire up to 250 daily occultations (temperature profiles), MetOp-A and B provide about 630–680 daily occultations, while GRACE retrieves about 150–200 occultations and COSMIC provides up to 2500 occultations per day, respectively. Remote Sens. 2021, 13, 1939 3 of 12 The observations from the TGF detectors and GNSS-RO are required to be within 300 km and ±3 h of each other [28], resulting in 1917 TGF-related GNSS-RO temperature profiles. The spatial relationship between TGFs and associated lightning has been confined typically within 300 km based on the space-borne TGF detection and ground-based broad- band spheric measurements [36,37]. The authors of [36] found that the majority (about 75% for TGF-associated lightning discharges located with three or more stations) of TGFs are detected within 300 km of the associated lightning, and the authors of [38] attributed half of 2188 TGFs located within 300 km range from the associated lightning discharge. Tropopause altitudes are calculated for each GNSS-RO profile by employing the WMO temperature lapse rate tropopause definition [39], which defines the primary tropopause as the lowest altitude
Recommended publications
  • On the Relationship Between Gravity Waves and Tropopause Height and Temperature Over the Globe Revealed by COSMIC Radio Occultation Measurements
    atmosphere Article On the Relationship between Gravity Waves and Tropopause Height and Temperature over the Globe Revealed by COSMIC Radio Occultation Measurements Daocheng Yu 1, Xiaohua Xu 1,2,*, Jia Luo 1,3,* and Juan Li 1 1 School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; [email protected] (D.Y.); [email protected] (J.L.) 2 Collaborative Innovation Center for Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China 3 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, 129 Luoyu Road, Wuhan 430079, China * Correspondence: [email protected] (X.X.); [email protected] (J.L.); Tel.: +86-27-68758520 (X.X.); +86-27-68778531 (J.L.) Received: 4 January 2019; Accepted: 6 February 2019; Published: 12 February 2019 Abstract: In this study, the relationship between gravity wave (GW) potential energy (Ep) and the tropopause height and temperature over the globe was investigated using COSMIC radio occultation (RO) dry temperature profiles during September 2006 to May 2013. The monthly means of GW Ep with a vertical resolution of 1 km and tropopause parameters were calculated for each 5◦ × 5◦ longitude-latitude grid. The correlation coefficients between Ep values at different altitudes and the tropopause height and temperature were calculated accordingly in each grid. It was found that at middle and high latitudes, GW Ep over the altitude range from lapse rate tropopause (LRT) to several km above had a significantly positive/negative correlation with LRT height (LRT-H)/ LRT temperature (LRT-T) and the peak correlation coefficients were determined over the altitudes of 10–14 km with distinct zonal distribution characteristics.
    [Show full text]
  • Popular Summary of “Extratropical Stratosphere-Troposphere Mass Exchange”
    Popular Summary of “Extratropical Stratosphere-Troposphere Mass Exchange” Mark Schoeberl Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can’t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is -1 0” kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10” kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.
    [Show full text]
  • The Tropical Tropopause Layer in Reanalysis Data Sets
    https://doi.org/10.5194/acp-2019-580 Preprint. Discussion started: 4 July 2019 c Author(s) 2019. CC BY 4.0 License. 1 2 The tropical tropopause layer in reanalysis data sets 3 4 Susann Tegtmeier1, James Anstey2, Sean Davis3, Rossana Dragani4, Yayoi Harada5, Ioana 5 Ivanciu1, Robin Pilch Kedzierski1, Kirstin Krüger6, Bernard Legras7, Craig Long8, James S. 6 Wang9, Krzysztof Wargan10,11, and Jonathon S. Wright12 7 8 9 1 10 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany 11 2Canadian Centre for Climate Modelling and Analysis, ECCC, Victoria, Canada 12 3Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 13 Boulder, CO 80305, USA 14 4European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK 15 5Japan Meteorological Agency, Tokyo, 100-8122, Japan 16 6 Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, 17 0315 Oslo, Norway 18 7Laboratoire de Météorologie Dynamique, CNRS/PSL-ENS, Sorbonne University Ecole 19 Polytechnique, France 20 8Climate Prediction Center, National Centers for Environmental Prediction, National Oceanic 21 and Atmospheric Administration, College Park, MD 20740, USA 22 9Institute for Advanced Sustainability Studies, Potsdam, Germany 23 10Science Systems and Applications, Inc., Lanham, MD 20706, USA 24 11Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight 25 Center, Greenbelt, MD 20771, USA 26 12Department of Earth System Science, Tsinghua University, Beijing, 100084, China 27 28 29 30 31 32 33 34 35 36 37 1 https://doi.org/10.5194/acp-2019-580 Preprint. Discussion started: 4 July 2019 c Author(s) 2019. CC BY 4.0 License.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Tropical Tropopause Layer
    Click Here for Full Article TROPICAL TROPOPAUSE LAYER S. Fueglistaler,1 A. E. Dessler,2 T. J. Dunkerton,3 I. Folkins,4 Q. Fu,5 and P. W. Mote3 Received 4 March 2008; revised 16 September 2008; accepted 14 October 2008; published 17 February 2009. [1] Observations of temperature, winds, and atmospheric 70 hPa, 425 K, 18.5 km. Laterally, the TTL is bounded by trace gases suggest that the transition from troposphere to the position of the subtropical jets. We highlight recent stratosphere occurs in a layer, rather than at a sharp progress in understanding of the TTL but emphasize that a ‘‘tropopause.’’ In the tropics, this layer is often called the number of processes, notably deep, possibly overshooting ‘‘tropical tropopause layer’’ (TTL). We present an overview convection, remain not well understood. The TTL acts in of observations in the TTL and discuss the radiative, many ways as a ‘‘gate’’ to the stratosphere, and dynamical, and chemical processes that lead to its time- understanding all relevant processes is of great importance varying, three-dimensional structure. We present a synthesis for reliable predictions of future stratospheric ozone and definition with a bottom at 150 hPa, 355 K, 14 km climate. (pressure, potential temperature, and altitude) and a top at Citation: Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote (2009), Tropical tropopause layer, Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267. 1. INTRODUCTION [3] This paper examines and discusses observations in the TTL and the processes that contribute to its unique [2] The traditional definitions of the troposphere and properties.
    [Show full text]
  • Analysis of Tropopause Variability in Observations and in an Idealized Model
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) TESIS DOCTORAL Analysis of tropopause variability in observations and in an idealized model Análisis de la variabilidad de la tropopausa en observaciones y en un modelo idealizado MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Jesús Ángel Barroso Pellico Director Pablo Zurita Gotor Madrid, 2018 © Jesús Ángel Barroso Pellico, 2017 Universidad Complutense de Madrid Facultad de Ciencias Físicas Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) Analysis of tropopause variability in observations and in an idealized model Análisis de la variabilidad de la tropopausa en observaciones y en un modelo idealizado Memoria para optar al grado de doctor presentada por Jesús Ángel Barroso Pellico Director: Pablo Zurita Gotor III IV Contents Summary.......................................................................................................... VII Resumen.......................................................................................................... XI List of abbreviations......................................................................................... XIV 1. Introduction and objectives.................................................................................. 1 1.1 Properties of the tropopause.......................................................................................3 1.1.1 Definitions of the tropopause........................................................................
    [Show full text]
  • Comparison of RO Tropopause Height Based on Different
    https://doi.org/10.5194/amt-2019-379 Preprint. Discussion started: 30 October 2019 c Author(s) 2019. CC BY 4.0 License. Comparison of RO tropopause height based on different tropopause determination methods Ziyan Liu1,2,3, Weihua Bai1,2*, Yueqiang Sun1,2*, Junming Xia1,2, Guangyuan Tan1,2,3, Cheng Cheng4, Qifei Du1,2, Xianyi Wang1,2, Danyang Zhao1,2, Yusen Tian1,2,3, Xiangguang Meng1,2, Congliang Liu1,2, 5 Yuerong Cai1,2, Dongwei Wang1,2 1National Space Science Centre, Chinese Academy of Sciences (NSSC/CAS), Beijing 100190, China; 2Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4State Intellectual Property Office of the P.R.C, Beijing 100088, China 10 Correspondence to: Weihua Bai ([email protected]) and Yueqiang Sun ([email protected]) Abstract. Tropopause region is a significant layer among the earth’s atmosphere, receiving increasing attention from atmosphere and climate researchers. To monitor global tropopause via radio occultation (RO) data, there are mainly two methods, one is the widely used temperature lapse rate method, and the other is bending angle covariance transform method. In this paper, we use FengYun3-C (FY3C) and Meteorological Operational Satellite Program (MetOp) RO data and European 15 Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data to analyse the difference of RO tropopause height calculated by the two methods mentioned above. To give an objective and complete analysis, we first take ECMWF lapse rate tropopause (LRT) height (LRTH) as reference to discuss the absolute bias of RO LRTH and RO bending angle tropopause (BAT) height (BATH), and then give the comparison results between RO LRTH and corresponding RO BATH as supplement to analyse the difference between tropopause height derived from the above two methods.
    [Show full text]
  • THE UNIVERSITY of READING Dynamics of the Tropical Tropopause and Lower Stratosphere
    THE UNIVERSITY OF READING Department of Meteorology Dynamics of the Tropical Tropopause and Lower Stratosphere Julia Claire Tindall A thesis submitted for the degree of Doctor of Philosophy November 2003 ’Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged’ Julia Tindall Dynamics of the Tropical Tropopause and Lower Stratosphere Abstract Dynamical variability in the tropical upper troposphere/lower stratosphere (UTLS) is important for troposphere-stratosphere exchange and the driving of the quasi-biennial oscillation (QBO). However the relative importance of motions with different timescales is not fully understood. In this thesis dynamical variability in the tropical UTLS is investigated using the ECMWF 15 year reanalysis (ERA15) dataset. The first long term, tropical, climatology of idealised, linear, equatorial waves, with period greater than 1 day, is produced using a novel method. The method calculates the seasonally averaged activity of several wave types. It is based on wavenumber-frequency spectral analysis and linear wave theory. At 70hPa and 100hPa there is usually an annual cycle in the activity of each wave. At 50hPa the activity of each wave is correlated with the QBO in a way qualitatively consistent with the QBO’s modulation of each wave’s vertical group velocity. The observed wave climatologies are insufficient to drive the QBO or explain the tropical UTLS temperature variance on subseasonal timescales. This suggests that much of the subseasonal variability in the tropical UTLS is inconsistent with idealised linear waves of period greater than 1 day. Finally the annual temperature cycle in the tropical UTLS is realistically modelled using the thermodynamic equation.
    [Show full text]
  • A Climatology of the Tropical Tropopause Layer
    Journal of the Meteorological Society of Japan, Vol. 80, No. 4B, pp. 911--924, 2002 911 A Climatology of the Tropical Tropopause Layer A. GETTELMAN National Center for Atmospheric Research, Boulder, CO, USA and P.M. de F. FORSTER Department of Meteorology, University of Reading, Reading, UK (Manuscript received 4 June 2001, in revised form 17 September 2001) Abstract The tropical tropopause layer (TTL) is a transition region between the troposphere and the strato- sphere. In this study the vertical extent of the TTL is diagnosed from radiosonde and ozonesonde profiles in the tropics and a climatology of this layer is presented. The radiative balance in the TTL is also characterized. The TTL is locally defined as extending from the level of the lapse rate minimum at 10– 12 km to the cold point tropopause (CPT) at 16–17 km. The minimum in lapse rate represents the level of maximum convective impact on upper tropospheric temperatures, which is found to closely correspond to a minimum in ozone. Variations in this level are correlated with convective activity as measured by satellite brightness temperatures and Outgoing Longwave Radiation (OLR). At the cold point, the TTL height is nearly uniform throughout the tropics, and has a pronounced annual cycle. There are regional variations in the altitude of the lower boundary of the TTL. Interannual variations of the TTL result from changes in the large scale organization of convective activity, such as from the El-Nin˜ o Southern Oscillation (ENSO). Over the last 40 years, records indicate an increase (200–400 m) in the height of both the cold point tropopause and the level of minimum lapse rate.
    [Show full text]
  • Characteristics of the Tropical Tropopause Inversion Layer Using High
    Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1182 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 17 December 2018 c Author(s) 2018. CC BY 4.0 License. Characteristics of the tropical tropopause inversion layer using high- resolution temperature profiles retrieved from COSMIC GNSS Radio Occultation Noersomadi Noersomadi1,2, Toshitaka Tsuda1, Masatomo Fujiwara3 5 1Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, 611-0011, Japan 2National Institute of Aeronautics and Space (LAPAN), Bandung, 40173, Indonesia 3Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan Correspondence to: Noersomadi ([email protected]) Abstract. Using COSMIC GNSS Radio Occultation (RO) observations from January 2007 to December 2016, we retrieved 10 temperature profiles with 0.1 km vertical resolution in the upper troposphere and lower stratosphere (UTLS). We investigated the global distribution of static stability (N2) and the characteristics of the tropopause inversion layer (TIL) in the tropics, where a large change in temperature gradient occurs associated with sharp variations of N2. We show the variations of the mean N2 profiles in conventional height coordinates as well as in coordinates relative to both the Lapse Rate Tropopause (LRT) and the Cold Point Tropopause (CPT). When the N2 profiles are averaged relative to CPT height, there is 15 a very thin (<1 km) layer with average maximum N2 in the range 11.0–12.0 × 10−4 s−2. The mean and standard deviation of the tropopause sharpness (S-ab), defined as the difference between the maximum N2 (maxN2) and minimum N2 (minN2) within ±1 km of the CPT, is (10.5 ± 3.7) × 10−4 s−2.
    [Show full text]
  • PHAK Chapter 12 Weather Theory
    Chapter 12 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place with respect to variables, such as temperature (heat or cold), moisture (wetness or dryness), wind velocity (calm or storm), visibility (clearness or cloudiness), and barometric pressure (high or low). The term “weather” can also apply to adverse or destructive atmospheric conditions, such as high winds. This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on the reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. 12-1 Atmosphere The atmosphere is a blanket of air made up of a mixture of 1% gases that surrounds the Earth and reaches almost 350 miles from the surface of the Earth. This mixture is in constant motion. If the atmosphere were visible, it might look like 2211%% an ocean with swirls and eddies, rising and falling air, and Oxygen waves that travel for great distances. Life on Earth is supported by the atmosphere, solar energy, 77 and the planet’s magnetic fields. The atmosphere absorbs 88%% energy from the sun, recycles water and other chemicals, and Nitrogen works with the electrical and magnetic forces to provide a moderate climate.
    [Show full text]
  • Changes of the Tropical Tropopause Layer Under Global Warming
    1 Changes of the tropical tropopause layer under global warming ∗ 2 Pu Lin 3 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 4 David Paynter, Yi Ming and V. Ramaswamy 5 Geophysical Fluid Dynamics Laboratory / NOAA, Princeton, NJ ∗ 6 Corresponding author address: Pu Lin, Program in Atmospheric and Oceanic Sciences, Princeton 7 University, Princeton, NJ. 8 E-mail: [email protected] Generated using v4.3.1 (5-19-2014) of the AMS LATEX template1 ABSTRACT 9 We investigate changes in the tropical tropopause layer (TTL) in response 10 to carbon dioxide increase and surface warming separately in an atmospheric 11 general circulation model, and find that both effects lead to a warmer tropical 12 tropopause. Surface warming also results in an upward shift of the tropopause. 13 We perform a detailed heat budget analysis to quantify the contributions from 14 different radiative and dynamic processes to changes in the TTL temperature. 15 When carbon dioxide increases with fixed surface temperature, a warmer TTL 16 mainly results from the direct radiative effect of carbon dioxide increase. With 17 surface warming, the largest contribution to the TTL warming comes from the 18 radiative effect of the warmer troposphere, which is partly canceled by the ra- 19 diative effect of the moistening at the TTL. Strengthening of the stratospheric 20 circulation following surface warming cools the lower stratosphere dynami- 21 cally and radiatively via changes in ozone. These two effects are of compa- 22 rable magnitudes. This circulation change is the main cause of temperature 23 changes near 63 hPa, but is weak near 100 hPa.
    [Show full text]