Gravitational Waves Claus L¨ammerzahl (
[email protected]) Volker Perlick (
[email protected]) Summer Term 2014 Tue 16:00–17:30 ZARM, Room 1730 (Lectures) Fr 14:15–15:00 ZARM, Room 1730 (Lectures) Fri 15:00–15:45 ZARM, Room 1730 (Tutorials) Complementary Reading The following standard text-books contain useful chapters on gravitational waves: S. Weinberg: “Gravitation and Cosmology” Wiley (1972) C. Misner, K. Thorne, J. Wheeler: “Gravitation” Freeman (1973) H. Stephani: “Relativity” Cambridge University Press (2004) L. Ryder: “Introduction to General Relativity” Cambridge University Press (2009) N. Straumann: “General Relativity” Springer (2012) For regularly updated online reviews see the Living Reviews on Relativity, in particular B. Sathyaprakash, B. Schutz: “Physics, astrophysics and cosmology with grav- itational waves” htp://www.livingreviews.org/lrr-2009-2 Contents: 1. Historic introduction 2. Brief review of general relativity 3. Linearised field equation around flat spacetime 4. Gravitational waves in the linearised theory around flat spacetime 5. Generation of gravitational waves 6. Gravitational wave detectors 7. Gravitational waves in the linearised theory around curved spacetime 8. Exact wave solutions of Einstein’s field equation 9. Primordial gravitational waves 1 1. Historic introduction 1915 A. Einstein establishes the field equation of general relativity 1916 A. Einstein demonstrates that the linearised vacuum field equation admits wavelike so- lutions which are rather similar to electromagnetic waves 1918 A. Einstein derives the quadrupole formula according to which gravitational waves are produced by a time-dependent mass quadrupole moment 1925 H. Brinkmann finds a class of exact wavelike solutions to the vacuum field equation, later called pp-waves (“plane-fronted waves with parallel rays”) by J.