A PROTEASE of the SUBTILASE FAMILY NEGATIVELY REGULATES PLANT DEFENCE THROUGH ITS INTERACTION with the ARABIDOPSIS TRANSCRIPTION FACTOR Atmyb30
Total Page:16
File Type:pdf, Size:1020Kb
En vue de l'obtention du !"#$"%&$'!(')*+,-.(%/-$''!('$"+)"+/( Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Interactions plantes-microorganismes Présentée et soutenue par : !"#$%&''&#()*+,%-- le vendredi 12 février 2016 Titre : A PROTEASE OF THE SUBTILASE FAMILY NEGATIVELY REGULATES PLANT DEFENCE THROUGH ITS INTERACTION WITH THE ARABIDOPSIS TRANSCRIPTION FACTOR AtMYB30 Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Laboratoire Interactions Plantes Microorganismes (LIPM) Directeur(s) de Thèse : MME SUSANA RIVAS Rapporteurs : M. PATRICK GALLOIS, UNIVERSITY OF MANCHESTER M. SEBASTIEN BAUD, INRA VERSAILLES GRIGNON Membre(s) du jury : 1 M. JEAN-PHILIPPE GALAUD, UNIVERSITE TOULOUSE 3, Président 2 Mme SUSANA RIVAS, INRA TOULOUSE, Membre 2 M. THOMAS KROJ, CIRAD MONTPELLIER, Membre Remerciements Cette thèse a été réalisée au sein du Laboratoire des Interactions Plantes Microorganismes (LIPM) à Toulouse. Ma gratitude va à Sébastien Baud, Jean-Philippe Galaud, Patrick Gallois et Thomas Kroj pour avoir aimablement accepté d’être jurés de thèse et pour leurs précieuses questions et réflexions qui, lors de la soutenance, ont donné lieu à de riches discussions. Je tiens à remercier Susana Rivas qui a remarquablement supervisé cette thèse et qui m’a prodigué confiance, conseils et encouragements au cours de ces années passées au laboratoire. Je souhaite exprimer mes remerciements très sincères à tous ceux (de la plateforme de microscopie, du service de transgénèse et de l’équipe d’accueil) qui m’ont aidé à réaliser ce travail. Les résultats présentés dans ce rapport sont aussi les leurs tant ils ont œuvré pour les obtenir. Ma reconnaissance va également à mon comité de thèse, Renier van der Hoorn et Manuel Piňeiro, pour leurs suggestions et leurs conseils pertinents sur ce projet. Je remercie mes professeurs de l’Université d’Albi, de l’Université d’Algarve au Portugal et de l’Université Toulouse III pour avoir suscité mon intérêt pour la biologie. Table of Contents __________________________________________________________________________ ABBREVIATIONS 4 FIGURE LIST 7 TABLE LIST 10 INTRODUCTION 11 1. PLANT-PATHOGEN INTERACTIONS AND PLANT IMMUNITY 12 1.1. PLANT-PATHOGEN INTERACTIONS 12 1.2. PLANT DEFENCE MECHANISMS: A MOLECULAR BATTLEFIELD 14 1.2.1. Constitutive defences 14 1.2.2. Inducible defences 16 Pathogen-Triggered Immunity (PTI) 17 Effector-Triggered Susceptibility (ETS) 20 Effector-Triggered immunity (ETI) 22 1.2.3. Signalling events during plant defence responses 24 1.3. PLANT PROTEASES: ROLES IN LIFE AND DEATH DURING PLANT DEFENCE SIGNALLING 27 1.3.1. Aspartic proteases 29 1.3.2. Cysteine proteases 30 1.3.3. Metalloproteases 33 1.3.4. Serine proteases 33 Carboxypeptidase-like proteases 34 Subtilisin-like proteases or Subtilases 34 2. TRANSCRIPTIONAL REGULATION OF PLANT DEFENCE RESPONSES 41 2.1. AP2/EREBP TFS 42 2.2. BHLH TFS 43 2.3. BZIP TFS 43 2.4. BBX TFS 43 2.5. NAC TFS 44 2.6. WHIRLY TFS 44 2.7. WRKY TFS 44 2.8. MYB TFS 45 2.8.1. DNA MYB Binding Sites (MBSs) 46 2.8.2. Classification of MYB TFs 47 1R-MYB 47 2R-MYB (or R2R3-MYB) 47 3R-MYB (or R1R2R3-MYB) 48 4R-MYB 48 2.8.3. Functions of MYB TFs 49 1 2.9. TRANSCRIPTIONAL CONTROL IN PLANT DEFENCE (REVIEW ARTICLE) 51 3. ATMYB30 A POSITIVE REGULATOR OF THE HR IN A. THALIANA 52 3.1. IDENTIFICATION OF ATMYB30 52 3.2. EXPRESSION AND FUNCTION OF ATMYB30 52 3.3. HORMONAL CONTROL OF THE ATMYB30-MEDIATED HR 54 3.4. TRANSCRIPTIONAL TARGETS OF ATMYB30 55 3.5. REGULATION OF ATMYB30 56 3.5.1. Post-transcriptional regulation of AtMYB30 56 3.5.2. Post translational modification of AtMYB30 57 3.5.3. Regulation of AtMYB30 activity through protein-protein interactions 58 SCIENTIFIC CONTEXT OF THE PHD PROJECT 62 OBJECTIVES OF THE PHD PROJECT 63 RESULTS 64 A PROTEASE OF THE SUBTILASE FAMILY NEGATIVELY REGULATES PLANT DEFENCE THROUGH ITS INTERACTION WITH THE ARABIDOPSIS TRANSCRIPTION FACTOR ATMYB30 65 Previous results: Identification of AtSBT5.2 as a new AtMYB30 interacting partner. 65 1. CHARACTERIZATION OF ATSBT5.2 66 1.1. AtSBT5.2 is alternative spliced and encodes two distinct isoforms. 66 1.2. AtSBT5.2(a) is a secreted protein whereas AtSBT5.2(b) is intracellular. 67 1.3. AtSBT5.2(a), but not AtSBT5.2(b), is glycosylated in planta. 68 1.4. AtSBT5.2(a) is an active serine protease. 70 2. CHARACTERIZATION OF THE INTERACTION BETWEEN ATMYB30 AND ATSBT5.2 73 2.1. Neither AtSBT5.2(a) nor AtSBT5.2(b) affect AtMYB30 protein accumulation in planta. 73 2.2. AtSBT5.2(b), but not AtSBT5.2(a), colocalizes with AtMYB30 in planta. 73 2.3. AtSBT5.2(b), but not (a), interacts with AtMYB30 in planta. 74 2.4. The AtSBT5.2(b)-AtMYB30 interaction is specific and mediated through AtSBT5.2(b) C-terminal domain 75 2.5. AtSBT5.2(b) localization in intracellular vesicles is mediated through its N-terminal domain 76 3. FUNCTIONAL ANALYSIS OF ATSBT5.2 IN PLANT DEFENCE 78 3.1. AtSBT5.2 negatively regulates plant defence and HR. 78 3.2. AtSBT5.2 controls the HR via AtMYB30. 80 3.3. AtSBT5.2(b), but not AtSBT5.2(a), negatively regulates defence-associated cell death responses. 81 3.4. Analysis of AtSBT5.2 expression after bacterial inoculation. 81 DISCUSSION 83 1. AS, AN EMERGING REGULATORY MECHANISM OF PLANT DEFENCE 84 2. REGULATION OF ATSBT5.2 FUNCTION THROUGH AS 87 2.1. AS AFFECTS THE SUBCELLULAR LOCALIZATION OF RESULTING ATSBT5.2 PROTEIN VARIANTS 87 2 2.1.1. AtSBT5.2(b) localizes to endosomes 88 2.1.2. Endosomes as important sites for regulation of defence signalling 91 2.2. AS AFFECTS THE GLYCOSYLATION STATUS OF RESULTING ATSBT5.2 PROTEIN VARIANTS 93 2.3. AS APPEARS TO AFFECT THE CATALYTIC ACTIVITY OF RESULTING ATSBT5.2 PROTEIN VARIANTS 94 3. THE APOPLAST AS A PRIVILEGED SITE FOR ANTI-MICROBIAL DEFENCE 98 4. NUCLEAR EXCLUSION THROUGH INTERACTION WITH ATSBT5.2(B): A NEW REGULATORY MECHANISM OF ATMYB30 ACTIVITY 100 MATERIALS AND METHODS 103 OTHER RESULTS 113 REFERENCES 115 3 Abbreviations A, Ala Alanine A Aa Alternaria alternataf.sp. lycopersici Ab Alternaria brassicicola ABA Abscisic Acid ABP Activity-Based Profiling AD Activation Domain AP2/EREBP APETALA2/Ethylene Responsive Element Binding ARF Auxin-Response Factor At Arabidopsis thaliana AtPLA2 Phospholipase A2 of Arabidopsis thaliana Atu Agrobacterium tumefaciens As Avena sativa (oat) AS Alternative Splicing BBX B-box protein B Bc Botrytis cinerea BD Binding Domain Be Botrytis elliptica bHLH basic Helix-Loop-Helix BR Brassinosteroid BRI1 Brassinosteroid Insensitive 1 BRS1 Brassinosteroid Insensitive Suppressor 1 Bt Botrytis tulipae bZIP basic Domain Leucine Zipper Ca Capsicum annuum (Pepper) C CC Coiled-Coil Cd Colletotrichum destructivum CDPK Calcium-Dependent Protein Kinase CEV Citrus Exocortis Viroid Cf Cladosporium fulvum CFP Cyan Fluorescent Protein CK Cytokinin Cv Cochliobolus victoriae D, Asp Aspartic Acid D DAMPs Damage-Associated Molecular Patterns Ea Erwinia amylovora E Ec Erysiphe cruciferarum EE Early endosome EF-Tu Elongation Factor Thermo-unstable ECM Extracellular Matrix Endo H Endoglycosidase H ER Endoplasmic Reticulum ET Ethylene ETI Effector-Triggered Immunity ETS Effector- Triggered Susceptibility FLS2 Flagellin-Sensing 2 F FRET-FLIM Förster Resonance Energy Transfer-Fluorescence Lifetime Imaging Fs Fusarium solani 4 GA Giberellic Acid G Gc Golovinomyces cichoracearum GFP Green Fluorescent Protein Gm Glycin max (Soybean) H, His Histidine H HA Hemagglutinin (HA)-epitope tag Ha Hyaloperonospora arabidopsis HLH Helix-Loop-Helix HR Hypersensitive Response hrp HR and Pathogenicity IF Intercellular Fluid I ISR Induced Systemic Resistance JA Jasmonic Acid J Le Lycopersicon esculentum (Tomato) L LE Late Endosom LRR Leucine-Rich Repeat lsd lesion simulating disease MAMP Microbe-Associated Molecular Pattern M MAPK Mitogen-Activated Protein Kinase MBSs MYB Binding Sites Md Malus domestica (Apple tree) Me Manihot esculenta (Cassava) MIEL AtMYB30-Interacting E3 Ligase Mo Magnaporthe oryzae MS Murashige and Skoog MYB Myeloblastom N, Asn Arginine N NAC NAM (No Apical Meristem), ATAF (Arabidopsis thaliana transcription Activation Factor) and CUC2 (Cup-Shaped Cotyledon) NBS Nucleotide-Binding Site NLR Nucleotide-binding Oligomerization Domain-Like Receptor NLS Nuclear Localization Signal Nb Nicotiana benthamiana Nt Nicotiana tabacum Nu Nicotiana umbratica Os Oriza sativa (rice) O p35S The cauliflower mosaic virus promoter P PA Protease associated domain PAMP Pathogen-Associated Molecular Pattern PCD Programmed Cell Death PCR Polymerase Chain Reaction PD Prodomain PGNase F Peptide N-glycosidase F PGSs Putative N-glycosylation sites Phs Phytophthora sojae Pi Phytophthora infestans 5 PR Pathogenesis-Related PRR Pattern-Recognition Receptor Ps Pseudomonas syringae Pst Pseudomonas syringuae pv. tomato Pt Puccinia striiformis f. sp. tritici PTI PAMP-Triggered Immunity PTM Post Translational Modification Pv Plasmopara viticola pv. Pathovar RFP Red Fluorescent Protein R RLCK Receptor-Like Cytoplasmic Kinase RLK Receptor-Like Kinase RLP Receptor-Like Protein ROS Reactive Oxygen Species Rs Ralstonia solanacearum S, Ser Serine S SA Salicylic Acid SAR Systemic Acquired Resistance SBT Subtilase SCF Skp1, Cullin, F-box-type ligase Sf Spodoptera frugiperda Sl Solanum lycopersicum (Tomato) St Solanum tuberosum (Potato) SUMO Small Ubiquitin-like Modifier T2SS Type II Secretion System T T35S The cauliflower mosaic virus terminator T3SS Type III Secretion System Ta Triticum aestivum (Wheat) TAD Transcription Activation Domain TAL Transcription Activator-Like TF Transcription Factor TGN Trans Golgi Network TIR Toll-Interleukin1 Receptor TMD Transmembrane Domain TMV Tobacco Mosaic Virus Tn Trichoplusia ni Ub Ubiquitine U UPS Ub/Proteasome System UTR Untranslated Region VLCFA Very Long Chain Fatty Acid V Vv Vitis vinifera (Grapevine) Xcc Xanthomonas campestris pv. campestris X Xcv Xanthomonas campestris pv. vesicatoria Xoo Xanthomonas oryzae pv. oryzae Y2H Yeast Two-Hybrid Y YFPv Yellow Fluorescent Protein venus Zm Zea mays (Maize) Z 6 Figure list Figure 1. Disease symptoms on Arabidopsis leaves caused by pathogens (From Pieterse et al., 2009).