Dynamics of Jupiter's Atmosphere

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Jupiter's Atmosphere 6 Dynamics of Jupiter's Atmosphere Andrew P. Ingersoll California Institute of Technology Timothy E. Dowling University of Louisville P eter J. Gierasch Cornell University GlennS. Orton J et P ropulsion Laboratory, California Institute of Technology Peter L. Read Oxford. University Agustin Sanchez-Lavega Universidad del P ais Vasco, Spain Adam P. Showman University of A rizona Amy A. Simon-Miller NASA Goddard. Space Flight Center Ashwin R . V asavada J et Propulsion Laboratory, California Institute of Technology 6.1 INTRODUCTION occurs on both planets. On Earth, electrical charge separa­ tion is associated with falling ice and rain. On Jupiter, t he Giant planet atmospheres provided many of the surprises separation mechanism is still to be determined. and remarkable discoveries of planetary exploration during The winds of Jupiter are only 1/ 3 as strong as t hose t he past few decades. Studying Jupiter's atmosphere and of aturn and Neptune, and yet the other giant planets comparing it with Earth's gives us critical insight and a have less sunlight and less internal heat than Jupiter. Earth broad understanding of how atmospheres work that could probably has the weakest winds of any planet, although its not be obtained by studying Earth alone. absorbed solar power per unit area is largest. All the gi­ ant planets are banded. Even Uranus, whose rotation axis Jupiter has half a dozen eastward jet streams in each is tipped 98° relative to its orbit axis. exhibits banded hemisphere. On average, Earth has only one in each hemi­ cloud patterns and east- west (zonal) jets. All have long-lived sphere. Jupiter has weather patterns ("storms'') that last storms, although Jupiter's Great Red Spot (GRS), which fo r centuries. Earth has stationary weather patterns fixed may be hundreds of years old, seems to be the oldest. to the topography, but the average lifetime of a traveling storm is rvl week. Jupiter has no topography, i.e. , no con­ tinents or oceans; its atmosphere merges smoothly with the 6.1.1 Data Sets planet·s fluid interior. Absorbed sunlight (power per unit area) at Jupiter is only 3.3% that at Earth, yet Jupiter's Early astronomers, using small telescopes with their eyes winds are 3-4 times stronger. The ratio of Jupiter·s internal as detectors. recorded the changing appearance of Jupiter·s power to absorbed solar power is 0.7. On Earth the ratio atmosphere. Their descriptive terms - belts and zones, 4 is 2 X lQ- . Jupiter's hydrologic cycle is fundamentally dif­ brown spots and red spots, plumes, barges, festoons, and ferent from Earth's because it has no ocean, but lightning streamers - are still used. Other terms - describing vorticity, 106 Ingersoll et al. vertical motion. eddy fluxes. temperature gradient . cloud 6.1.2 Scope of t h e Chapter and Role of Models height . and wind shear - have been added. bringing the This chapter reviews the observations and theory of tudy of Jupiter"s atmospheric dynamics to a level similar Jupiter's atmospheric dynamics. Sections 6.2 and 6.3 cover to that of Earth during the pioneering days of terrestrial the banded structures and discrete features. respectively. meteorology everal decades ago. Section 6.4 covers vertical structure and temperatures. ec­ Jupiter bas what is perhaps the most photogenic at­ tion 6.5 discus es lightning and models of moist convection. mosphere in the solar system. :\1ost of the visible contrast Section 6.6 reviews numerical models of the bands and zonal arises from clouds in the 0.7- to 1.5-bar range (see Chap­ jets, and ection 6. 7 review numerical models of the dis­ ter 5). The clouds come in different colors, and usually have crete features. Finally. Section 6. provides a discussion of textme on scales as small as a few tens of kilometers, which outstanding questions and how they might be answered. The is comparable to thee-folding thickness (scale height) of the chapter is aimed at a general planetary science audience. al­ atmosphere. At this resolution. cloud tracking over a few though some familiarity with atmospheric dynamics is help­ 1 ful for the modeling sections. hours yields wind estimates with errors of a few m s- . In contrast. the winds around the GRS and many of the zonal AI3 in the terrestrial atmospheric sciences, validated nu­ 1 merical model are the key to understanding. :\Iodels of jets exceed 100m s- . Winds are measured relative to Sys­ tem lll. a uniform rotation rate with period 9 h 55 m 29.71 s. Jupiter's atmosphere tend to be less complex than models of which is defined by radio emissions that are presumably tied Earth's atmosphere. They nevertheles contain much of the to the magnetic field and thus to the planet"s interior. nonlinear physics associated with large-scale stratified flows in rotating systems. Ideally. the complexity of the models Traditional Earth-based telescopic resolution is 3000 matches that of the observations. so that hypothese can km, which is enough to image the major atmospheric fea­ be tested cleanly. Some pure fl uid dynamics models, e.g., tures. Pioneers 10 and 11 improved on Earth-based res­ of two-dimensional flows without viscosity, find their best olution, but Voyagers 1 and 2 provided a breakthrough. applications on Jupiter and the other giant planets. Exam­ For cloud tracking. the most important data were the ··ap­ ples include the Kida vortex model. the models of inverse proach·· movies that were recorded during the three months cascades and beta-tUl·bulence. and the statistical mechan­ prior to each of the two encounters in :t\Iarch and July of ical models of two-dimen ional coherent tructures. The e 1979. The spacecraft obtained a view of each feature every models are discu ed in ections 6.6 and 6. 7. "'10 hours as the resolution improved from 500 km to 60 Peek (195 ) is the definitive book for early ob erva­ km. Occasional Yiews of selected features continued down tions of Jupiter· atmosphere. Gehrels (1976) is a collec­ to a resolution (pi.xel ize) of "'5 km. The Voyager infrared tion of chapters by various authors following the Pioneer pectrometer (IRIS) viewed the entire planet at a resolu­ encounters. Rogers (1995) is the modern equivalent of Peek. tion of several thousand kilometers and obtained spectra of There are many review articles (Ingersoll1976b, tone 1976. all the major dynamical features. Galileo obtained les data Williams 19 5. Beebe et al. 19 9. Ingersoll 1990, l\1arcu than Voyager. but the imaging resolution, usually 25 km. 1993, Gierasch and Conrath 1993. Dowling 1995a, Inger oil and the wa,·elengtb coverage were better. In particular. the et al. 1995). As an ensemble. the articles record the variance near-infrared response of the Galileo camera allowed imag­ of expert opinion. As a time series. they record the progress ing in the absorption bands of methane, from which one that has been made and bring clarity to t he remaining unan­ separates cloud at different altitudes. Cassini combined the swered questions. high data rate of Voyager with the broad spectral coverage For a point on the surface of an oblate planet. there are of Galileo. yielding a best resolution of 60 km (the Cassini two definitions of latitude. Planetographic (PG) latitude is data were still being analyzed at the time of thi writing). the elevation angle (relative to the equatorial plane) of the vector along the local vertical. and planetocentric (PC) lati­ Ground-based telescopes and the Hubble pace Tele­ tude is the elevation angle (relative to the equatorial plane) scope (HST) provide a continuous record of Jupiter's cloud of the vector from the planet's center. PG latitude is greater features at everal-month intervals. These data document than PC latitude except at the equator and poles where they the major e\·ents and also the extreme steadiness of the are equal. For Jupiter the maximum difference (4.16°) is at atmosphere. Ground-based telescope provide the highest 46.6° PG latitude. Unless otherwise specified, we use P G pectral resolution. Several trace gases. which provide im­ latitudes in this chapter. portant diagnostics of vertical motion. were discovered from the ground. Earth-based radio observations probe t he deep atmo phere. The HST was essentia l during the collisions of Comet Shoemaker- Levy 9 with Jupiter in 1994. Besides 6.2 BANDED STRUCTURE recording the waves and debris from the collisions, the HST 6.2.1 Belts and Zones defined the prior dynamical state of the atmo phere. Jupiter's visible atmosphere is dominated by banded struc­ The Galileo probe provided profiles of wind. tempera­ tures (Figure 6.1). Traditionally. the white bands are called ture. composition, clouds, and radiation as functions of pre - zones and the dark bands are called belts. The zonal jets sure down to the 22-bar level. but only at one point on the (eastward and westward currents in the atmosphere) are planet. Except at the Galileo probe site. these quantitie are strongest on the boundaries between the belts and zone uncertain below the 1-bar level. The base of the water cloud (Figure 6.2). The zones are anticyclonic, which means they is thought to lie at the 6- or 7-bar level, "'75 km below the have an eastward jet on the poleward side and a westward jet clouds that produce the visible contrast. on the equatorward side (in the reference frame of the planet, Atmospheric Dynamics 107 Figure 6 .1. See Plate 2. Whole disk views of J upiter. T he left image is from Voyager 2 in J une 1979.
Recommended publications
  • Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1
    Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1. A lot a new material from the Cassini spacecraft, which has been in orbit around Saturn for four years. This talk will have a lot of pictures, not so much models. 2. Uranus on the left, Neptune on the right. Uranus spins on its side. The obliquity is 98 degrees, which means the poles receive more sunlight than the equator. It also means the sun is almost overhead at the pole during summer solstice. Despite these extreme changes in the distribution of sunlight, Uranus is a banded planet. The rotation dominates the winds and cloud structure. 3. Saturn is covered by a layer of clouds and haze, so it is hard to see the features. Storms are less frequent on Saturn than on Jupiter; it is not just that clouds and haze makes the storms less visible. Saturn is a less active planet. Nevertheless the winds are stronger than the winds of Jupiter. 4. The thickness of the atmosphere is inversely proportional to gravity. The zero of altitude is where the pressure is 100 mbar. Uranus and Neptune are so cold that CH forms clouds. The clouds of NH3 , NH4SH, and H2O form at much deeper levels and have not been detected. 5. Surprising fact: The winds increase as you move outward in the solar system. Why? My theory is that power/area is smaller, small‐scale turbulence is weaker, dissipation is less, and the winds are stronger. Jupiter looks more turbulent, and it has the smallest winds.
    [Show full text]
  • Stratosphere-Troposphere Coupling: a Method to Diagnose Sources of Annular Mode Timescales
    STRATOSPHERE-TROPOSPHERE COUPLING: A METHOD TO DIAGNOSE SOURCES OF ANNULAR MODE TIMESCALES Lawrence Mudryklevel, Paul Kushner p R ! ! SPARC DynVar level, Z(x,p,t)=− T (x,p,t)d ln p , (4) g !ps x,t p ( ) R ! ! Z(x,p,t)=− T (x,p,t)d ln p , (4) where p is the pressure at the surface, R is the specific gas constant and g is the gravitational acceleration s g !ps(x,t) where p is the pressure at theat surface, the surface.R is the specific gas constant and g is the gravitational acceleration Abstract s Geopotentiallevel, Height Decomposition Separation of AM Timescales p R ! ! at the surface. This time-varying geopotentialZ( canx,p,t be)= decomposed− T into(x,p a,t cli)dmatologyln p , and anomalies from the(4) climatology AM timescales track seasonal variations in the AM index’s decorrelation time6,7. For a hydrostatic fluid, geopotential height may be describedg !p sas(x ,ta) function of time, pressure level Timescales derived from Annular Mode (AM) variability provide dynamical and ashorizontalZ(x,p,t position)=Z (asx,p a )+temperatureδZ(x,p,t integral). Decomposing from the Earth’s the temperature surface to a andgiven surface pressure pressure fields inananalogous insight into stratosphere-troposphere coupling and are linked to the strengthThis of time-varying level, geopotentialwhere can beps is decomposed the pressure at into the a surface, climatologyR is the and specific anomalies gas constant from and theg is climatology the gravitational acceleration NCEP, 1958-2007 level: ^ a) o (yL ) d) o AM responses to climate forcings.
    [Show full text]
  • ATMOSPHERIC and OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation
    ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation Geoffrey K. Vallis Contents Preface xi Part I FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS 1 1 Equations of Motion 3 1.1 Time Derivatives for Fluids 3 1.2 The Mass Continuity Equation 7 1.3 The Momentum Equation 11 1.4 The Equation of State 14 1.5 The Thermodynamic Equation 16 1.6 Sound Waves 29 1.7 Compressible and Incompressible Flow 31 1.8 * More Thermodynamics of Liquids 33 1.9 The Energy Budget 39 1.10 An Introduction to Non-Dimensionalization and Scaling 43 2 Effects of Rotation and Stratification 51 2.1 Equations in a Rotating Frame 51 2.2 Equations of Motion in Spherical Coordinates 55 2.3 Cartesian Approximations: The Tangent Plane 66 2.4 The Boussinesq Approximation 68 2.5 The Anelastic Approximation 74 2.6 Changing Vertical Coordinate 78 2.7 Hydrostatic Balance 80 2.8 Geostrophic and Thermal Wind Balance 85 2.9 Static Instability and the Parcel Method 92 2.10 Gravity Waves 98 v vi Contents 2.11 * Acoustic-Gravity Waves in an Ideal Gas 100 2.12 The Ekman Layer 104 3 Shallow Water Systems and Isentropic Coordinates 123 3.1 Dynamics of a Single, Shallow Layer 123 3.2 Reduced Gravity Equations 129 3.3 Multi-Layer Shallow Water Equations 131 3.4 Geostrophic Balance and Thermal wind 134 3.5 Form Drag 135 3.6 Conservation Properties of Shallow Water Systems 136 3.7 Shallow Water Waves 140 3.8 Geostrophic Adjustment 144 3.9 Isentropic Coordinates 152 3.10 Available Potential Energy 155 4 Vorticity and Potential Vorticity 165 4.1 Vorticity and Circulation 165
    [Show full text]
  • Lecture 23: Jupiter Solar System Jupiter's Orbit
    Lecture 23: Jupiter Solar System Jupiter’s Orbit •The semi-major axis of Jupiter’s orbit is a = 5.2 AU Jupiter Sun a •Kepler’s third law relates the semi-major axis to the orbital period 1 Jupiter’s Orbit •Kepler’s third law relates the semi-major axis a to the orbital period P 2 3 ⎛ P ⎞ = ⎛ a ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ years⎠ ⎝ AU ⎠ •Solving for the period P yields 3/ 2 ⎛ P ⎞ = ⎛ a ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ years ⎠ ⎝ AU ⎠ •Since a = 5.2 AU for Jupiter, we obtain P = 11.9 Earth years •Jupiter’s orbit has eccentricity e = 0.048 Jupiter’s Orbit •The distance from the Sun varies by about 10% during an orbit Dperihelion = 4.95 AU Daphelion = 5.45 AU •Like Mars, Jupiter is easiest to observe during favorable opposition •At this time, the Earth-Jupiter distance is only about 3.95 AU Earth Jupiter Jupiter Sun (perihelion) (aphelion) •Jupiter appears full during favorable opposition Bulk Properties of Jupiter •Jupiter is the largest planet in the solar system •We have for the radius and mass of Jupiter Rjupiter = 71,400 km = 11.2 Rearth 30 Mjupiter = 1.9 x 10 g = 318 Mearth •The volume of Jupiter is therefore given by 4 V = π R 3 jupiter 3 jupiter 30 3 •Hence Vjupiter = 1.5 x 10 cm 2 Bulk Properties of Jupiter •The average density of Jupiter is therefore M × 30 ρ = jupiter = 1.9 10 g jupiter × 30 3 Vjupiter 1.5 10 cm •We obtain ρ = −3 jupiter 1.24 g cm •This is much less than the average density of the Earth •Hence there is little if any iron and no dense core inside Jupiter Bulk Properties of Jupiter •The average density of the Earth is equal to −3 ρ⊕ = 6 g cm •The density
    [Show full text]
  • Thermal Structure and Composition of Jupiter's Great Red Spot from High-Resolution Thermal Imaging
    Thermal Structure and Composition of Jupiter’s Great Red Spot from High-Resolution Thermal Imaging Leigh N. Fletchera,b, G. S. Ortona, O. Mousisc,d, P. Yanamandra-Fishera, P. D. Parrishe,a, P. G. J. Irwinb, B. M. Fishera, L. Vanzif, T. Fujiyoshig, T. Fuseg, A.A. Simon-Millerh, E. Edkinsi, T.L. Haywardj, J. De Buizerk aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA bAtmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK cInstitut UTINAM, CNRS-UMR 6213, Observatoire de Besan¸con, Universit´ede Franche-Comt´e, Besan¸con, France dLunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA eSchool of GeoScience, University of Edinburgh, Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UK fPontificia Universidad Catolica de Chile, Department of Electrical Engineering, Av. Vicuna Makenna 4860, Santiago, Chile. gSubaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 650 North A’ohoku Place, Hilo, Hawaii 96720, USA hNASA/Goddard Spaceflight Center, Greenbelt, Maryland, 20771, USA iUniversity of California, Santa Barbara, Santa Barbara, CA 93106, USA jGemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena, Chile. kSOFIA - USRA, NASA Ames Research Center, Moffet Field, CA 94035, USA. Abstract Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter’s Great Red Spot (GRS) and its temporal variability between 1995-2008. An elliptical warm core, extending over 8◦ of longitude and 3◦ of latitude, was observed within the cold anticyclonic vortex at 21◦S.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • On the Impact of Future Climate Change on Tropopause Folds and Tropospheric Ozone
    https://doi.org/10.5194/acp-2019-508 Preprint. Discussion started: 14 June 2019 c Author(s) 2019. CC BY 4.0 License. On the impact of future climate change on tropopause folds and tropospheric ozone Dimitris Akritidis1, Andrea Pozzer2, and Prodromos Zanis1 1Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece 2Max Planck Institute for Chemistry, Mainz, Germany Correspondence: D. Akritidis ([email protected]) Abstract. Using a transient simulation for the period 1960-2100 with the state-of-the-art ECHAM5/MESSy Atmospheric Chemistry (EMAC) global model and a tropopause fold identification algorithm, we explore the future projected changes in tropopause folds, Stratosphere-to-Troposphere Transport (STT) of ozone and tropospheric ozone under the RCP6.0 scenario. Statistically significant changes in tropopause fold frequencies are identified in both Hemispheres, occasionally exceeding 3%, 5 which are associated with the projected changes in the position and intensity of the subtropical jet streams. A strengthen- ing of ozone STT is projected for future at both Hemispheres, with an induced increase of transported stratospheric ozone tracer throughout the whole troposphere, reaching up to 10 nmol/mol in the upper troposphere, 8 nmol/mol in the middle troposphere and 3 nmol/mol near the surface. Notably, the regions exhibiting the maxima changes of ozone STT at 400 hPa, coincide with that of the highest fold frequencies, highlighting the role of tropopause folding mechanism in STT process under 10 a changing climate. For both the eastern Mediterranean and Middle East (EMME), and the Afghanistan (AFG) regions, which are known as hotspots of fold activity and ozone STT during the summer period, the year-to-year variability of middle tropo- spheric ozone with stratospheric origin is largely explained by the short-term variations of ozone at 150 hPa and tropopause folds frequency.
    [Show full text]
  • Ozone: Good up High, Bad Nearby
    actions you can take High-Altitude “Good” Ozone Ground-Level “Bad” Ozone •Protect yourself against sunburn. When the UV Index is •Check the air quality forecast in your area. At times when the Air “high” or “very high”: Limit outdoor activities between 10 Quality Index (AQI) is forecast to be unhealthy, limit physical exertion am and 4 pm, when the sun is most intense. Twenty minutes outdoors. In many places, ozone peaks in mid-afternoon to early before going outside, liberally apply a broad-spectrum evening. Change the time of day of strenuous outdoor activity to avoid sunscreen with a Sun Protection Factor (SPF) of at least 15. these hours, or reduce the intensity of the activity. For AQI forecasts, Reapply every two hours or after swimming or sweating. For check your local media reports or visit: www.epa.gov/airnow UV Index forecasts, check local media reports or visit: www.epa.gov/sunwise/uvindex.html •Help your local electric utilities reduce ozone air pollution by conserving energy at home and the office. Consider setting your •Use approved refrigerants in air conditioning and thermostat a little higher in the summer. Participate in your local refrigeration equipment. Make sure technicians that work on utilities’ load-sharing and energy conservation programs. your car or home air conditioners or refrigerator are certified to recover the refrigerant. Repair leaky air conditioning units •Reduce air pollution from cars, trucks, gas-powered lawn and garden before refilling them. equipment, boats and other engines by keeping equipment properly tuned and maintained. During the summer, fill your gas tank during the cooler evening hours and be careful not to spill gasoline.
    [Show full text]
  • Chapter 7 Balanced Flow
    Chapter 7 Balanced flow In Chapter 6 we derived the equations that govern the evolution of the at- mosphere and ocean, setting our discussion on a sound theoretical footing. However, these equations describe myriad phenomena, many of which are not central to our discussion of the large-scale circulation of the atmosphere and ocean. In this chapter, therefore, we focus on a subset of possible motions known as ‘balanced flows’ which are relevant to the general circulation. We have already seen that large-scale flow in the atmosphere and ocean is hydrostatically balanced in the vertical in the sense that gravitational and pressure gradient forces balance one another, rather than inducing accelera- tions. It turns out that the atmosphere and ocean are also close to balance in the horizontal, in the sense that Coriolis forces are balanced by horizon- tal pressure gradients in what is known as ‘geostrophic motion’ – from the Greek: ‘geo’ for ‘earth’, ‘strophe’ for ‘turning’. In this Chapter we describe how the rather peculiar and counter-intuitive properties of the geostrophic motion of a homogeneous fluid are encapsulated in the ‘Taylor-Proudman theorem’ which expresses in mathematical form the ‘stiffness’ imparted to a fluid by rotation. This stiffness property will be repeatedly applied in later chapters to come to some understanding of the large-scale circulation of the atmosphere and ocean. We go on to discuss how the Taylor-Proudman theo- rem is modified in a fluid in which the density is not homogeneous but varies from place to place, deriving the ‘thermal wind equation’. Finally we dis- cuss so-called ‘ageostrophic flow’ motion, which is not in geostrophic balance but is modified by friction in regions where the atmosphere and ocean rubs against solid boundaries or at the atmosphere-ocean interface.
    [Show full text]
  • ATM 500: Atmospheric Dynamics End-Of-Semester Review, December 6 2017 Here, in Bullet Points, Are the Key Concepts from the Second Half of the Course
    ATM 500: Atmospheric Dynamics End-of-semester review, December 6 2017 Here, in bullet points, are the key concepts from the second half of the course. They are not meant to be self-contained notes! Refer back to your course notes for notation, derivations, and deeper discussion. Static stability The vertical variation of density in the environment determines whether a parcel, disturbed upward from an initial hydrostatic rest state, will accelerate away from its initial position, or oscillate about that position. For an incompressible or Boussinesq fluid, the buoyancy frequency is g dρ~ N 2 = − ρ~dz For a compressible ideal gas, the buoyancy frequency is g dθ~ N 2 = θ~dz (the expressions are different because density is not conserved in a small upward displacement of a compressible fluid, but potential temperature is conserved) Fluid is statically stable if N 2 > 0; otherwise it is statically unstable. Typical value for troposphere: N = 0:01 s−1, with corresponding oscillation period of 10 minutes. Dry adiabatic lapse rate g −1 Γd = = 9:8 K km cp The rate at which temperature decreases during adiabatic ascent (for which Dθ Dt = 0) \Dry" here means that there is no latent heating from condensation of water vapor. Static stability criteria for a dry atmosphere Environment is stable to dry con- vection if dθ~ dT~ > 0 or − < Γ dz dz d and otherwise unstable. 1 Buoyancy equation for Boussinesq fluid with background stratification Db0 + N 2w = 0 Dt where we have separated the full buoyancy into a mean vertical part ^b(z) and 0 2 d^b 2 everything else (b ), and N = dz .
    [Show full text]
  • Some Challenges in the Assimilation of Stratosphere / Tropopause Satellite Data
    Some challenges in the assimilation of stratosphere / tropopause satellite data William Lahoz and Alan Geer DARC, Department of Meteorology, University of Reading RG6 6BB, United Kingdom [email protected], [email protected] ABSTRACT Recent developments, notably the wealth of data from research satellites, more sophisticated atmospheric models, and the availability of increasingly powerful computers, provide unprecedented opportunities to extend our knowledge and understanding of the atmosphere. These opportunities bring with them a series of challenges to be met. This paper provides several examples of these challenges, focusing on: (1) assimilation of water vapour data in the stratosphere / tropopause, (2) coupling of dynamics and chemistry components in assimilation schemes, and (3) assimilation of limb radiances. Future directions will be discussed. 1. Introduction 1.1. Importance of the stratosphere / tropopause regions The stratosphere and tropopause are important for a number of reasons, including (1) the presence of important radiative-dynamics-chemistry feedbacks associated with stratospheric ozone and relevant to studies of climate change and attribution (WMO 1999, Fahey 2003), (2) quantitative evidence that knowledge of the stratospheric state may help predict the tropospheric state at time-scales of 10-45 days (Charlton et al. 2003), (3) the important role that UTLS water vapour plays in the radiative budget of the atmosphere (SPARC 2000), and (4) the need for a realistic representation of the transport between the troposphere and stratosphere, and between the tropics and extra-tropics in the stratosphere, as this plays a key role in the distribution of stratospheric ozone (WMO 1999). The recognition of the key role of stratospheric ozone in determining the temperature distribution and circulation of the atmosphere has encouraged the incorporation of photochemical schemes of varying complexity into climate models (Lahoz 2003b).
    [Show full text]
  • Atmospheric Layers- MODREAD
    Cross-Curricular Reading Comprehension Worksheets: E-32 of 36 "UNPTQIFSJD-BZFST >i\ÊÊÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ $SPTT$VSSJDVMBS'PDVT&BSUI4DJFODF Answer the following questions based on the reading The atmosphere surrounding Earth is made up of several layers passage. Don’t forget to go back to the passage of gas mixtures. The most common gases in our atmosphere are whenever necessary to nd or con rm your answers. nitrogen, oxygen and carbon dioxide. The amount of the gases in the mixture varies above the different places on Earth. The atmosphere puts pressure on the planet. The amount of 1) Which layer of the atmosphere has most of the air? pressure becomes less and less the further away from Earth’s surface you are. When we think of the atmosphere, we mostly think ___________________________________________ of the part that is closest to us. At any moment in time, the overall ___________________________________________ condition of Earth’s atmosphere, including the part we can see and the parts we cannot, is called weather. Weather can change, and it 2) If you were to send a bottle rocket 15 kilometers up into frequently does. That is because the conditions of the atmosphere the air, which layer of the atmosphere would it be in? can change. The four main layers in Earth’s atmosphere are the troposphere, ___________________________________________ the stratosphere, the mesosphere and the thermosphere. The layer that is closest to the surface of Earth is called the troposphere. It ___________________________________________ extends up from the surface of Earth for about 11 kilometers. This 3) What are the most common gases in Earth’s is the layer where airplanes y.
    [Show full text]