2016 Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

2016 Abstract Book Plenary Lectures Franz Huber Lecture UNDERSTANDING THE RELATIONSHIP BETWEEN GENES AND SOCIAL BEHAVIOR: LESSONS FROM THE HONEY BEE Gene Robinson1 University of Illinois,Urbana,USA1 The study of genes and social behavior is still a young field. In this lecture, I will discuss some of the first insights to emerge that describe the relationship between them. These include the surprisingly close relationship between brain gene expression and specific behavioral states; social regulation of brain gene expression; control of social behavior by context-dependent rewiring of brain transcriptional regulatory networks; and evolutionarily conserved genetic tool kits for social behavior that span insects, fish and mammals. Social Behavior Keywords :behavioral evolution; genomics; neural systems Plenary Lectures Walter Heiligenberg Lecture MERGING OF OUR SENSES: BUILDING BLOCKS AND CANONICAL COMPUTATIONS Dora Angelaki1; Greg Deangelis1 Baylor College of Medicine, Houston, USA1 A fundamental aspect of our sensory experience is that information from different modalities is often seamlessly integrated into a unified percept. Many studies have demonstrated statistically optimal cue integration, although such improvement in precision is small. Another important property of perception is accuracy. Does multisensory integration improve accuracy? We have investigated this question in the context of visual/vestibular heading perception. Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and bias heading perception if the visual system cannot dissociate object motion from self-motion. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. These findings demonstrate that vestibular signals facilitate the perceptual dissociation of self-motion and object motion, consistent with recent computational work which suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. These findings provide direct evidence for a biological basis of the benefits of multisensory integration, both for improving sensitivity and for resolving sensory ambiguities. The studies we summarize identify both the computations and neuronal mechanisms that may form the basis for cue integration. Diseases, such as autism spectrum disorders, might suffer from deficits in one or more of these canonical computations, which are fundamental in helping merge our senses to interpret and interact with the world. Orientation & Navigation Keywords :multisensory; optic flow; vestibular Plenary Lectures 1 RESPONSE BASED ANALYSES OF BEHAVIOR OVERLOOK OTHER IMPORTANT BEHAVIORAL CHANGES: INTEGRATING HABITUATION INTO ONGOING BEHAVIOR Catharine Rankin1; Andrew Giles1; Evan Ardiel1 University of British Columbia,Vancouver,Canada1 Traditionally researchers who study habituation have focused on a single dimension of the behavior (i.e. response probability or magnitude). Our high throughput behavioural analyses of habituation of two different responses for wild-type and mutant strains of C. elegans have changed this view. First we have shown that there are a number of independent components (habituation rate and final level for probability, duration and speed) of habituation of the tap response that show different forms of plasticity and, for the most part, are mediated by different genes. In addition, for both tap and photoactivation of the ASH neurons the response does not occur in a vacuum- there are changes in ongoing behavior that complement the response decrement. Interestingly, as some aspects of behavior decrement others appear to sensitize. When the changes in the components of behavior are integrated it facilitates dispersal allowing the animal to move away from the area. This offers a new way to think about the role of habituation and sensitization in the context of overall behavioral strategies. These findings also have implications for other response-based measures of learning and memory. Behavioral Plasticity Keywords :habituation; non-associative learning; c. elegans Plenary Lectures 2 CONFIDENCE IN RATS, HUMANS, AND MATHEMATICS Adam Kepecs1 Cold Spring Harbor Laboratory,Cold Spring Harbor,USA1 Confidence manifests itself to us as a feeling but it leads a double life. Besides subjective confidence, it is widely studied in computational sciences as an objective statistical quantity, the estimated probability that a chosen hypothesis is correct. This raises the possibility that we can define confidence from first principles in statistics to provide a formal foundation for the scientific inquiry into subjective confidence. I will describe an approach incorporating mathematical models and human psychophysics that enabled us to study confidence in rats. Then I will discuss how rats can be asked to behaviorally report their confidence and our explorations into the neurobiological basis of confidence judgments. Computational Modeling Keywords :computational science; statistics; Plenary Lectures 3 THE HUNGRY FLY: TASTE RECEPTORS, CIRCUITS, AND THE CONTROL OF FEEDING BEHAVIOR Anupama Dahanukar1 University of California,Riverside,United States1 Animals rely on their taste systems to select foods for consumption and can regulate both the quality and quantity of food intake to achieve nutrient homeostasis. We use the model insect Drosophila melanogaster to understand the molecular and cellular mechanisms by which tastants are encoded by sensory neurons and the logic by which sensory neuron activity is translated to feeding behavioral output. One focus is on a large family of 68 Gustatory receptors (Grs) expressed in complex combinatorial patterns in sweet and bitter taste neurons. In previous studies, we have used genetic and evolutionary analyses to identify the roles of specific Grs in detecting sweet tastants. Ongoing efforts are directed towards functional analysis of various Grs in detecting sweet and bitter compounds, and investigating receptors for other categories of tastants. Recently we have also uncovered mechanisms that integrate tastant information in sensory neurons, in part by our finding of combinatorial mechanisms for sweet and bitter ligand recognition by individual Grs using a unique ectopic expression system for “decoding” taste receptors. Molecular and cellular investigations of taste sensory function are complemented with efforts to identify neural circuits that convey taste information using anatomical and functional screens, which resulted in the identification of second order neurons in a sweet taste circuit. We are also identifying genes and circuit networks involved in food choice, which suggest that taste circuit function may be modulated by qualitative changes in nutrient demand. Sensory: Olfaction and Taste Keywords :drosophila; chemoreceptors; feeding Plenary Lectures 4 NEUROBIOLOGY OF VISUALLY GUIDED PREY AND PREDATOR BEHAVIORS IN CRABS Daniel Tomsic1 Facultad de Ciencias Exacta y Naturales, Univ. Buenos Aires - IFIBYNE, CONICET,Buenos Aires,Argentina1 In nearly all active moving animals vision constitutes the most important source of external information for organizing the behavior. Visual abilities likely originated to avoid obstacles during navigation and to detect and anticipate predator assaults. In order to escape from a predator, animals need to recognize the menace, localize it in space and determine the trajectory of attack. They also usually survey the environment in search of potential shelters. Additionally, they may count on memorized experiences about similar events. With all this information plus the time conferred by distant visual detection, animals make decision on the appropriate strategy to save their lives. Thus, upon the sight of a predator they can choose to freeze, to escape or to confront. And If for example they choose to escape, further decisions implicating the moment, direction and speed of run should be made. These abilities to process substantial amount of information, make complex decisions, form long-term memories and organize complicated motor patterns, exist even in animals with small brains. Some of them offer particular advantages for the neuroethological approach. In this talk I will present results from our investigations on the abilities of the crab Neohelice (previous Chasmagnathus) granulata to deal with visual danger stimuli, and the role of a group of motion-sensitive giant neurons in these behaviors. I will also show preliminary results on the prey capture abilities of the crab. Our studies comprise behavioral analyses in the field and the laboratory, neuroanatomy, in vivo intracellular electrophysiology and calcium imaging, and modeling. Sensory: Vision Keywords :motion detection; neuron; escape Plenary Lectures 5 BRAIN DIVERSITY IN EVOLUTION: WHAT CHANGES, WHAT DOESN’T - AND WHAT DOES IT MATTER? Suzana Herculano-Houzel1 Universidade Federal do Rio de Janeiro,Rio de Janeiro,Brasil1 What does brain size mean? It was long assumed that all mammalian brains were made the same, with numbers of neurons that were always proportional to brain size, such that two brains of similar size should have similar numbers of neurons, and larger brains should have more neurons than
Recommended publications
  • Occurrence of Shell Disease and Carapace Abnormalities on Natural
    JMBA2 - Biodiversity Records Published on-line Occurrence of shell disease and carapace abnormalities on natural population of Neohelice granulata (Crustacea: Varunidae) from a tropical mangrove forest, Brazil Rafael Augusto Gregati* and Maria Lucia Negreiros Fransozo NEBECC (Group of Studies on Crustacean Biology, Ecology and Culture), Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) 18618-000, Botucatu, SP, Brazil. *Corresponding author, e-mail: [email protected] In this note, we registered the occurrence of shell diseases and carapace abnormalities on a natural population of Neohelice granulata from a tropical mangrove forest, in South America, as a part of a wide ecological study. The occurrence of 32 adult crabs (1.77%) with black or brown spotted shell, or deformities on carapace was registered, collected in the autumn and winter seasons. The low prevalence of shell diseases and abnormalities in this natural population is considered normal and probably caused by injuries occurred during the moult period of crabs. Keywords: Neohelice granulata, shell disease, carapace abnormalities Introduction Shell diseases and external abnormalities or deformities are just one of the common problems affecting freshwater and marine crustaceans. These diseases have been reported in many natural crustacean populations, principally in many species of economic importance such as the Alaskan king crab, portunid crabs, shrimps and lobsters (Maloy, 1978; Sindermann, 1989; Noga et al., 2000). The shell diseases are characterized by various types of erosive lesions on the carapace (Johnson, 1983; Sindermann & Lightner, 1988) and the classical and most common kind of shell disease is know as ‘brown spot’ or ‘black spot’, which consists of various-sized foci of hyperpigmentation (Rosen, 1970; Noga et al., 2000).
    [Show full text]
  • Natural Diet of Neohelice Granulata (Dana, 1851) (Crustacea, Varunidae) in Two Salt Marshes of the Estuarine Region of the Lagoa Dos Patos Lagoon
    91 Vol.54, n. 1: pp. 91-98, January-February 2011 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Natural Diet of Neohelice granulata (Dana, 1851) (Crustacea, Varunidae) in Two Salt Marshes of the Estuarine Region of the Lagoa dos Patos Lagoon Roberta Araujo Barutot 1*, Fernando D´Incao 1 and Duane Barros Fonseca 2 1Instituto de Oceanografia; Universidade Federal do Rio Grande; 96201-900; Rio Grande - RS - Brasil. 2Instituto de Ciências Biológicas; Universidade Federal do Rio Grande; 96201-900; Rio Grande - RS - Brasil ABSTRACT Natural diet of Neohelice granulata in two salt marshes of Lagoa dos Patos, RS were studied. Sampling was performed seasonally and crabs were captured by hand by three persons during one hour, fixed in formaldehyde (4%) during 24 h, transferred to alcohol (70%). Each foregut was weighed and repletion level was determined. Differences between sexes in the frequencies of occurrence of items were tested by χ2test. A total of 452 guts were analyzed. Quali-quantitative analyses were calculated following the method of relative frequency occurrence and relative frequency of the points. At both sites, for both sexes and in all seasons, the main food items were sediment, Spartina sp. and plant detritus. The highest values of mean repletion index were estimated for the spring and summer. Analysing both salt marshes, in different seasons significant shifts in the natural diet of Neohelice granulata was not observed throughout the period of study. Key words : Crustacea, Brachyura, diet, salt marsh INTRODUCTION Neohelice granulata (Dana, 1851) is a crab found in salt marshes and mangroves of the Southern Clarification of trophic relationships is one Atlantic Coast, from Rio de Janeiro (Brazil) to important approach for understanding the Patagonia (Argentina) (Melo, 1996), and it is one organization of communities.
    [Show full text]
  • Masakazu Konishi
    Masakazu Konishi BORN: Kyoto, Japan February 17, 1933 EDUCATION: Hokkaido University, Sapporo, Japan, B.S. (1956) Hokkaido University, Sapporo, Japan, M.S. (1958) University of California, Berkeley, Ph.D. (1963) APPOINTMENTS: Postdoctoral Fellow, University of Tübingen, Germany (1963–1964) Postdoctoral Fellow, Division of Experimental Neurophysiology, Max-Planck Institut, Munich, Germany (1964–1965) Assistant Professor of Biology, University of Wisconsin, Madison (1965–1966) Assistant Professor of Biology, Princeton University (1966–1970) Associate Professor of Biology, Princeton University (1970–1975) Professor of Biology, California Institute of Technology (1975– 1980) Bing Professor of Behavioral Biology, California Institute of Technology (1980– ) HONORS AND AWARDS (SELECTED): Member, American Academy of Arts and Sciences (1979) Member, National Academy of Sciences (1985) President, International Society for Neuroethology (1986—1989) F. O. Schmitt Prize (1987) International Prize for Biology (1990) The Lewis S. Rosenstiel Award, Brandeis University (2004) Edward M. Scolnick Prize in Neuroscience, MIT (2004) Gerard Prize, the Society for Neuroscience (2004) Karl Spencer Lashley Award, The American Philosophical Society (2004) The Peter and Patricia Gruber Prize in Neuroscience, The Society for Neuroscience (2005) Masakazu (Mark) Konishi has been one of the leaders in avian neuroethology since the early 1960’s. He is known for his idea that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. He was the fi rst to show that estrogen prevents programmed cell death in female zebra fi nches. He also pioneered work on the brain mechanisms of sound localization by barn owls. He has trained many students and postdoctoral fellows who became leading neuroethologists.
    [Show full text]
  • Growth, Tolerance to Low Salinity, and Osmoregulation in Decapod Crustacean Larvae
    Vol. 12: 249–260, 2011 AQUATIC BIOLOGY Published online June 1 doi: 10.3354/ab00341 Aquat Biol Growth, tolerance to low salinity, and osmoregulation in decapod crustacean larvae Gabriela Torres1, 2,*, Luis Giménez1, Klaus Anger2 1School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, Germany ABSTRACT: Marine invertebrate larvae suffer high mortality due to abiotic and biotic stress. In planktotrophic larvae, mortality may be minimised if growth rates are maximised. In estuaries and coastal habitats however, larval growth may be limited by salinity stress, which is a key factor select- ing for particular physiological adaptations such as osmoregulation. These mechanisms may be ener- getically costly, leading to reductions in growth. Alternatively, the metabolic costs of osmoregulation may be offset by the capacity maintaining high growth at low salinities. Here we attempted identify general response patterns in larval growth at reduced salinities by comparing 12 species of decapod crustaceans with differing levels of tolerance to low salinity and differing osmoregulatory capability, from osmoconformers to strong osmoregulators. Larvae possessing tolerance to a wider range in salinity were only weakly affected by low salinity levels. Larvae with a narrower tolerance range, by contrast, generally showed reductions in growth at low salinity. The negative effect of low salinity on growth decreased with increasing osmoregulatory capacity. Therefore, the ability to osmoregulate allows for stable growth. In euryhaline larval decapods, the capacity to maintain high growth rates in physically variable environments such as estuaries appears thus to be largely unaffected by the energetic costs of osmoregulation.
    [Show full text]
  • Burrowing Activity of the Neohelice Granulata Crab (Brachyura, Varunidae) in Southwest Atlantic Intertidal Areas
    Ciencias Marinas (2018), 44(3): 155–167 http://dx.doi.org/10.7773/cm.v44i3.2851 Burrowing activity of the Neohelice granulata crab (Brachyura, Varunidae) in southwest Atlantic intertidal areas Actividad cavadora del cangrejo Neohelice granulata (Brachyura, Varunidae) en sitios intermareales del atlántico sudoccidental Sabrina Angeletti1*, Patricia M Cervellini1, Leticia Lescano2,3 1 Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Sur (CONICET-UNS), San Juan 670, 8000-Bahía Blanca, Argentina. 2 Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000-Bahía Blanca, Argentina. 3 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, 1900-La Plata, Argentina. * Corresponding author. E-mail: [email protected] A. The burrowing and semiterrestrial crab Neohelice granulata actively and constantly builds its burrows in the intertidal zone of the Bahía Blanca Estuary during low tide. Differences in structural morphology of N. granulata burrows and burrowing activities in contrasting microhabitats (saltmarsh and mudflat) were analyzed and related to several conditions, such as tide level, substrate type, sediment properties, and population density. In the mudflat the higher density of total burrows in autumn (172 burrows·m–2) was associated with molt timing, and the higher density of active burrows in summer (144 burrows·m–2) was associated with reproductive migration. Sediments from biogenic mounds (removed by crabs) showed higher water content and penetrability than surface sediments (control), suggesting that bioturbation increases the values of these parameters. Grain size distribution profiles and mineralogical composition did not vary between microhabitats or between seasons.
    [Show full text]
  • Nouvelle Tripartition De La Famille Des Anahamulinidae BREISTROFFER
    Nouvelle tripartition de la famille des Anahamulinidae BREISTROFFER, 1952 (Turrilitina, Ptychoceratoidea) et description de quelques taxa du Barrémien inférieur du sud-est de la France New tripartition of the family Anahamulinidae Breistroffer, 1952 (Turrilitina, Ptychoceratoidea) and description of some taxa of the Lower Barremian of south east of France. 1 JEAN VERMEULEN ___________________________________________________________________________ Résumé — La famille des Anahamulinidae Abstract — The family Anahamulinidae BREISTROFFER, 1952 a été récemment réhabilitée BREISTROFFER, 1952 was recently rehabilitated by par Vermeulen et al., 2010, ce volume, à la suite de Vermeulen et al., 2010, this volume, following the la découverte et de l'étude d'un nombre assez discovery and the study of a rather significant important de populations qui évoluent différemment number of populations which evolve differently and et indépendamment de celles de la famille des independently of those of the family Hamulinidae Hamulinidae GILL, 1871. Au sein de la famille des Gill, 1871. Within the family of Anahamulinidae Anahamulinidae BREISTROFFER, 1952, trois BREISTROFFER, 1952 three groups are distinguished, ensembles, correspondant à des sous-familles, corresponding to different subfamilies, by the différents par la taille moyenne des espèces, par average size from the species, their ornaments and leurs ornements et par leur répartition their stratigraphical distribution; they are, stratigraphique sont distingués ; ce sont, les Ptychohamulininae subfam. nov., Leptohamulininae Ptychohamulininae subfam. nov., les subfam. nov. and Anahamulininae BREISTROFFER, Leptohamulininae subfam. nov. et les 1952 nom. transl. VERMEULEN, CECCA & KRUTA, Anahamulininae BREISTROFFER, 1952 nom. transl. 2007. The generic contents of these subfamilies are VERMEULEN, CECCA & KRUTA, 2007. Le contenu specified. générique de ces sous-familles est précisé.
    [Show full text]
  • Binocular Neuronal Processing of Object Motion in an Arthropod
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Systems/Circuits Binocular neuronal processing of object motion in an arthropod Florencia Scarano1, Julieta Sztarker1,2, Violeta Medan1,2, Martín Berón de Astrada1,2 and Daniel Tomsic1,2 1Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET., Universidad de Buenos Aires, Buenos Aires, Argentina. 2Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado., Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. DOI: 10.1523/JNEUROSCI.3641-17.2018 Received: 27 December 2017 Revised: 2 June 2018 Accepted: 5 June 2018 Published: 16 July 2018 Author contributions: F.S., J.S., and D.T. designed research; F.S., V.M., and M.B.d.A. performed research; F.S., J.S., V.M., M.B.d.A., and D.T. analyzed data; F.S., J.S., and D.T. wrote the paper; J.S. and D.T. edited the paper; D.T. wrote the first draft of the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by the following grants to DT: PICT 2013--0450 from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) and Grant No 20020130100583BA (Universidad de Buenos Aires Ciencia y Tecnología [UBACYT]) from University of Buenos Aires. Corresponding author: Daniel Tomsic. Ciudad Universitaria, Pabellón II, piso 2. FBMC-FCEN, 1428 Buenos Aires. Argentina, e-mail: [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.3641-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • Neural Correlates of Expression-Independent Memories in the Crab Neohelice
    Accepted Manuscript Neural correlates of expression-independent memories in the crab Neohelice F.J. Maza, F.F. Locatelli, A. Delorenzi PII: S1074-7427(16)30001-6 DOI: http://dx.doi.org/10.1016/j.nlm.2016.03.011 Reference: YNLME 6413 To appear in: Neurobiology of Learning and Memory Received Date: 6 February 2016 Revised Date: 9 March 2016 Accepted Date: 12 March 2016 Please cite this article as: Maza, F.J., Locatelli, F.F., Delorenzi, A., Neural correlates of expression-independent memories in the crab Neohelice, Neurobiology of Learning and Memory (2016), doi: http://dx.doi.org/10.1016/j.nlm. 2016.03.011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Title: Neural correlates of expression-independent memories in the crab Neohelice. Running title: Neural correlates of expression-independent memory. Keywords: memory, reconsolidation, retrieval, memory expression, calcium imaging Pages: 46 Figures: 5 Tables: 1 Word Counts (total): 14081 Word Counts (abstract): 213 Neurobiology of Learning and Memory, Editorial Office Article Type: Research Reports Authors: Maza F.J.; Locatelli, F.F. ; Delorenzi A. -Corresponding Author: Alejandro Delorenzi. [email protected] -Phone: 54-11-4576- 3348 - Fax: 54-11-4576-3447 Institution: Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
    [Show full text]
  • Sensory Biology of Aquatic Animals
    Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc.
    [Show full text]
  • Geological Survey of Austria ©Geol
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 Berichte der Geologischen Bundesanstalt, Benjamin Sames (Ed.) th 10 International Symposium on the Cretaceous: ABSTRACTS Berichte der Geologischen Bundesanstalt, 120 www.geologie.ac.at Geological Survey of Austria ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880) Band 120 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 — ABSTRACTS BENJAMIN SAMES (Ed.) ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 ISSN 1017-8880 Wien, im Juli 2017 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 – ABSTRACTS Benjamin Sames, Editor Dr. Benjamin Sames, Universität Wien, Department for Geodynamics and Sedimentology, Center for Earth Sciences, Althanstraße 14, 1090 Vienna, Austria. Recommended citation / Zitiervorschlag Volume / Gesamtwerk Sames, B. (Ed.) (2017): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 351 pp., Vienna. Abstract (example / Beispiel) Granier, B., Gèze, R., Azar, D. & Maksoud, S. (2017): Regional stages: What is the use of them – A case study in Lebanon. – In: Sames, B. (Ed.): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 102, Vienna. Cover design: Monika Brüggemann-Ledolter (Geologische Bundesanstalt). Cover picture: Postalm section, upper Campanian red pelagic limestone-marl cycles (CORBs) of the Nierental Formation, Gosau Group, Northern Calcareous Alps (Photograph: M. Wagreich). 10th ISC Logo: Benjamin Sames The 10th ISC Logo is composed of selected elements of the Viennese skyline with, from left to right, the Stephansdom (St.
    [Show full text]
  • Advances in the Study of Behavior, Volume 31.Pdf
    Advances in THE STUDY OF BEHAVIOR VOLUME 31 Advances in THE STUDY OF BEHAVIOR Edited by PETER J. B. S LATER JAY S. ROSENBLATT CHARLES T. S NOWDON TIMOTHY J. R OPER Advances in THE STUDY OF BEHAVIOR Edited by PETER J. B. S LATER School of Biology University of St. Andrews Fife, United Kingdom JAY S. ROSENBLATT Institute of Animal Behavior Rutgers University Newark, New Jersey CHARLES T. S NOWDON Department of Psychology University of Wisconsin Madison, Wisconsin TIMOTHY J. R OPER School of Biological Sciences University of Sussex Sussex, United Kingdom VOLUME 31 San Diego San Francisco New York Boston London Sydney Tokyo This book is printed on acid-free paper. ∞ Copyright C 2002 by ACADEMIC PRESS All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
    [Show full text]
  • Critical Neuroscience and Philosophy
    Critical Neuroscience and Philosophy A Scientific Re-Examination of the Mind-Body Problem David Låg Tomasi Critical Neuroscience and Philosophy “A ‘scientific re-examination of the mind-body problem’ is certainly a ‘difficult task’ and Tomasi seems to navigate the rough water with a safe methodological approach. The book provides the reader with a comprehensive overview, which exhibits a remarkable balance in the presentation of disputed topics. In addition, the author provides the necessary tools to have both people with science or phi- losophy backgrounds acquainted to the topic. Neuro-lovers will appreciate and learn from the presentation of the numerous neuroscience ‘sub-branches,’ together with details on the methodological approaches used in the neuroscience research. Philosophers will enjoy the freedom and degree of theoretical abstraction, unusual in neurobiology books. Tomasi does in fact analyse the ‘mind-body problem’ with a critical appraisal that combines the rigidness of the scientific method with the speculative insight and thoroughness of the philosophy. The combination of the two sources of knowledge makes this book a fundamental tool for those who share the need to bridge the (apparent) gap between science and philosophy. Another key adjective for describing the book is multidisciplinary. The author spans from logic to quantum mechanics, from medicine to informatics, from reli- gion to ethics, from theory to practice. In all the cases the rigor in defining critical words makes even a lay reader feel like taken by the hand during the journey.” —Francesco Orzi, Professor of Neurology, Sapienza University of Rome (retired), and member of the Accademia dei Fisiocritici, Siena, Italy “Critical Neuroscience and Philosophy is impressive in many ways—from the scope and variety of information analyzed to the inspiration that scientists, philosophers, and the wider public will find in it.
    [Show full text]