Atoll Research Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medicinal Plants
Medicinal Plants Landscape Plants Provide Health and Healing! As Arizona’s Land Grant institution, the University of Arizona is charged with offering applied research and education that addresses solutions to Arizona’s changing needs. This practical focus led to major developments in Mining and Agriculture in the early years, and continued excellence in urban horticulture in later years through research, education and outreach. From the very beginning, trees and shrubs were planted, and studied creating an “oasis” of learning in desert horticulture. Throughout its history, UA faculty used the campus grounds as a test site for potential new agricultural commodities, introducing olives, citrus, and date trees, to name a few. Later, in response to population growth, urban development and concerns for resource conservation, faculty interests expanded to include arid-adapted landscape ornamentals that were also tested on the main campus grounds. As a result of this long-standing commitment, many of the trees on the main campus produce edible products that can be harvested and served. With the goal of promoting sustainability, the Campus Arboretum provides leadership to promote conservation of resources including efficient use of water, labor, and chemical inputs in landscape management. Further, we maximize the benefits of campus trees by providing guidance on tree selection, preservation, and management to enhance longevity, tree structure, aesthetics and safety. As you walk through campus today, we hope you’ll appreciate the beauty as well as utility of this living example of urban sustainability research. In this tour, you will learn how plants have been used for centuries to treat and remedy all sorts of ailments. -
Stillingia: a Newly Recorded Genus of Euphorbiaceae from China
Phytotaxa 296 (2): 187–194 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.296.2.8 Stillingia: A newly recorded genus of Euphorbiaceae from China SHENGCHUN LI1, 2, BINGHUI CHEN1, XIANGXU HUANG1, XIAOYU CHANG1, TIEYAO TU*1 & DIANXIANG ZHANG1 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 2University of Chinese Academy of Sciences, Beijing 100049, China * Corresponding author, email: [email protected] Abstract Stillingia (Euphorbiaceae) contains ca. 30 species from Latin America, the southern United States, and various islands in the tropical Pacific and in the Indian Ocean. We report here for the first time the occurrence of a member of the genus in China, Stillingia lineata subsp. pacifica. The distribution of the genus in China is apparently narrow, known only from Pingzhou and Wanzhou Islands of the Wanshan Archipelago in the South China Sea, which is close to the Pearl River estuary. This study updates our knowledge on the geographic distribution of the genus, and provides new palynological data as well. Key words: Island, Hippomaneae, South China Sea, Stillingia lineata Introduction During the last decade, hundreds of new plant species or new species records have been added to the flora of China. Nevertheless, newly described or newly recorded plant genera are not discovered and reported very often, suggesting that botanical expedition and plant survey at the generic level may be advanced in China. As far as we know, only six and eight angiosperm genera respectively have been newly described or newly recorded from China within the last ten years (Qiang et al. -
Gori River Basin Substate BSAP
A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form -
Botany and Conservation Biology Alumni Newsletter 3 NEWS & NOTES NEWS & NOTES
Botany & Conservation A newsletter for alumni and friends of Botany and Conservation Biology Fall/Winter 2017 Unraveling the secret to the unique pigment of beets - page 5 The many colors of the common beet Mo Fayyaz retires Letters to a A virtual museum Contents 3 4 pre-scientist 6 reunion botany.wisc.edu conservationbiology.ls.wisc.edu NEWS & NOTES NEWS & NOTES Chair’s Letter Longtime botany greenhouse director Mo Fayyaz retires Adapted from a story by Eric Hamilton sense of inevitable change in the air. At Those seminal collections, intended hen the Iranian government plants. Fayyaz and his greenhouse staff overseeing the work himself. The garden the same time, autumn in Wisconsin to encourage interest in the natural Woffered Mo Fayyaz a full schol- have grown a dizzying array of plants organizes plants by their family rela- always evokes a feeling of comfort in the resources of Wisconsin, grew quickly arship to study horticulture abroad, a used by 14 lecture and laboratory courses tionships and features several unique familiar – botany students are once again and would ultimately serve as the cradle simple oversight meant the University as well as botanical research labs. The specimens, such as a direct descendent out trying to ID asters and goldenrods. of origin for most of the natural science of Wisconsin–Madison was not his top greenhouse climates range from humid, of Isaac Newton’s apple tree, said to have It’s that enigmatic sense of the familiar disciplines that have propelled UW- choice. tropical jungles nurturing orchids to arid inspired the physicist’s theory of gravity. -
Lake Worth Lagoon
TABLE OF CONTENTS INTRODUCTION ................................................................................ 1 PURPOSE AND SIGNIFICANCE OF THE PARK ...................................... 1 Park Significance .............................................................................. 1 PURPOSE AND SCOPE OF THE PLAN ................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................. 7 Management Authority and Responsibility ............................................ 7 Park Management Goals .................................................................... 8 Management Coordination ................................................................. 8 Public Participation ........................................................................... 9 Other Designations ........................................................................... 9 RESOURCE MANAGEMENT COMPONENT INTRODUCTION .............................................................................. 15 RESOURCE DESCRIPTION AND ASSESSMENT ................................... 15 Natural Resources .......................................................................... 16 Topography ............................................................................... 20 Geology .................................................................................... 21 Soils ......................................................................................... 21 Minerals ................................................................................... -
Intervascular Pit Membranes with a Torus Was Investigated in Steven Jansen Juvenile Wood Samples of 19 Species of Ulmus and Seven Related Genera
Research IntervascularBlackwell Publishing, Ltd. pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera Steven Jansen1, Brendan Choat2, Stefan Vinckier1, Frederic Lens1, Peter Schols1 and Erik Smets1 1Laboratory of Plant Systematics, K.U.Leuven, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Summary Author for correspondence: • The distribution of intervascular pit membranes with a torus was investigated in Steven Jansen juvenile wood samples of 19 species of Ulmus and seven related genera. Tel: +32 16 321539 •A staining solution of safranin and alcian blue (35 : 65) was recommended to Fax: +32 16 321968 Email: [email protected] distinguish torus-bearing pit membranes using light microscopy. • Intervascular pit membranes connecting relatively wide vessel elements resembled Received: 19 January 2004 those of most angiosperms, as they were of uniform thickness. By contrast, bordered Accepted: 15 March 2004 pit pairs with round to oval pit apertures and indistinct pit canals that connected doi: 10.1111/j.1469-8137.2004.01097.x narrow (incomplete) vessel elements or vascular tracheids with distinct helical thick- enings were frequently characterized by a torus in ring-porous wood samples of Ulmus and Zelkova. Tori were lacking in diffuse-porous species of Ampelocera, Aphananthe, Gironniera, Holoptelea, Phyllostylon, Trema and Ulmus. • Our observations suggest that tori are more common in cold temperate climates than in warm (sub)tropical environments. This may indicate that narrow tracheary elements with torus-bearing pit membranes provide an auxiliary conducting system which is of low conductivity, but offers greater resistance to freezing-induced cavitation. -
The Archaeology of Maize
chapter 1 The Archaeology of Maize the domesticators domesticated The story of maize begins at least 9,000 years ago in southwestern Mex- ico as small groups of nomadic people found themselves attracted to stands of a rather tall, bushy tropical grass now known as teosinte (fi gure 1.1). We don’t know what name these early indigenous Mexi- cans had for teosinte, but by the time of the Spanish Conquest there were many names for it, including cincocopi, acecintle, atzitzintle.1 Today evidence of these fi rst farmers and the teosinte plants they har- vested is almost invisible—but we can see some traces left behind by the early descendants of both the plants and the people. For example, pho- tographs of the tiny maize cobs, classifi ed as Zea mays ssp. mays, that were found in Guilá Naquitz cave, Oaxaca, by Kent Flannery and his crew in the mid-1960s show parts of the earliest known individual plants that are descended from an ancestral teosinte plant (fi gures 1.2 and 1.3).2 In order for these cobs, which are directly dated to 6,230 cal BP,3 to have existed, not only did the ancient Oaxaqueños living near Guilá Naquitz cave have to have planted individual seeds, but their ancestors and neighbors also had to have planted and harvested teosinte seeds for hundreds of previous generations. We do not know if these particular early Oaxacan maize plants themselves had descendants. After all, their seeds could have been com- pletely consumed by people or animals and not gone on to propagate 17 BBlakelake - 99780520276871.indd780520276871.indd 1717 005/06/155/06/15 99:06:06 PPMM figure 1.1. -
Brochure Iltis.Pdf
Hugh H. Iltis Doctor Honoris Causa 2 El maíz ha sido una de las grandes contribuciones de México al mundo y el Dr. Hugh Iltis es uno de los científicos que con mayor tenacidad ha dedicado su vida a desentrañar los misterios evolutivos del segundo grano de mayor importancia en el planeta. La Universidad de Guadalajara brinda un reconocimiento al trabajo del Dr. Iltis, colaborador nuestro durante tres décadas ininterrumpidas, cuyas aportaciones no sólo representan avances ante los desafíos intelectuales de la investigación básica, sino también en la formación de recursos humanos, y en la aplicación práctica del conocimiento para la conservación de los recursos naturales y alimentarios de un mundo en franco deterioro. Historia personal Hugh H. Iltis nació el 7 de abril de 1925 en Brno, Checoslovaquia. Su padre, el destacado naturista Hugo Iltis, fue profesor de Biología, Botánica y Genética en Brünn Checoslovaquia y profesor de Biología en la Universidad de Virginia. Siendo niño tuvo que migrar a los Estados Unidos de Norteamérica como refugiado cuando su país fue invadido por los nazis. Estimulado por su padre, se interesó en la genética y la botánica, muy pronto se entusiasmó por la Taxonomía y la Evolución de las plantas. Su carrera como botánico inició a muy temprana edad, pues a los 14 años ya había construido su propio herbario, y los ejemplares contaban con sus nombres en latín y descripciones. Estos ejemplares tuvieron que ser vendidos para ayudarse en sus estudios en la Universidad de Tennessee. Al año de haber iniciado en la universidad, tuvo que incorporarse al ejército de los Estados Unidos durante la Segunda Guerra Mundial, donde participó como analista de información 3 Hugh H. -
Historical Biogeography of Endemic Seed Plant Genera in the Caribbean: Did Gaarlandia Play a Role?
Received: 18 May 2017 | Revised: 11 September 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3521 ORIGINAL RESEARCH Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? María Esther Nieto-Blázquez1 | Alexandre Antonelli2,3,4 | Julissa Roncal1 1Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada Abstract 2Department of Biological and Environmental The Caribbean archipelago is a region with an extremely complex geological history Sciences, University of Göteborg, Göteborg, and an outstanding plant diversity with high levels of endemism. The aim of this study Sweden was to better understand the historical assembly and evolution of endemic seed plant 3Gothenburg Botanical Garden, Göteborg, Sweden genera in the Caribbean, by first determining divergence times of endemic genera to 4Gothenburg Global Biodiversity Centre, test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land Göteborg, Sweden bridge played a role in the archipelago colonization and second by testing South Correspondence America as the main colonization source as expected by the position of landmasses María Esther Nieto-Blázquez, Biology Department, Memorial University of and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated Newfoundland, St. John’s, NL, Canada. molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic gen- Emails: [email protected]; menietoblazquez@ gmail.com era using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and Funding information NSERC-Discovery grant, Grant/Award two complex biogeographic models that included timeframes based on geological Number: RGPIN-2014-03976; MUN’s information, dispersal probabilities, and directionality among regions. -
Wood Functional Anatomy of Chiococca Alba Hitch
Acta Biológica Catarinense 2017 Jan-Jun;4(1):52-61 Wood functional anatomy of Chiococca alba Hitch. (Rubiaceae) from cerrado Anatomia funcional da madeira de Chiococca alba Hitch. (Rubiaceae) de cerrado João Carlos Ferreira de MELO JÚNIOR1, 2, Maick William AMORIM¹, Gustavo Borda de OLIVEIRA¹ & Celso Voos VIEIRA¹ ABSTRACT Recebido em: 22 mar. 2017 The wood anatomy is able to evidence systematic and ecological aspects associated with Aceito em: 12 jun. 2017 the evolution and functionality of the secondary xylem. The present study was carried out using wood of Chiococca alba (Rubiaceae) from cerrado (savannah), to describe its anatomy and to verify if the hydraulic architecture of this species corroborates the theory that postulates the functional tendency that optimizes the transport efficiency associated with safety. The anatomical analysis followed the conventional protocols of wood anatomy. Different indexes of wood hydraulics quantification were calculated, such as solitary vessels index, vessel grouping, conductivity, vessel collapse, theoretical resistance to vessel implosion and mesomorphism. The structural characteristics described for C. alba are in agreement with the general anatomical descriptions for the Rubiaceae family that relate the presence of exclusively solitary vessels and small diameter, simple perforation plates, alternate intervessel pits, apotracheal parenchyma in species with non-septate fibers and narrow and heterogeneous rays. The calculated indexes showed that C. alba is a xerophyte species with great resistance to the collapse of the vessels during the transport of water, little vulnerability to embolism and relative efficiency in the transport when compared to other species of its subfamily (Cinchonoideae) in function of the typical low water availability of the savannah soil. -
Solanum Erianthum D.Don Family: Solanaceae Don, D
Australian Tropical Rainforest Plants - Online edition Solanum erianthum D.Don Family: Solanaceae Don, D. (1825) Prodromus Florae Nepalensis : 96. Type: Nepal, near Katmandu, 1821, Wallich Herb. 2616c; lecto: K. Fide K. E. Roe, Brittonia 19: 359 (1967). Common name: Potato Tree; Tobacco Tree; Tobacco, Wild; Nightshade; Flannel Bush; Wild Tobacco Stem Occasionally grows into a small tree but usually flowers and fruits as a shrub. Leaves Leaves, flowers and fruit. © Twigs, petioles and leaf blades unarmed but densely clothed in stellate hairs. Stellate hairs present CSIRO on both the upper and lower surfaces of the leaf blade but more numerous on the underside. Leaf blades about 8-24 x 4-15 cm, petioles 1-10 cm long. Lateral veins about 6-9. Crushed leaves emit a strong odour. Flowers Inflorescence branched, many-flowered. Pedicels about 5-10 mm long, densely stellate hairy. Calyx 4-7 mm long, lobes about 1-2.5 mm long, both stellate hairy on the outer and inner surfaces. Corolla about 13-19 mm diam., stellate hairy on the outer surface but glabrous on the inner surface. Anthers about 2.5-3 mm long. Ovary clothed in straight hairs. Fruit Fruits globular, about 10 mm diam., stellate pubescent on the outer surface. Seeds about 1.5-2 mm Leaves, flowers and fruit. © long. Embryo horseshoe-shaped, cotyledons about as wide as the radicle. CSIRO Seedlings Cotyledons lanceolate or +/- orbicular, about 5-9 x 4-6 mm. First pair of leaves alternate, clothed in pale simple and stellate hairs. At the tenth leaf stage: leaves lanceolate, densely stellate hairy on both the upper and lower surfaces. -
Contribution to the Biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African Species
Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian I Promotor: Prof. Dr. Ir. L.J.G. van der Maesen Hoogleraar Plantentaxonomie Wageningen Universiteit Co-promotor Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Overige leden: Prof. Dr. E. Robbrecht, Universiteit van Antwerpen en Nationale Plantentuin, Meise, België Prof. Dr. E. Smets Universiteit Leiden Prof. Dr. L.H.W. van der Plas Wageningen Universiteit Prof. Dr. A.M. Cleef Wageningen Universiteit Dr. Ir. R.H.M.J. Lemmens Plant Resources of Tropical Africa, WUR Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit. II Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian Proefschrift ter verkrijging van de graad van doctor op gezag van rector magnificus van Wageningen Universiteit Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 26 juni 2006 des namiddags te 16.00 uur in de Aula III Sattarian, A. (2006) PhD thesis Wageningen University, Wageningen ISBN 90-8504-445-6 Key words: Taxonomy of Celti s, morphology, micromorphology, phylogeny, molecular systematics, Ulmaceae and Celtidaceae, revision of African Celtis This study was carried out at the NHN-Wageningen, Biosystematics Group, (Generaal Foulkesweg 37, 6700 ED Wageningen), Department of Plant Sciences, Wageningen University, the Netherlands. IV To my parents my wife (Forogh) and my children (Mohammad Reza, Mobina) V VI Contents ——————————— Chapter 1 - General Introduction ....................................................................................................... 1 Chapter 2 - Evolutionary Relationships of Celtidaceae ..................................................................... 7 R. VAN VELZEN; F.T. BAKKER; A. SATTARIAN & L.J.G. VAN DER MAESEN Chapter 3 - Phylogenetic Relationships of African Celtis (Celtidaceae) ........................................