Jet Streams of the Atmosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Relationship Between Gravity Waves and Tropopause Height and Temperature Over the Globe Revealed by COSMIC Radio Occultation Measurements
atmosphere Article On the Relationship between Gravity Waves and Tropopause Height and Temperature over the Globe Revealed by COSMIC Radio Occultation Measurements Daocheng Yu 1, Xiaohua Xu 1,2,*, Jia Luo 1,3,* and Juan Li 1 1 School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; [email protected] (D.Y.); [email protected] (J.L.) 2 Collaborative Innovation Center for Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China 3 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, 129 Luoyu Road, Wuhan 430079, China * Correspondence: [email protected] (X.X.); [email protected] (J.L.); Tel.: +86-27-68758520 (X.X.); +86-27-68778531 (J.L.) Received: 4 January 2019; Accepted: 6 February 2019; Published: 12 February 2019 Abstract: In this study, the relationship between gravity wave (GW) potential energy (Ep) and the tropopause height and temperature over the globe was investigated using COSMIC radio occultation (RO) dry temperature profiles during September 2006 to May 2013. The monthly means of GW Ep with a vertical resolution of 1 km and tropopause parameters were calculated for each 5◦ × 5◦ longitude-latitude grid. The correlation coefficients between Ep values at different altitudes and the tropopause height and temperature were calculated accordingly in each grid. It was found that at middle and high latitudes, GW Ep over the altitude range from lapse rate tropopause (LRT) to several km above had a significantly positive/negative correlation with LRT height (LRT-H)/ LRT temperature (LRT-T) and the peak correlation coefficients were determined over the altitudes of 10–14 km with distinct zonal distribution characteristics. -
Stratosphere-Troposphere Coupling: a Method to Diagnose Sources of Annular Mode Timescales
STRATOSPHERE-TROPOSPHERE COUPLING: A METHOD TO DIAGNOSE SOURCES OF ANNULAR MODE TIMESCALES Lawrence Mudryklevel, Paul Kushner p R ! ! SPARC DynVar level, Z(x,p,t)=− T (x,p,t)d ln p , (4) g !ps x,t p ( ) R ! ! Z(x,p,t)=− T (x,p,t)d ln p , (4) where p is the pressure at the surface, R is the specific gas constant and g is the gravitational acceleration s g !ps(x,t) where p is the pressure at theat surface, the surface.R is the specific gas constant and g is the gravitational acceleration Abstract s Geopotentiallevel, Height Decomposition Separation of AM Timescales p R ! ! at the surface. This time-varying geopotentialZ( canx,p,t be)= decomposed− T into(x,p a,t cli)dmatologyln p , and anomalies from the(4) climatology AM timescales track seasonal variations in the AM index’s decorrelation time6,7. For a hydrostatic fluid, geopotential height may be describedg !p sas(x ,ta) function of time, pressure level Timescales derived from Annular Mode (AM) variability provide dynamical and ashorizontalZ(x,p,t position)=Z (asx,p a )+temperatureδZ(x,p,t integral). Decomposing from the Earth’s the temperature surface to a andgiven surface pressure pressure fields inananalogous insight into stratosphere-troposphere coupling and are linked to the strengthThis of time-varying level, geopotentialwhere can beps is decomposed the pressure at into the a surface, climatologyR is the and specific anomalies gas constant from and theg is climatology the gravitational acceleration NCEP, 1958-2007 level: ^ a) o (yL ) d) o AM responses to climate forcings. -
Popular Summary of “Extratropical Stratosphere-Troposphere Mass Exchange”
Popular Summary of “Extratropical Stratosphere-Troposphere Mass Exchange” Mark Schoeberl Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can’t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is -1 0” kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10” kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere. -
Winter 2020/2021 Volume 18
NATIONAL WEATHER SERVICE GREEN BAY Winter 2020/2021 Volume 18 Lake Michigan water levels remain near record highs BY: mike cellitti Inside this issue: In December 2012 and January 2013, the Lake Michigan-Huron basin (Lake Michigan and Lake Huron are treated as one lake from a hydrologic perspective) East River Watershed 3 Resiliency Project observed record low water levels, making it the 14th consecutive year of below normal water levels. These record low water levels garnered national attention 2020-21 Winter Forecast 4 raising concerns for the shipping industry, climate impacts, and the long-term future Ambassador of Excellence 6 of the Great Lakes water levels. Since this minimum in water levels 6 years ago, Lake Kotenberg Joins NWS 7 Michigan-Huron has been on the rise, culminating in record high water levels for much of this year (Figure 1). In fact, Lake Michigan-Huron set monthly mean record Severe Weather Spotters 7 high water levels from January to August, peaking in July at greater than 3 inches Thank You Observers! 8 above the previous record. Word Search 9 The water level on the Great Lakes can fluctuate on a monthly, seasonal, and annual basis depending upon a variety of factors including the amount of precipitation, evaporation, and rainfall induced runoff. Precipitation and runoff typically peak in late spring and summer as a result of snowmelt and thunderstorm activity. Although it is difficult to measure, evaporation occurs the most when cold air flows over the relatively warm waters of the Great Lakes during the fall and winter months. East River The record high water levels of Lake Michigan-Huron are largely a result of well Flooding above normal precipitation across the basin over the past 5 years. -
USING a LIGHTNING SAFETY TOOLKIT for OUTDOOR VENUES Charles C
USING A LIGHTNING SAFETY TOOLKIT FOR OUTDOOR VENUES Charles C. Woodrum Meteorologist National Weather Service, NOAA Pittsburgh, Pennsylvania Donna Franklin Office of Climate, Water, and Weather Services National Weather Service, NOAA Silver Spring, Maryland _________________________ Abstract guidelines that are used as a template for creating a new plan or enhancing an existing plan. The toolkit The threat of fatal lightning strikes at outdoor was developed within the framework of NCAA venues continues to be a pressing concern for event Guideline 1d. The NWS used plans from the managers. Several delays were documented in 2010 University of Tampa, the University of Maryland, and and 2011 in which spectators did not have enough time Vanderbilt University along with guidance from to evacuate, or chose to wait out delays in unsafe emergency management at the University of locations. To address this issue, the National Weather Tennessee and Florida State University as assistance Service (NWS) developed a lightning safety toolkit and to develop the toolkit. recognition program to help meteorologists work with venue officials to encourage sound and proactive Guidelines established for venue decisions when thunderstorms threaten their venue. management include: redundant data reception sources; effective decision support standards; 1. Introduction and Background multiple effective communication methods; a public notification plan; protection program with shelters; and Every year, hundreds of outdoor venue education of staff and patrons. The toolkit template managers are challenged to determine when an event safety plan helps venues meet these guidelines by delay is necessary due to thunderstorm hazards. In providing steps to follow before, during, and after the 2000, “ninety-two percent of National Collegiate Athletic event. -
The Tropical Tropopause Layer in Reanalysis Data Sets
https://doi.org/10.5194/acp-2019-580 Preprint. Discussion started: 4 July 2019 c Author(s) 2019. CC BY 4.0 License. 1 2 The tropical tropopause layer in reanalysis data sets 3 4 Susann Tegtmeier1, James Anstey2, Sean Davis3, Rossana Dragani4, Yayoi Harada5, Ioana 5 Ivanciu1, Robin Pilch Kedzierski1, Kirstin Krüger6, Bernard Legras7, Craig Long8, James S. 6 Wang9, Krzysztof Wargan10,11, and Jonathon S. Wright12 7 8 9 1 10 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany 11 2Canadian Centre for Climate Modelling and Analysis, ECCC, Victoria, Canada 12 3Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 13 Boulder, CO 80305, USA 14 4European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK 15 5Japan Meteorological Agency, Tokyo, 100-8122, Japan 16 6 Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, 17 0315 Oslo, Norway 18 7Laboratoire de Météorologie Dynamique, CNRS/PSL-ENS, Sorbonne University Ecole 19 Polytechnique, France 20 8Climate Prediction Center, National Centers for Environmental Prediction, National Oceanic 21 and Atmospheric Administration, College Park, MD 20740, USA 22 9Institute for Advanced Sustainability Studies, Potsdam, Germany 23 10Science Systems and Applications, Inc., Lanham, MD 20706, USA 24 11Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight 25 Center, Greenbelt, MD 20771, USA 26 12Department of Earth System Science, Tsinghua University, Beijing, 100084, China 27 28 29 30 31 32 33 34 35 36 37 1 https://doi.org/10.5194/acp-2019-580 Preprint. Discussion started: 4 July 2019 c Author(s) 2019. CC BY 4.0 License. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
On the Impact of Future Climate Change on Tropopause Folds and Tropospheric Ozone
https://doi.org/10.5194/acp-2019-508 Preprint. Discussion started: 14 June 2019 c Author(s) 2019. CC BY 4.0 License. On the impact of future climate change on tropopause folds and tropospheric ozone Dimitris Akritidis1, Andrea Pozzer2, and Prodromos Zanis1 1Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece 2Max Planck Institute for Chemistry, Mainz, Germany Correspondence: D. Akritidis ([email protected]) Abstract. Using a transient simulation for the period 1960-2100 with the state-of-the-art ECHAM5/MESSy Atmospheric Chemistry (EMAC) global model and a tropopause fold identification algorithm, we explore the future projected changes in tropopause folds, Stratosphere-to-Troposphere Transport (STT) of ozone and tropospheric ozone under the RCP6.0 scenario. Statistically significant changes in tropopause fold frequencies are identified in both Hemispheres, occasionally exceeding 3%, 5 which are associated with the projected changes in the position and intensity of the subtropical jet streams. A strengthen- ing of ozone STT is projected for future at both Hemispheres, with an induced increase of transported stratospheric ozone tracer throughout the whole troposphere, reaching up to 10 nmol/mol in the upper troposphere, 8 nmol/mol in the middle troposphere and 3 nmol/mol near the surface. Notably, the regions exhibiting the maxima changes of ozone STT at 400 hPa, coincide with that of the highest fold frequencies, highlighting the role of tropopause folding mechanism in STT process under 10 a changing climate. For both the eastern Mediterranean and Middle East (EMME), and the Afghanistan (AFG) regions, which are known as hotspots of fold activity and ozone STT during the summer period, the year-to-year variability of middle tropo- spheric ozone with stratospheric origin is largely explained by the short-term variations of ozone at 150 hPa and tropopause folds frequency. -
Ozone: Good up High, Bad Nearby
actions you can take High-Altitude “Good” Ozone Ground-Level “Bad” Ozone •Protect yourself against sunburn. When the UV Index is •Check the air quality forecast in your area. At times when the Air “high” or “very high”: Limit outdoor activities between 10 Quality Index (AQI) is forecast to be unhealthy, limit physical exertion am and 4 pm, when the sun is most intense. Twenty minutes outdoors. In many places, ozone peaks in mid-afternoon to early before going outside, liberally apply a broad-spectrum evening. Change the time of day of strenuous outdoor activity to avoid sunscreen with a Sun Protection Factor (SPF) of at least 15. these hours, or reduce the intensity of the activity. For AQI forecasts, Reapply every two hours or after swimming or sweating. For check your local media reports or visit: www.epa.gov/airnow UV Index forecasts, check local media reports or visit: www.epa.gov/sunwise/uvindex.html •Help your local electric utilities reduce ozone air pollution by conserving energy at home and the office. Consider setting your •Use approved refrigerants in air conditioning and thermostat a little higher in the summer. Participate in your local refrigeration equipment. Make sure technicians that work on utilities’ load-sharing and energy conservation programs. your car or home air conditioners or refrigerator are certified to recover the refrigerant. Repair leaky air conditioning units •Reduce air pollution from cars, trucks, gas-powered lawn and garden before refilling them. equipment, boats and other engines by keeping equipment properly tuned and maintained. During the summer, fill your gas tank during the cooler evening hours and be careful not to spill gasoline. -
Migration and Climate Change
Migration and Climate Change No. 31 The opinions expressed in the report are those of the authors and do not necessarily reflect the views of the International Organization for Migration (IOM). The designations employed and the presentation of material throughout the report do not imply the expression of any opinion whatsoever on the part of IOM concerning the legal status of any country, territory, city or area, or of its authorities, or concerning its frontiers or boundaries. _______________ IOM is committed to the principle that humane and orderly migration benefits migrants and society. As an intergovernmental organization, IOM acts with its partners in the international community to: assist in meeting the operational challenges of migration; advance understanding of migration issues; encourage social and economic development through migration; and uphold the human dignity and well-being of migrants. _______________ Publisher: International Organization for Migration 17 route des Morillons 1211 Geneva 19 Switzerland Tel: +41.22.717 91 11 Fax: +41.22.798 61 50 E-mail: [email protected] Internet: http://www.iom.int Copy Editor: Ilse Pinto-Dobernig _______________ ISSN 1607-338X © 2008 International Organization for Migration (IOM) _______________ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publisher. 11_08 Migration and Climate Change1 Prepared for IOM by Oli Brown2 International Organization for Migration Geneva CONTENTS Abbreviations 5 Acknowledgements 7 Executive Summary 9 1. Introduction 11 A growing crisis 11 200 million climate migrants by 2050? 11 A complex, unpredictable relationship 12 Refugee or migrant? 1 2.