Phylogenetics of Freshwater Sculpin

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetics of Freshwater Sculpin Phylogenetics of Freshwater Sculpin Charlene Emerson Introduction. Reconciling observed genetic which are sequences derived from a common variation with evolutionary history is often a ancestor (Scotland 2010). Closely related daunting task. Phylogenetics is a method of individuals, populations, or species should study that is particularly well-suited to have fewer differences in the homologous addressing this task by combining the sequence when compared to the genes of measureable genetic variability of individuals, distantly related species (Lemey, Salemi & populations, or species with proposed Vandamme 2009). These differences in the evolutionary relationships and processes genetic sequence arise from the actions of (Barraclough & Nee 2001). Historically, several evolutionary mechanisms: mutation, phylogenetic trees have been generated using natural selection, genetic drift, and gene flow a single locus approach, where variation (Hartl 1981). Genomic differences arising within a single gene is used to create a from these mechanisms are often the basis for phylogenetic gene tree. However, this single phylogenetic analysis (Davis & Nixon 1992). gene method may fail to account for the full In the presence of these processes, frequency variation across a genome. of genetic alleles1 will vary and a population Shortcomings of the single locus approach will experience evolutionary change (Nei, are most apparent in complex organisms, such Maruyama & Chakraborty 1975). as the freshwater sculpin (genus Cottus). Mutations, or changes in genomic Freshwater sculpin exhibit highly ambiguous sequence which often occur spontaneously, morphology, as well as wide and overlapping are propagated or eliminated by the action of distributions – resulting in considerable natural selection. If a mutation is deleterious difficulty in species classification (Moyle to a species, natural selection causes it to be 2002). Analyzing multiple genetic loci in eliminated from the population. If the such species, instead of a single locus, may mutation is favorable, natural selection will provide a fuller picture of species variation. allow it to become established in a I propose to use freshwater sculpin as a population. However, a harmful mutation model to compare this modern multiple loci may propagate by the action of genetic drift. approach with the single locus approach. By Genetic drift is the changing of allelic comparing a species tree, generated by frequencies due to random occurrences. concatenating multiple nuclear markers, with Effects of genetic drift are more marked in the single gene trees, I hope to achieve greater small populations, since deleterious alleles understanding of evolutionary relationships can become more easily fixed within a within seven Eastern Pacific Cottus species, smaller population (Frankham 2005). Genetic as well as discerning the advantages and drift and natural selection are generally disadvantages of the single locus and multiple considered to increase genetic differences loci approaches. between populations, eventually leading to speciation2. Phylogenetics. Before comparing the relative merits of these different approaches, it is 1 important to understand the overall phylo- Alleles are different forms of a single gene. Different alleles may create different traits in the organism in genetic method. Phylogenetics compares the which they are carried. similarities and differences between 2 Speciation is the evolutionary process by which new homologous sequences of genetic material, species are formed. In contrast, gene flow is generally particular locus, analysis of individual considered to decrease the occurrence of sequences will create different trees for the speciation (Via 1999, Porter & Johnson same group of organisms (Avise 2000). For 2007). Gene flow is the transfer of genetic example, a gene for eye color will be selected alleles between populations of a species. upon very differently than a gene for limb Isolated populations experience decreased structure, generating different phylogenetic gene flow, because fewer individuals trees. By combining, or concatenating, immigrate to or emigrate from the population multiple loci into an overall species tree – to exchange genes. Over time, gene flow may rather than a single locus tree, the most cease and the isolated population could accurate representation of evolutionary become reproductively isolated from the rest relationships can be determined. of their species. The absence of gene flow is Generally, phylogenetic trees are considered to be a major mechanism of constructed using a cladistic approach, where evolution. Together, these four major it is assumed that members of the tree share a processes change the allele frequencies of a common evolutionary history (NCBI 2004). population, altering the relative relatedness of The cladistic approach groups members of the populations and species. Studying this tree by shared common ancestry, with evolutionary relatedness in the context of members of the tree gradually diverging into genetic data is one of the major applications individual groupings, or clades. Phylogenetic of phylogenetics. trees commonly take two forms: cladograms Phylogenetic Trees. The phylogenetic tree is a or phylograms. Cladograms only show the major tool of phylogenetic analysis. One of order of the branching changes of the the most basic methods of tree-making uses a homologous sequence, whereas in single homologous sequence – a single locus phylograms, the length of each branch of the tree, and compares this sequence across tree corresponds to the number of changes members of a group, within or between that have occurred in the sequence (Hall populations, or between closely related 2004, Lemey et al. 2009). species. These single locus trees can then be Determining Accuracy of the Phylogenetic used to determine the overall evolutionary Diagram. Phylogenetic tree diagrams can also relatedness between members of the sample vary according to the statistical analysis used group. However, an analysis that stops with to generate the tree. Differences in genomic examination of a single homologous sequence sequences can vary as a result of a number of would be extremely limited in scope. processes, making analyses of sequence Limiting analysis to a single locus tree will changes complex. Components of the only represent the events occurring at that sequence cannot always be assumed to gene locus, and may not necessarily represent change with equal likelihood. For example, the entire organism or species. genetic changes that result in the production Analysis of multiple genetic loci is vital of a similarly functioning protein would seem for a more complete understanding of more likely than changes that completely evolutionary relationships, especially when negate a protein’s function. considering that differing homologous Additionally, multiple changes may sequences are subjected to differing happen at a site, with no way of knowing the evolutionary pressures (Brito & Edwards total number of mutation occurrences. 2009). Because each homologous sequence Changes may also occur that later revert back changes differently, depending on to the original sequence, causing organisms to evolutionary pressures exerted on that seem more evolutionarily related than they construct the phylogenetic tree. Several actually are (Hall 2004, Lemey et al. 2009). different methods have been developed to When multiple changes occur at a nucleotide construct trees (Lemey et al. 2009, Rosenberg site, so that the sequence is no longer & Kumar 2001). Among these methods are informative about true evolutionary the Maximum Likelihood (ML) and Bayesian relationships, it is called substitution analyses. Both are considered to be “discrete saturation (Lemey et al. 2009). character” methods, where compared Substitution rates of nucleotide sites are homologous sequences are aligned – each modeled by several mathematical formulas, position is considered to be a “character” and with each model representing a different the nucleotide in that position is a “state” relative rate of change. Models are chosen for (Lemey et al. 2009). Character-states are a specific data set using statistical selection analyzed independently to determine software (Posada 2008). Among the most relatedness between samples. popular are the MODELTEST and Maximum Likelihood examines different JMODELTEST. Model tests analyze the possible tree formations and searches for the nucleotide sequences in the data set and select most likely tree, according to a particular the model of nucleotide substitution that best evolutionary model. Likelihood of possible fits the existing data. trees is calculated, according to an algorithm, The simplest model of nucleotide and the most likely tree is selected. A ML substitution is the Jukes-Cantor model, generated tree can be supported by the use of commonly called JC69 (Jukes & Cantor bootstrap resampling. Bootstrapping takes a 1969). JC69 assumes equal nucleotide base subsample of character-states and creates a frequencies and equal mutation rates for each tree based upon this subsample. The adenine, thymine, cytosine, or guanine3 in the bootstrapping process is replicated numerous genetic code. Models become more complex times, providing support for the final chosen as other assumptions are made about the base tree. In contrast, a Bayesian analysis does sequence and substitution rate. Felsenstein not search for a single best tree. Bayesian (1981) created a model (F81) which
Recommended publications
  • Fisheries and Aquatic Ecosystems Technical Report
    Draft Fisheries and Aquatic Ecosystems Technical Report Shasta Lake Water Resources Investigation Prepared by: United States Department of the Interior Bureau of Reclamation Mid-Pacific Region U.S. Department of the Interior Bureau of Reclamation June 2013 Contents Contents Chapter 1 Affected Environment .................................................................................... 1-1 1.1 Environmental Setting ............................................................................................... 1-1 1.1.1 Aquatic Habitat ................................................................................................. 1-1 1.1.2 Fisheries Resources......................................................................................... 1-13 1.1.3 Aquatic Macroinvertebrates ............................................................................ 1-48 Chapter 2 Impact Assessment .......................................................................................... 2-1 Chapter 3 References ........................................................................................................ 3-1 3.1 Printed Sources .......................................................................................................... 3-1 3.2 Personal Communications ....................................................................................... 3-14 Tables Table 1-1. Fish Species Known to Occur in Primary Study Area ............................................. 1-13 Table 1-2. Central Valley Fish Species Potentially Affected
    [Show full text]
  • KLMN Featured Creature Sculpins
    National Park Service Featured Creature U.S. Department of the Interior February 2021 Klamath Network Inventory & Monitoring Division Natural Resources Stewardship & Science Sculpins Cottidae General Description Habitat and Distribution Darting low through tide pools or lurking Sculpins occur in both marine and freshwater in stream bottoms, members of the large habitats of North America, Europe, and Asia, fish family, Cottidae, are commonly called with just a few marine species in the southern USFWS/ROGER TABOR sculpins. They also go by “bullhead” or “sea hemisphere. Most abundant in the North Prickly sculpin (Cottus asper) scorpion,” and even some very unflattering Pacific, they tend to frequent shallow water terms, like “double uglies.” You’re not likely and tide pools. In North American coldwa- to catch one on your fishing line, but if you ter streams, they overlap the same habitat as them to keep them oxygenated until they look carefully into ocean tide pools, you trout and salmon, including small headwater hatch a few weeks later into baby fish, known may spot these well camouflaged creatures streams, lakes, and rocky areas of lowland as fry. The fry will be sexually mature in time moving around the bottom. Most of the more rivers. Freshwater sculpin are sometimes the for the next breeding season. than 250–300 known species in this family are only abundant fish species in streams. Inland marine, though some live in freshwater. species found in Pacific Northwest streams Fun Facts include the riffle sculpin (Cottus gulosus), • Some sculpins are able to compress their Generally, sculpins are bottom-dwelling prickly sculpin (Cottus asper), and coastrange skull bones to fit inside small spaces.
    [Show full text]
  • An Inventory of Fish in Streams in Mount Rainier National Park 2001-2003
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science An Inventory of Fish in Streams at Mount Rainier National Park 2001-2003 Natural Resource Technical Report NPS/NCCN/NRTR—2013/717.N ON THE COVER National Park staff conducting a snorkel fish survey in Kotsuck Creek, Mount Rainier National Park, 2002. Photograph courtesy of Mount Rainier National Park. An Inventory of Fish in Streams at Mount Rainier National Park 2001-2003 Natural Resource Technical Report NPS/NCCN/NRTR—2013/717.N Barbara A. Samora, Heather Moran, Rebecca Lofgren National Park Service North Coast and Cascades Network Inventory and Monitoring Program Mount Rainier National Park Tahoma Woods Star Rt. Ashford, WA. 98304 April 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Predation of Juvenile Chinook Salmon by Predatory Fishes in Three Areas of the Lake Washington Basin
    PREDATION OF JUVENILE CHINOOK SALMON BY PREDATORY FISHES IN THREE AREAS OF THE LAKE WASHINGTON BASIN Roger A. Tabor, Mark T. Celedonia, Francine Mejia1, Rich M. Piaskowski2, David L. Low3, U.S. Fish and Wildlife Service Western Washington Fish and Wildlife Office Fisheries Division 510 Desmond Drive SE, Suite 102 Lacey, Washington 98513 Brian Footen, Muckleshoot Indian Tribe 39015 172nd Avenue SE Auburn, Washington 98092 and Linda Park, NOAA Fisheries Northwest Fisheries Science Center Conservation Biology Molecular Genetics Laboratory 2725 Montlake Blvd. E. Seattle, Washington 98112 February 2004 1Present address: U.S. Geological Survey, 6924 Tremont Road, Dixon, California 95620 2Present address: Bureau of Reclamation, 6600 Washburn Way, Klamath Falls, Oregon 97603 3Present address: Washington Department of Fish and Wildlife, Olympia, Washington 98501 SUMMARY Previous predator sampling of the Lake Washington system focused on predation of sockeye salmon (Oncorhynchus nerka) and little effort was given to quantify predation of Chinook salmon (O. tshawytscha). In 1999 and 2000, we sampled various fish species to better understand the effect that predation has on Chinook salmon populations. Additionally, we reviewed existing data to get a more complete picture of predation. We collected predators in three areas of the Lake Washington basin where juvenile Chinook salmon may be particularly vulnerable to predatory fishes. Two of these areas, the Cedar River and the south end of Lake Washington are important rearing areas. In these areas, Chinook salmon may be vulnerable because they are small and are present for a relatively long period of time. The other study area, Lake Washington Ship Canal (LWSC; includes Portage Bay, Lake Union, Fremont Cut, and Salmon Bay), is a narrow migratory corridor where Chinook salmon smolts are concentrated during their emigration to Puget Sound.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Genetic Drift Lab
    Genetic Drift Lab Small population sizes are more strongly influenced by random events than large populations. This means that the genetic frequencies of alleles in small populations are more likely to vary from one generation to the next from the original population. Often, genetic variation is rapidly lost in small populations and random events can create rapid genetic changes or microevolution in such cases. Populations may be subject to this random genetic drift (rapid movement of allele frequencies) by one of two events that reduce population size. 1. Bottlenecks - an incident reduces the overall number of individuals in a population and only a few survive to produce the next generation. Evidence of bottlenecks have been discovered in many species, such as cheetahs and the northern elephant seal. 2. Founder effect - a small number of individuals disperse and colonize new habitat, founding a new population. Organisms colonizing new habitats, such as islands, or migrating to new areas are also common. In both cases the surviving or founding individuals will often vary in genetic frequency from the parental populations (original sources). Also, small subsequent population size plays a big role in additional changes to the gene frequencies. I. Simulation of random events (coin tosses): Each student flips a coin 10 times. What are the expected number of heads for 10 flips? How many heads did you obtain for your 10 flips? _______ # students in your class ___________ # times heads appeared out of 10 trials for all students: 0 _____ 1 ______ 2 _______ 3 ______ 4 ______ 5 ______ 6 _____ 7 _______ 8 ______ 9 ______ 10 ______ How many total times did the replications meet the expected number of heads _______ How many times did the replications not meet this? __________ II.
    [Show full text]
  • Oregon Fish Habitat Distribution Data Standard
    Oregon Fish Habitat Distribution Data Standard Version 4.0 March, 2020 Revision History Version 1.0 Endorsed by the Oregon Geographic Information Council March 27, 2008 Version 2.0 Revised September 2010 – February, 2011 based on input from ODFW, BLM, Pacific States Marine Fisheries Commission, NOAA Fisheries, Oregon Dept. of Transportation and the Oregon Biodiversity Information Center. Revisions include changes to the scope of the standard, modifications to some attribute domains, the addition of two optional attribute elements and the addition of two business rules. Version 3.0 Revised December, 2014 – March, 2015 based on input from ODFW, BLM, USFS, Pacific States Marine Fisheries Commission, Oregon Department of Transportation, Oregon Department of State Lands, Oregon Department of Environmental Quality and the Oregon Biodiversity Information Center. Revisions include changes to the minimum graphic elements, optional attribute elements, Domain of Attributes (Appendix C) and Business Rules (Appendix D). Endorsed by the Oregon Geographic Information Council June 17, 2015 Version 4.0 Revised April – September, 2019 based on input from ODFW, BLM, USFS, US Fish and Wildlife Service, Pacific States Marine Fisheries Commission, Oregon Department of Transportation, Oregon Department of State Lands, Oregon Department of Environmental Quality, Oregon Department of Forestry, Oregon Department of Agriculture, Weyerhaeuser Co., Urban Greenspaces Institute. Revisions include a new optional attribute element to identify specific habitat end extent determinations, a new optional attribute element to describe habitat access methods, a new optional attribute element to identify end extent barriers, changes related to the incorporation of modeled data, an expansion of the species domain, new business rules for designating Essential Salmonid Habitat and rules to clarify acceptable methods for standardized fish and habitat surveys.
    [Show full text]
  • 1994 IUCN Red List of Threatened Animals
    The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 20: 181–194, 2013 ENDANGERED SPECIES RESEARCH Published online May 3 doi: 10.3354/esr00493 Endang Species Res Assessing the distinctiveness of the Cultus pygmy sculpin, a threatened endemic, from the widespread coastrange sculpin Cottus aleuticus Patricia E. Woodruff, Eric B. Taylor* Department of Zoology and Biodiversity Research Centre and Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: The Cultus pygmy sculpin is a cottoid fish endemic to Cultus Lake, southwestern British Columbia, Canada, and is listed as ‘threatened’ under the federal Species at Risk Act (SARA). The Cultus pygmy sculpin was first discovered and described as a ‘dwarf’ coastrange sculpin Cottus aleuticus in the 1930s. It matures at a smaller size than the ‘normal’ C. aleuticus, has a lacustrine life history rather than a fluvial one, has different morphological features, and appears to undertake diurnal feeding migrations into the water column to feed on Daphnia, but little else of its biology is known. We used molecular genetic and behavioural assays to further assess the level of differentiation between Cultus pygmy sculpin and stream-dwelling C. aleuticus from several locations. Mitochondrial DNA haplotypes were broadly shared between Cultus pygmy sculpin and coastrange sculpin, and there was no apparent phylogeographic structure. However, analysis of 8 microsatellite analysis loci indicated significant genetic differentiation between parapatric samples of both forms. Laboratory-based experiments showed that, in gen- eral, the Cultus pygmy sculpin was found higher in the water column and was more active off the bottom than coastrange sculpin, but these behavioural differences were influenced by the pres- ence of congeneric C.
    [Show full text]