<<

EFFECTSOFZILPATEROLANDMELENGESTROLACETATEONBOVINESKELETAL MUSCLEGROWTHANDDEVELOPMENT by ERINKATHRYNSISSOM B.S.,CaliforniaStateUniversity,Fresno,2002 M.S.,KansasStateUniversity,2004 ANABSTRACTOFADISSERTATION submittedinpartialfulfillmentoftherequirementsforthedegree DOCTOROFPHILOSOPHY DepartmentofAnimalSciencesandIndustry CollegeofAgriculture KANSASSTATEUNIVERSITY Manhattan,Kansas 2009

Abstract Zilpaterol(ZIL)isaβreceptor(βAR)agonistthathasbeenrecentlyapprovedfor useinfeedlotcattletoimproveproductionefficienciesandanimalperformance.Oneofthe mechanismsthroughwhichthisoccursisincreasedskeletalmusclegrowth.Therefore,two experimentswereconductedtodeterminetheeffectsofZILboth in vivo and in vitro .Inthefirst experiment,ZILadditiontobovinesatellitecellsresultedinatendencytoincreaseIGFImRNA andincreasedmyosinheavychainIIA(MHC)mRNAwith0.001 ManddecreasedMHC mRNAwith0.01and10 M.TherewerenoeffectsofZILonproteinsynthesisordegradation.

Inmyoblastcultures,therewasadecreaseinallthreeβARmRNA,andthiswasalsoreportedin westernblotanalysiswithareductioninβ2ARexpressionduetoZILtreatment.Inmyotubes, therewasanincreaseinβ2ARproteinexpression.Inthesecondandthirdexperiment,ZIL improvedperformanceandcarcasscharacteristicsoffeedlotsteersandheifers.Additionally,

ZILdecreasedMHCIIAmRNAinsemimembranosusmuscletissuecollectedfrombothsteers andheifers.Anadditionalpartofthethirdstudywasconductedtodeterminetheeffectsof melengestrolacetate(MGA)onbovinesatellitecellandsemimembranosusmusclegene expression.TherewerenoeffectsofMGAontheexpressionofgenesanalyzedfrom semimembranosusmuscletissuecollected.However,theadditionofMGAtoculturedbovine satellitecellsresultedinincreasedβ1andβ2ARmRNA.Theseexperimentsaidinour understandingofthemechanismofactionofMGAinheifers,aswellastheeffectsofZILon bothsteersandheifers.Furthermore,theyincreaseourknowledgeandunderstandingofthe mechanismofactionofZIL,aswellasotherβagonistsusedtopromotegrowthandefficiency infeedlotanimals.

EFFECTSOFZILPATEROLANDMELENGESTROLACETATEONBOVINESKELETAL MUSCLEGROWTHANDDEVELOPMENT by ERINKATHRYNSISSOM B.S.,CaliforniaStateUniversity,Fresno,2002 M.S.,KansasStateUniversity,2004 ADISSERTATION submittedinpartialfulfillmentoftherequirementsforthedegree DOCTOROFPHILOSOPHY DepartmentofAnimalSciencesandIndustry CollegeofAgriculture KANSASSTATEUNIVERSITY Manhattan,Kansas 2009 Approvedby: MajorProfessor Dr.BradleyJ.Johnson

Abstract Zilpaterol(ZIL)isaβadrenergicreceptor(βAR)agonistthathasbeenrecentlyapprovedfor useinfeedlotcattletoimproveproductionefficienciesandanimalperformance.Oneofthe mechanismsthroughwhichthisoccursisincreasedskeletalmusclegrowth.Therefore,two experimentswereconductedtodeterminetheeffectsofZILboth in vivo and in vitro .Inthefirst experiment,ZILadditiontobovinesatellitecellsresultedinatendencytoincreaseIGFImRNA andincreasedmyosinheavychainIIA(MHC)mRNAwith0.001 ManddecreasedMHC mRNAwith0.01and10 M.TherewerenoeffectsofZILonproteinsynthesisordegradation.

Inmyoblastcultures,therewasadecreaseinallthreeβARmRNA,andthiswasalsoreportedin westernblotanalysiswithareductioninβ2ARexpressionduetoZILtreatment.Inmyotubes, therewasanincreaseinβ2ARproteinexpression.Inthesecondandthirdexperiment,ZIL improvedperformanceandcarcasscharacteristicsoffeedlotsteersandheifers.Additionally,

ZILdecreasedMHCIIAmRNAinsemimembranosusmuscletissuecollectedfrombothsteers andheifers.Anadditionalpartofthethirdstudywasconductedtodeterminetheeffectsof melengestrolacetate(MGA)onbovinesatellitecellandsemimembranosusmusclegene expression.TherewerenoeffectsofMGAontheexpressionofgenesanalyzedfrom semimembranosusmuscletissuecollected.However,theadditionofMGAtoculturedbovine satellitecellsresultedinincreasedβ1andβ2ARmRNA.Theseexperimentsaidinour understandingofthemechanismofactionofMGAinheifers,aswellastheeffectsofZILon bothsteersandheifers.Furthermore,theyincreaseourknowledgeandunderstandingofthe mechanismofactionofZIL,aswellasotherβagonistsusedtopromotegrowthandefficiency infeedlotanimals.

TableofContents

ListofFigures...... vii

List ofTables...... x

Acknowledgments...... xi

Dedication...... xii

CHAPTER1–ReviewofLiterature...... 1

Introduction...... 2

MetabolicModifiers...... 2

βadrenergicReceptors...... 5

PostnatalSkeletalMuscleGrowthandtheMuscleSatelliteCell...... 7

βadrenergicReceptorAgonists...... 10

βadrenergicReceptorAgonistsandMuscleGrowth...... 11

βadrenergicReceptorAgonistUseinLivestockSpecies...... 16

LiteratureCited...... 20

CHAPTER2EffectsofZilpaterolonCulturedBovineSatelliteCells...... 29

Abstract...... 30

Introduction...... 32

MaterialsandMethods...... 33

ResultsandDiscussion...... 40

LiteratureCited...... 50

CHAPTER3EffectofZilpaterolonFeedlotSteerPerformance,CarcassCharactersticsand

SkeletalMuscleGeneExpression...... 79

v Abstract...... 80

Introduction...... 82

MaterialsandMethods...... 83

ResultsandDiscussion...... 85

LiteratureCited...... 91

CHAPTER4EffectofZilpaterolandMelengestrolAcetateonSkeletalMuscleGene

ExpressioninFeedlotHeifersandCulturedBovineSatelliteCells...... 104

Abstract……………………………………………………………………………………….105

Introduction...... 107

MaterialsandMethods...... 108

ResultsandDiscussion...... 111

LiteratureCited...... 119

DissertationSummary...... 142

vi

ListofFigures

Figure2.1Effectofzilpaterolon[ 3H]thymidineincorporationinbovinesatellitecells(BSC)..56

Figure2.2EffectofzilpaterolonBSCproliferatingmyoblastβ1ARmRNA...... 57

Figure2.3EffectofzilpaterolonBSCproliferatingmyoblastβ2ARmRNA...... 58

Figure2.4EffectofzilpaterolonBSCproliferatingmyoblastβ3ARmRNA...... 59

Figure2.5EffectofzilpaterolonBSCproliferatingmyoblastIGFImRNA...... 60

Figure2.6EffectofzilpaterolonBSCproliferatingmyoblastMHCIIAmRNA...... 61

Figure2.7EffectofzilpaterolonBSCmyotubeβ1ARmRNA...... 62

Figure2.8EffectofzilpaterolonBSCmyotubeβ2ARmRNA...... 63

Figure2.9EffectofzilpaterolonBSCmyotubeβ3ARmRNA...... 64

Figure2.10EffectofzilpaterolonBSCmyotubeIGFImRNA...... 65

Figure2.11EffectofzilpaterolonBSCmyotubeMHCIIAmRNA...... 66

Figure2.12EffectofzilpaterolandICI118,551alone,orincombinationonmyoblastβ1AR

mRNA...... 67

Figure2.13EffectofzilpaterolandICI118,551alone,orincombinationonmyoblastβ2AR

mRNA...... 68

Figure2.14EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastβ3AR

mRNA...... 69

Figure2.15EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastIGFI

mRNA...... ..70

vii Figure2.16EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastMHCIIA

mRNA...... 71

Figure2.17EffectofzilpaterolontotalproteinaccumulationinproliferatingBSCmyoblasts...72

Figure2.18EffectofzilpaterolontotalproteinaccumulationinfusedBSCmyotubes...... 73

Figure2.19Effectof2hzilpateroltreatmentontotalproteinsynthesisinBSC...... 74

Figure2.20Effectof2hzilpateroltreatmentontotalproteinsynthesisinBSC...... 75

Figure2.21EffectofzilpaterolonproteindegradationinproliferatingBSCmyoblasts...... 76

Figure2.22(A)Westernblotimageofzilpaterolinduceddecreaseinβ2ARinmyoblast

cultures.(B)Effectofzilpaterolonβ2ARproteinexpressioninmyoblastcultures...... 77

Figure2.23(A)Westernblotimageofzilpaterolinducedincreaseinβ2ARinmyotube

cultures.(B)Effectofzilpaterolonβ2ARproteinexpressioninmyotubecultures...... 78

Figure3.1Effectofzilpateroladministrationonβ1ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 98

Figure3.2Effectofzilpateroladministrationonβ2ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 99

Figure3.3Effectofzilpateroladministrationonβ3ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 100

Figure3.4EffectofzilpateroladministrationonIGFImRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 101

Figure3.5EffectofzilpateroladministrationonmyosinheavychainIIAmRNAabundancein

bovinesemimembranosusmusclecollectedfromfeedlotsteers...... 102

Figure4.1EffectofMGAadministrationonβ1ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotheifers...... 129

viii Figure4.2EffectofMGAadministrationonβ2ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotheifers...... 130

Figure4.3EffectofMGAadministrationonβ3ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotheifers...... 131

Figure4.4Effectofzilpateroladministrationonβ1ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 132

Figure4.5Effectofzilpateroladministrationonβ2ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 133

Figure4.6Effectofzilpateroladministrationonβ3ARmRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 134

Figure4.7EffectofMGAadministrationonInsulinlikegrowthfactorImRNAabundancein

bovinesemimembranosusmusclecollectedfromfeedlotheifers...... 135

Figure4.8EffectofzilpateroladministrationonIGFImRNAabundanceinbovine

semimembranosusmusclecollectedfromfeedlotsteers...... 136

Figure4.9EffectofMGAadministrationonmyosinheavychainIIAmRNAabundancein

bovinesemimembranosusmusclecollectedfromfeedlotheifers...... 137

Figure4.10EffectofzilpateroladministrationonmyosinheavychainIIAmRNAabundancein

bovinesemimembranosusmusclecollectedfromfeedlotsteers...... 138

Figure4.11EffectofMGAonproliferatingBSCβ1ARmRNAabundance...... 139

Figure4.12EffectofMGAonproliferatingBSCβ2ARmRNAabundance...... 140

Figure4.13EffectofMGAonproliferatingBSCβ3ARmRNAabundance...... 141

ix

ListofTables

Table1.1ActiveingredientsinimplantsforbeefcattleintheUSA...... 3

Table2.1Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavychain

bovinespecificPCRprimersandTaqManprobes...... 55

Table3.1Compositionofthedietfedtosteersandheifers...... 95

Table3.2Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavychain

bovinespecificPCRprimersandTaqManprobes...... 96

Table3.3Effectsofzilpaterol(Z)administrationonperformanceandcarcasscharacteristicsof

feedlotsteers...... 97

Table4.1Compositionofthedietfedtoheifers...... 125

Table4.2Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavychain

bovinespecificPCRprimersandTaqManprobes...... 126

Table4.3EffectsofMGAadministrationonperformanceandcarcasscharacteristicsoffeedlot

heifers...... 127

Table4.4Effectsofzilpaterol(Z)administrationonperformanceandcarcasscharacteristicsof

feedlotheifers...... 128

x

Acknowledgements

TherearemanypeoplethatIwouldliketorecognizefortheircontributiontomy graduateworkwhileatKansasSateUniversity.Firstandforemost,Iwouldliketothankmy husband,BillMiller,forhisfriendshipandneverendingsupportduringmytimeatKansasState.

Iwouldnothavereachedthisachievementwithouthim.Iwouldalsoliketothankmyfellow graduatestudentsfortheirfriendshipandassistance.Additionally,Iwouldliketothankmy majorprofessorDr.BradleyJohnsonandmycommitteemembers,Dr.EvanTitgemeyer,Dr.

ErnieMinton,Dr.ChrisReinhardt,Dr.DanThomson,andDr.MarkHaub.Theirsupportand expertisewasgreatlyappreciated.

Finally,Iwouldliketothankmyparents,RonandBarbaraSissom.Theloveandsupport theyhavegiventomemyentirelifehasgivenmethecourageanddrivetoachievemydoctoral degree.Iwouldn’thavereachedthismilestoneifitwasn’tfortheirsupport.

xi

Dedication

IwouldliketodedicatethistomyhusbandBillMiller,andmyparentsRonandBarbara

Sissom.

xii

CHAPTER1ReviewofLiterature

1 Introduction

Growthhasbeendefinedas“theincreaseinsizeofanorganismorofitspartsdueto synthesisofprotoplasmorofapoplasmaticsubstances”(Balinsky,1981).Thisprocesscomes aboutthroughbothanabolicandcatabolicprocessesandcanresultinbothnegativeandpositive netgrowthrates.Animalgrowthisaverycomplexandregulatedprocessthatisofgreatinterest tomanypeople.

Theregulationofgrowthanddevelopmentoflivestockspecieshasbeenunder investigationforover60years(Scanes,2003).Theabilitytocontrolormanipulatedifferent aspectsoftissuegrowthanddevelopmenthasgreatsignificancetothelivestockindustrydueto themillionsofdollarsspenteveryyearfortheproductionofediblefoodproductsfromdomestic livestockspecies.Therehasbeenavastamountofresearchcompletedinvestigatingdifferent productsthatcanpositivelyaffectthegrowthanddevelopmentprocess,whichinturnleadstoa moreprofitablesystem.Anabolicimplantsusedincattlecanincreaseaveragedailygain717% andimprovefeedefficiency412%(Montgomeryetal.,2001).Theβadrenergicreceptor(β

AR)agonistcanimprovefeedefficiency715%andincreaseaveragedailygain6

20%inpigs(Kellyetal.,2003).Incattle,theresponsetoractopamineadministrationislessthan thatobservedinpigs,whichmaybeduetoreceptorpopulationsinskeletalmusclewhichwillbe addressedlaterinthisreview.

MetabolicModifiers

Themostcommoncompoundsutilizedformanipulationofgrowthinlivestockspecies

wouldbethegroupcommonlyreferredtoas“metabolicmodifiers”.Metabolicmodifiersmodify

themetabolismandphysiologyofdifferentspeciesinwaysthatleadtoimprovedefficiencyof productionofdifferentproductssuchasmeatandmilk(Beermannetal.,2005).Therearefour

2 groupsofmetabolicmodifierscommonlyusedinanimalagriculturetodayandtheyare:1) anabolicimplants,2)somatotropin,3)antiobiotics/ionophores,and4)βARagonists.

Thehormonesthatareutilizedinanabolicimplantshavebeenusedasgrowth promoterssincetheearly1950’swhendiethylstilbestrol(DES),asyntheticestrogen administeredorally,wasapprovedforuseinbeefcattle(RaunandPreston,2002).

Diethylstilbestrolwaseffectiveinimprovinggrowthandcarcasscharacteristicsofbothcattle andsheep,anditsoralactivitywasabeneficialtool(RaunandPreston,2002).Diethylstilbestrol wassubsequentlyremovedfromthemarketin1979bytheFoodandAdministration; however,thisproductpavedthewayforthefutureuseofanabolicimplants.Thesesteroid containingimplantsarecommonlyutilizedtodayasgrowthpromotingtools,withthemajorityof feedlotcattlebeingimplanted(Montgomeryetal.,2001).Thesteroidhormonesusedin implantstodayarelistedinthetablebelow.

Table1.1ActiveingredientsinimplantsforbeefcattleintheUnitedStates Estradiol Estradiolbenzoate acetate Testosteronepropionate Zeranol

Thesecondgroupofmetabolicmodifiersissomatotropin.Somatotropin,orclassically knownasgrowthhormone,hasbeenwidelyusedasastimulatorofmilkproductioninlactating dairycattle(Bauman,1992).Inpigs,growthhormonecanincreaseaveragedailygain9to15%, improvefeedefficiency323%,andincreasecarcassproteinandreducefat(Scanes,2003).In cattle,theeffectsofexogenousgrowthhormoneareinconsistent.Whenthegrowthhormone wasdeliveredthroughanimplant,steershadimprovedfeedefficiencyandincreasedproteinin theribsection;however,therewasnoeffectoncarcassweight,dressingpercentage,or

3 longissimusmusclearea(Dalkeetal.,1992).Whenthegrowthhormonewasinjected,increases incarcassweight,protein,andincreasedaveragedailygainandimprovedfeedefficiencywere observed(Earlyetal.,1990;Enrightetal.,1990).Becauseofthevariationofresponseincattle, andtherequirementforinjectionasthemodeofadministration,itisnotacommonpractice.

Additionally,itisnotapprovedforenhancinggrowthandperformanceintheUnitedStates today.

Thethirdgroupofmetabolicmodifiersincludesantibioticsandionophores.Antibiotics weresomeofthefirstcompoundsresearchedthatshowedgrowthstimulationofchickensand youngpigs(Scanes,2003).Today,subtherapeuticlevelsofantibioticsareaneffectivetoolto improveperformanceofbothpoultryandswine.Ionophoresareavaluableinstrumentin influencinggrowthofruminantsaswell.Theyworkbytransportingionsacrossthecell membranewhichresultsinashiftinrumenfermentationwithadecreaseinacetateandbutyrate, andanincreaseinpropionate.Theionophoreonthemarkettodaythatiswidelyusedis monensin.ThisproductismarketedbyElancoAnimalHealthasRumensinandhasbeen demonstratedtoimprovefeedefficiencyandpreventcoccidiosisincattle(Goodrichetal.,1984).

ThefourthandfinalgroupofmetabolicmodifiersistheβARagonists.Betaagonists aresyntheticorganiccompoundsthatareadministeredorallytolivestockspeciesinorderto improvetheefficiencythroughwhichtissuesaredeposited(Beermanetal.,2005).Thefirstβ agonistapprovedforuseintheUnitedStateswasractopamineHCl,marketedunderthenameof

Paylean™whichwasapprovedin1999foruseinfinishingswine.In2003,ractopamineHCl wasapprovedforuseinbeefcattleunderthetradenameOptaflexx™.Themostrecentβ agonistapprovedin2007foruseintheUnitedStatesiszilpaterolHCl,whichissoldunderits tradenameofZilmax™.

4 Alongwiththerecentapprovaloftwodifferentβagonistsforuseinlivestockspeciesin theUnitedStateshascomeaneedforabetterunderstandingofthemodeofactionofthese compounds.ThisreviewwillfocusonthespecificsoftheβAR,theiragonists,andthe utilizationoftheseproductsasgrowthpromotersinlivestockspecies.

βAdrenergicReceptors

TheβARarelocatedembeddedintheplasmamembraneofalmosteverymammalian celltype.TherearethreedifferentsubtypesoftheβAR.Thesedifferentreceptorsubtypes,the

β1,β2,andβ3aredistributedacrossdifferenttissuetypesinmammals,andvarydependingon thespecies(Strosberg,1993;LiggettandRaymond,1993).Incattleandsheep,thepredominant formofβARfoundinskeletalmuscleandadiposetissueistheβ2AR(SillenceandMathews,

1994).Inpigs,thepredominantformofβARfoundinskeletalmuscleandadiposetissueisthe

β1AR(McNealandMersmann,1999).ThedistributionofβARsubtypewithinspeciesand specifictissuesplaysanimportantroleintheeffectivenessofdifferentagonists.Thisis supportedbydatathatsuggestscattlearemoresensitivetoβ2ARagonists,whereaspigsare moresensitivetoβ1ARagonists(Moodyetal.,2000).Additionally,ithasbeendemonstrated thatinbothfinishingsteersandheifers,thereisagreaterabundanceofβ2ARmRNAinskeletal musclecomparedtobothβ1andβ3ARmRNA(Winterholleretal.,2006;Sissometal.,2007).

TheβARbelongtoaclassofmembraneboundreceptorsthatarecommonlyidentified bytheirsevenmembranespanningdomains.Thesequencesofthetransmembranedomainsare highlyconservedbetweenthedifferentsubtypesofβARcomparedtotheintraorextracellular loops(MillsandMersmann,1995).ThereceptorsarecoupledtoGproteinsandstimulatedby thebindingofdifferentgroupsofspecificligands.Theligandsforthereceptorsubtypesbindto thebindingpocketthatisformedfromthetransmembranedomains(Strosberg,1993).Therole

5 ofthisbindingpocketisevidentwhenchangesinaminoacidresidueshavealteredthe functionalityofligandsattemptingtobindtothereceptor(Strosberg,1993).

TheinteractionwithGproteinsisimperativetothefunctionofβAR(Strosberg,1993).

ThethirdintracellularloopofthereceptoristhemainsiteforreceptorinteractionwiththeG proteins.OnceanagonistisboundtothereceptorandthestimulatoryGproteinisactivated,the enzymeadenylatecyclaseisactivatedwhichproducescyclicadenosinemonophosphate(cAMP)

(MillsandMersmann,1995;Mersmann,1998).Cyclicadenosinemonophosphateisan importantintracellularsignalingmoleculethatplaysaroleinmanycellularfunctions.Itsrolein

βARsignalingisbindingtoproteinkinaseA(PKA)tocausethereleaseofthecatalyticsubunit thatisthenabletophosphorylateintracellularproteins.Theseproteinsareeitheractivatedor inactivatedviaphosphorylationbyPKA.

TherearenumerousproteinsthatcanbeaffectedbyPKAphosphorylationinthe signalingcascade.Inlivestockspecies,theseenzymesareinvolvedinproteinsynthesis,protein degradation,lipogenesisandlipolysis,tonameafew.Inadiposetissue,hormonesensitivelipase isactivatedviaphosphorylation,whichisconsideredtheratelimitingstepinlipolysis

(Mersmann,1998;Strosberg,1993;LiggettandRaymond,1993).Itisrequiredforhydrolyzing triacylglycerolfromadipocytes.PhosphorylationfromPKAcanalsohaveaneffectongene transcription.Whenphosphorylated,thecAMPresponseelementbindingprotein(CREB)binds toacAMPresponseelementintheregulatorypartofagenewhichresultsinthestimulationof thetranscriptionofthatparticulargene(Mersmann,1998,Strosberg,1992).TheactionsofPKA phosphorylationalsoincludeenzymeinactivation.AcetylCoAcarboxylaseisoneofthe enzymesinactivatedbyphosphorylation.Thisenzymeistheratelimitingenzymeforlongchain fattyacidbiosynthesis.Thesedifferentenzymeresponsesareafewofthespecificmodesin

6 whichβARactivationresultsinanincreaseinlipolysisviahormonesensitivelipolysisanda decreaseinlipogenesisviaacetylCoAcarboxylase(Mersmann,1998;Strosberg,1993;Liggett andRaymond,1993).

AnimportantfactorinvolvedinβARfunctionisthepotentialforreceptor desensitization(Mills,2002).Therearetwodifferentmodesofreceptordesensitization,and theyincludeuncouplingordownregulation.Uncouplingoccursrapidly(withinseconds)when agonistexposureoccurs.Thisprocessiscompletelyreversible.DownregulationofβARis moreofaconcernbecauseitisnotrapidlyovercome,andisnotcompletelyreversible.When downregulationoccurs,thereisadeclineinthenumberofβARpresent,thusleadingtoa reductioninresponsetoanagonist(Mills,2002).Thisresponsehasbeenexhibitedinboth in vitro and in vivo systems(Pecqueryetal.,1984;Hausdorffetal.,1990).Administrationof tomaleratsfor10dresultedina35%reductioninβ2ARdensityinskeletalmuscle

(Huangetal,2000).Thisreductioninreceptordensitywasalsoobservedinlungtissueofthe rats.Walkeretal.(2007)observedreductionsinthemRNAexpressionofbothβ1ARandβ2

ARmRNAinskeletalmusclefromHolsteinsteersadministeredractopaminefor28d.

Additionally,inpigsadministeredractopamine,thenumberofβ2ARinadiposetissuewas decreasedat1,8,and24dfollowingtreatment,whereastherewasnoeffectofractopamineon receptornumberinskeletalmuscle(Spurlocketal.,1994).Theabilityfordownregulationof receptorscanhaveanimpactontheeffectivenessofβagonistandisalimitationthatshouldbe consideredwhenutilizingthesecompounds.

PostnatalSkeletalMuscleGrowthandtheMuscleSatelliteCell

Skeletalmuscleisaunique,complextissue.Inembryonicdevelopment,multinucleated musclefibersareformed.Thesefibersareconsideredthecellularunitofmuscle.Themuscle

7 fibers,aswellasnucleiwithineachfiber,arepostmitotic,thusleadingtotheinabilitytodivide.

Duetothepostmitoticnature,musclefibernumberisfixedatbirth.Inordertosustainpostnatal musclehypertrophy,themusclefiberneedsanexternalsourceofDNA.TheDNAaccumulation responsibleforpostnatalmusclehypertrophyishighlycorrelatedtomusclegrowthrate(Trenkle etal.,1978).Infact,6090%ofDNAlocatedwithinmatureskeletalmusclefibersisbelievedto beaccumulatedduringpostnatalgrowth(Allenetal.,1979).Itisnowknownthatmuscle satellitecellsarethesourceofDNAresponsibleforpostnatalmusclehypertrophy.

Satellitecellsaremononucleatedcellslocatedbetweenthebasallaminaandsarcolemma ofthemusclefiber(Mauro,1961).UponinitialdiscoverybyAlexanderMauroin1961,thetrue functionofthesatellitecellwasunclear.Severaltheorieswerereportedatthattime,butit wasn’tforanothernineyearsthattheirfunctionsasthepostnatalmusclenucleisourcewere described.MossandLeBlond(1970)determinedthereweretwotypesofnucleiwithinthe basementmembraneofthemusclefiberthatweredistinguishablefromoneanother.Following thelabelingofnucleibyasingle[ 3H]thymidineinjection,maleratsweresacrificedatdifferent timeintervalsandthetibialisanteriormusclewasremovedforradioautographyanalysis.The resultsofthisstudyshowedthatthetruemusclenucleiwerenotlabeledat1hfollowing injection,indicatingtheywerenotactivelydividing.However,thenucleiwithinthebasement membranewerelabeled,indicatingthesatellitecellswereabletosynthesizeDNAanddivide.

MossandLeBlond(1970)alsoreportedthatoverthetimecourseof72h,thenumberoflabeled truemusclenucleiwasincreasingwhilethenumberoflabeledsatellitecellsdecreased.This leadtotheconclusionthatthesourceoflabelednucleibeingcountedwithinthefiberoverthe72 htimeframewereinfactthatofsatellitecellsthatweredividingandincorporatingintothe existingmusclefibers.Furtherresearchshowedthatoncethesatellitecellsfusedwiththe

8 existingfiberanddonatedtheirnuclei,theyinturnlosttheirproliferativecapacity(Mossand

Leblond,1971).Thesestudiesconfirmedthepostmitoticnatureoftruemusclenucleiandthe importanceofthemusclesatellitecellinpostnatalskeletalmusclegrowth.

Thenecessityofsatellitecellsinpostnatalmusclegrowthiswellunderstood,however, therearestilllimitationstotheextentofDNAaccretionatlaterstagesofmusclegrowth.Ina newbornanimal,30%ofmusclenucleiaresatellitecells,butthenumberreducesto2to10%in adults,thusshowingtheactualnumberofsatellitecellsdecreasewithage(CardasisandCooper,

1975).Notonlyisthereareductioninsatellitecellnumber,butthosecellsstillpresentremove fromtheproliferativestateofthecellcycleandenterG0(astateofquiescence)whichleadstoa growthplateau(CardasisandCopper,1975).Inordertomaintainthesatellitecellpopulation necessarytosupportmusclehypertrophyinmatureanimals,thecellsinquiescencemustbe activatedtoallowthemtoprogressthroughthecellcycleandcontributenucleitotheexisting musclefiber.Hepatocytegrowthfactor(HGF)isthenecessarygrowthfactorneededtoactivate quiescentsatellitecells(Allenetal.,1995).Hepatocytegrowthfactoristheactiveagentin crushedmuscleextractresponsibleforsatellitecellactivationneededformuscleregeneration

(Bischoff,1986;Tatsumietal.,1998),andistheonlyknowngrowthfactorcapableofactivating satellitecellsthatexistinastateofquiescence.Interestingly,satellitecellsexpressthereceptor forHGF,cmet,atalltimes,butitisn’tuntilHGFisproducedandreleasedthatthecellsare activated(Allenetal.,1995).

Oncequiescentsatellitecellshavebeenactivated,thereisaneedforgrowthfactors capableofstimulatingsatellitecellproliferationandsubsequentdifferentiation.Insulinlike growthfactorI(IGFI)andfibroblastgrowthfactor2(FGF2)areknownasprogressionfactors duetotheirabilitytoaidinprogressingcellsthroughthecellcycle.Bothgrowthfactorsare

9 potentstimulatorsofsatellitecellproliferation(JohnsonandAllen,1990;AllenandRankin,

1990).However,IGFIisuniqueinthatitisalsoapowerfulstimulatorofdifferentiationwhile

FGF2inhibitsdifferentiation(AllenandBoxhorn,1989;AllenandRankin,1990).

Thetransforminggrowthfactorβ(TGFβ)superfamilymembersarealsocapableof

regulatingsatellitecellactivity.Thesegrowthfactorsareconsiderednegativeregulatorsof

skeletalmuscleinthattheyinhibitbothproliferation,aswellasdifferentiation(Allenand

Rankin,1990).OnememberoftheTGFβsuperfamilyresponsiblefornegativeregulationof

skeletalmuscleismyostatin,alsoknownasgrowthanddifferentiationfactor8(GDF8)

(McPherronetal.,1997).Myostatinisresponsiblefordoublemusclingobservedincattledueto

amutationinthemyostatingene(McPherronandLee,1997).Thisembryonicmutationleadsto

agreaternumberofmusclefibersineachmuscle,aswitnessedindoublemusclecattle.This

recentdiscoveryhasleadtoresearchsurroundingthepossibleuseofregulatingmyostatinin

therapeuticsettingssuchasmusculardystrophy,aswellasfutureuseingrowthpromoting

systemsformeatanimals.

βAdrenergicReceptorAgonists

TherearebothphysiologicalβARagonistsaswellassyntheticagonists.The physiologicalagonistsincludethecatecholaminesandepinephrine.

Norepinephrineisaneurotransmittermoleculethatissynthesizedfromtryosine.Epinephrineis alsoaneurotransmitterandisamethylationproductofnorepinephrine(Mersmann,1998).The syntheticagonistsbelongtoagroupofcompoundsclassifiedasphenethanolamines.Boththe physiologicalandsyntheticagonistshavesimilarchemicalproperties(Mersmann,1998;Smith,

1998).Thestructureofthedifferentagonistsisdirectlylinkedtoitsproperfunction.Oneofthe mostimportantfeaturesofanagonist’sstructureisthearomaticringsthatareattachedtotheβ

10 carbon(Smith,1998).Eachagonistcontainsthearomaticrings,butthefunctionofeachis determinedbyitsaromaticsubstitution(Smith,1998).Thesesubstitutionsconsistofhydroxyl groups,halogens,amines,hydroxymethylgroups,cyanogroups,orcombinationsofeachwhich affecttheaffinityoftheagonistforitsreceptor(Smith,1998).

TheaffinityfortheβARsubtypesisdifferentbetweenphysiologicalandsynthetic agonists,aswellaswithineachspecificgroup.Forexample,epinephrinebindstotheβ2AR withagreateraffinitythannorepinephrine(Mills,2002).Therearemanydifferentsynthetic agoniststhathavebeeninvestigated.Thelistincludesractopamine,zilpaterol,clenbuterol, ,andL644969.Manyofthesehavebeeninvestigatedthoroughly;however,onlytwo havebeenapprovedforuseintheUnitedStates.ThoseapprovedforuseareractopamineHCl andzilpaterolHCl.Ractopamineisapprovedforuseinbothfinishingswineandcattle.In swine,ractopamineisfedupto10mg/kgofthedietperanimaldailyattheendofthefinishing period.Incattle,ractopamineisadministeredbetween200and400mgperanimaldailyforthe

last28to42dofthefinishingperiod.Zilpaterolisonlyapprovedforuseinfinishingcattle.Itis

recommendedat60to90mgperanimaldailythelast20to40dofthefinishingperiod.Thereis

a3dwithdrawalperiodwithzilpateroladministration,butthereisnowithdrawalfollowing

ractopamineuse.

βAdrenergicReceptorAgonistsandMuscleGrowth

Oneofthemostimportantandobviousresponsestoβagonistadministrationisthe resultingincreaseinskeletalmusclegrowth.Becauseofthefinancialgainduetoincreased musclegrowthandefficiencywithwhichthisoccurs,theseagonistshavebeenstudied extensively.Administrationofβagonistsresultsinincreasedmuscleweightsinmultiplespecies acrossdifferentmuscletypes.InsteersadministeredL644969,therewasa22%increaseinthe

11 weightofthesemitendenosousmuscle(WheelerandKoohmaraie,1992).Additionally,inlambs administeredtheβagonistcimateroltherewasanincreaseintheweightofthesemitendonosus, semimembranosus,andbicepsfemorismuscles(Beermanetal.,1987).Thesemusclesare increasedduetoβagonistadministrationarecomprisedofpredominantlyfasttwitchmuscle fibers.Thefasttwitchmusclefibersappeartohavethegreatestresponsetoβagonisttreatment.

However,othermuscletypescanalsobeaffectedbyβagonisttreatment.Forexample,weights oftheextensorhallucislongus,bicepsfemoris,gastrocnemius,andthepectoralisprofunduswere increasedinchickens(Rehfeldtetal.1997).Inlambs,Bohorovetal.(1987)reportedincreased weightofthelongissimusmusclewithclenbuteroltreatment.

Theeffectsofβagonistadministrationondifferentmuscletypesappeartobedictatedby musclefibertype.Individualmusclefibersareclassifiedbyenergymetabolismforeachfiber, andoneofthecharacteristicsforfiberclassificationismyosinheavychain(MHC)isoform content.TherearedifferentisoformsofMHCthatareimportantindeterminingmusclefiber type.Myosinheavychainisamajorproteininskeletalmusclethataccountsforaround30%of allproteininskeletalmuscle.SlowtwitchfibersarepredominantlyMHCI,whilefasttwitch fibersarepredominantlyMHCIIAandIIX.Ithasbeenreportedthatβagonisttreatmentcan altertheexpressionofMHCisoforms,whichcanresultinsubsequentchangesinmuscle composition.InchickensfedclenbuteroltherewasadecreaseinfasttwitchtypeIIAmuscle fibersandanincreaseinthefasttwitchtypeIIBmusclefibers(Rehfeldtetal,1997).Similarly,

Depreuxetal.(2002)observedadecreaseinMHCIIAandIIXmRNAexpressionandan increaseinMHCIIBmRNAinpigsfedractopamine.

Theeffectsofβagonistadministrationonmusclehypertrophyappeartobedictatedby musclefibercomposition,withthemostsignificantresponseinfasttwitchmusclefibers.There

12 alsoaredatasupportingtheconversionofslowtwitchtofasttwitchwithβagonist administration.Itisclearthereareincreasesinmusclehypertrophyduetoβagonists,butthe directeffectsonskeletalmusclegrowtharestillunderinvestigation.

Postnatalskeletalmusclegrowthisaresultofmusclefiberhypertrophyduetothepost mitoticnatureofskeletalmusclefibersandthenucleiwithineachfiber.Inordertosustain postnatalmusclehypertrophy,thefiberneedsandexternalsourceofDNA.ThesourceofDNA utilizedtosustainpostnatalmusclehypertrophyisthesatellitecell(MossandLeBlond,1971).

Thewaysthroughwhichpostnatalmusclegrowthcanbeaffectedarebyanincreaseinprotein synthesis,adecreaseinproteindegradationandanincreaseinsatellitecellfusionwiththe musclefiber.

ThemajorityofresearchsuggeststhatβagonistsdonotalterDNAaccumulationin skeletalmusclefibers(Grantetal.,1990;O’Connoretal.,1991a).Chickbreastmusclesatellite cellproliferationincreased,buttherewasnoeffectonthefusionofthosecellsasaresultof treatmentwithractopamine(Grantetal.1990).TotalDNAcontentofmusclesfromlambsfed

10ppmcimaterolfor3wkdidnotchangeinresponsetotreatment(O’Connoretal.1991a).

However,therewasa30%increaseinthetotalweightandproteincontentofthemuscles,thus leadingtoanincreaseintheprotein:DNAratioofthemuscle(O’Connoretal.1991a).

Similarly,therewasnoalterationintheDNAcontentofskeletalmusclesofbroilerchicks administeredclenbuterolfor3wk(Rehfeldtetal.1997).Incullbeefcowsadministered ractopaminefor35dpriortoharvest,satellitecellnumbersandmusclefiberassociatednuclei werenotaffected(Gonzalesetal.,2007).Thesedataprovideevidencethatsatellitecell proliferationandDNAaccumulationinskeletalmusclefiberswasunaffectedbyβagonists.

Thesedatasuggestthatthereareothercontributingfactorsthatsupporttheincreaseinmuscle

13 hypertrophythatisobservedwithβagonistadministration.Thesefactorshavebeenshownto involvealterationsinproteinsynthesisanddegradation.

Skeletalmuscleproteinsarecontinuallyundergoingsynthesisanddegradation.Therates atwhichtheseprocessesoccurarealteredbyβagonistadministration.Forproteinsynthesis rates,theyareoftenincreasedwithβagonisttreatment,both in vitroand in vivo.Manydifferent

in vitro studieshavebeenperformedinvestigatingdifferentβagonistsutilizingmanydifferent celltypesandcultureconditions.Therewasanincreaseinproteinsynthesisratesinmyotube culturesofELC 5(asubcloneofratL 6cells)withractopaminetreatment(Andersonetal.1990).

Therateofproteinsynthesiswasmeasureby[ 35 S]methionineincorporation.Theincreasewas observedat24,48,72,and96hpostractopaminetreatmentinbothtotalproteinandmyosin heavychainproteinsynthesis.Inaddition,therewasanincreaseintotalproteinaccumulationin theELC 5myotubecultureswithractopaminetreatment.Therewerenodifferencesinprotein degradationreportedinthecultures;thereforetheincreasedproteinaccumulationwassuggested tobeprimarilyaresultoftheincreasedproteinsynthesis.

Theβagonistclenbuterolstimulatedthefusionofneonatalmusclecellsderivedfromrat muscle(McMillanetal,1992).Within24hinthosecultures,bothfractionalandabsoluterates ofproteinsynthesiswereincreasedwithclenbuterol.Incontrast,thesameauthorsreportedno effectsofclenbuterolonsatellitecellsisolatedfrommaturerats,noranyaffectsonL 6myoblast ormyotubecultures.Theβagonistcimateroldidnothaveaneffectonproteinsynthesisor degradationinprimarymusclecellculturesderivedfromfetaltissueoflambs(Symondsetal.,

1990).Conversely,cimaterolincreasedproteinsynthesisinsatellitecellsderivedfrom3to4mo oldprepubertallambs.Itcanbeconcludedfromthesestudiesthattheeffectsofβagonist

14 treatment in vitro maybedependentuponcellsource,type,timeinculture,andthespecificβ

agonistusedintheexperiment.

Therehavealsobeenreportsofβagonistsalteringskeletalmuscleproteinsynthesisand

degradation in vivo .Therewasa27.1%reductioninfractionaldegradationrateofskeletal musclemyofibrillarproteininsteersfedtheβagonistL644,969after3wk(Wheelerand

Koohmaraie,1992).Additionally,calpastatinactivitywasincreasedinmusclefromthosesteers.

ThesteersadministeredL644,969hadimprovedfeedefficiency,averagedailygain,greater carcassweights,largerlongissimusmuscleareaandloweryieldgrades.Itwasthussuggested thattheβagonistinducedmusclehypertrophywasduetoreducedproteolyticcapacityfrom increasedcalpastatinwhichinturnreducedproteindegradation.

Theratesofmusclemyofibrillarproteinsynthesisarealteredbyractopamine administrationinpigs(Adeolaetal.,1991).Barrowsfed20mg/kgractopaminehadincreased proteincontentinboththelongissimusdorsiandbicepsfemorismuscles.Additionally, ractopamineincreasedtheratesofsynthesisofmyofibrillarproteinsinthosemuscles(Adeolaet al.,1991).Bergenetal.(1989)reportedanincreaseinsemitendinosusmuscleproteincontentin barrowsadministered20ppmractopaminebyd21.Fractionalproteinsynthesisrateswere1.7% higherinractopaminefedpigscomparedtocontrol.

Alteringproteinsynthesisanddegradationratesplayakeyroleinstimulatingskeletal musclegrowth;however,thereareotherimportantfactorstobeconsideredaswell.Insulinlike growthfactorIisonethatshouldbeconsideredbecauseitisapotentstimulatorofpostnatal skeletalmusclegrowth.Themajorityofresearchwouldsuggestthereisnodemonstrablerole forIGFIinβagonistinducedskeletalmusclegrowth.O’Connoretal.(1991b)observedno changeinIGFIconcentrationsfollowingadministrationofcimaterolfor3wk.Similarly,

15 clenbuteroladministrationtogrowinglambsresultedinnochangeinIGFIconcentrations

(Youngetal.,1995).Grantetal.(1993)reportednochangeinIGFImRNAexpressioninboth skeletalmuscleandliverinpigsfedractopamine.Inadditiontothedatasuggestingnoeffectof

βagonistsonIGFI,thereissomedatasuggestingIGFIcanbereducedinbothcirculationand mRNAexpressionbyβagonisttreatment.InHolsteinsteersadministeredractopaminefor28d priortoharvesttherewasadecreaseinserumIGFI(Walkeretal.,2007).Additionally,there wasadecreaseinmRNAexpressionofIGFIinthelongissimusmuscletissuecollectedat harvest.Ingrowinglambsfedcimaterolfor6wk,therewasadecreaseinIGFIlevelin circulation(Beermannetal.,1987).Incontrast,ithasbeenreportedthatclenbuterol administrationtoratsincreasedIGFImRNAandIGFIcontentskeletalmusclewithoutany changeinserumIGFI(Awedeetal.,2002).Becauseofvariabilitybetweenstudies investigatingtheroleofIGFIinβagonistinducedmusclehypertrophy,therearestillmany questionsthatshouldbeexplored.

Itisevidentthatβagonistscanalterproteinaccumulationinskeletalmusclebyaltering theratesofproteinsynthesis,degradation,oracombinationofthetwo.Forthemostpart,there appearstobenoeffectsofβagonistsonsatellitecellproliferation,orDNAaccumulationinto musclefibers.Additionally,thereissomeevidencethatIGFIcanbealteredbyβagonist treatment,butitsroleinβagonistinducedmusclehypertrophyisstillunclear.Therearestill manyunansweredquestionsregardinghoweachdifferentβagonistaffectstheseimportant factorsresponsibleforthemusclehypertrophyobservedwhenβagonistsareused,andtherefore furtherinvestigationintotheseiswarrantedatthistime.

βAdrenergicReceptorAgonistUseinLivestockSpecies

16 Theeffectsoftheadministrationofβagoniststolivestockspecieshasbeenunder investigationformanyyears.Thesecompoundshaveproveneffectivetoolsinimprovingoverall efficiencyofgrowthinlivestock(Andersonetal.,1991).Theeffectsofβagonistsdifferamong species,andaremorepronouncedincattle,pigs,andsheepcomparedtochickens(Andersonet al.,1991;Moodyetal.,2000).Thespecificeffectsofβagonistsonskeletalmusclegrowthhave alreadybeenmentionedinthisreview.Thefollowingfocusesontheeffectsofβagonistson performanceandcarcasscharacteristicsonlivestock.

Thereissignificantpublishedinformationabouttheeffectsofractopamineonbothpigs andcattle.Thereisamoreprofoundeffectinpigs,whichmaybeassociatedwiththeabundance ofβ1ARinporcinetissue,andtheselectivityofractopaminefortheβ1AR(McNeeland

Mersmann,1999).Infinishingpigs,ractopamineincreasedaveragedailygain,feedefficiency, dressingpercentage,andcarcassleanness(Watkinsetal.,1990).Additionally,Seeetal.(2004) reportedimprovedaveragedailygainandfeedefficiencyinbarrowsandgiltsfedractopamine.

Therehasalsobeensomeresearchconductedontheuseofβagonistsinsheep.Lambs fedcimaterolhadincreasedaveragedailygainandfeedefficiency(Beermanetal.1986).There wasalsoimprovedcarcasscharacteristicswithincreasedlongissimussmuscleareaanddecreased backfat.Additionally,Kimetal.(1987)reportedincreasedgain,improvedfeedefficiencies,and increasedhotcarcassweightinlambsfedcimaterol.

Ractopaminealsoimprovesperformanceinbothfeedlotsteersandheifers.Infeedlot steers,ractopaminefedthefinal28dofthefinishingperiodat200mgpersteerdailyresultedin improvedaveragedailygain,feedefficiency,hotcarcassweights,andlargerlongissimusmuscle area(Gruberetal.,2007).Winterholleretal.(2007)reportedsimilarfindingsinyearlingsteers fed200mgperanimaldailyofractopaminethefinal28dofthefeedingperiod.Steersfed

17 ractopaminehadincreasedaverageddailygainandimprovedfeedefficiency.Theyalsohad increasedhotcarcassweightandlongissimusmusclearea.

Theeffectivenessofractopamineadministrationhasalsobeenobservedinfeedlotheifers

(Walkeretal.,2006;Sissometal.,2007).Feedlotheifersfedractopamine(200mgperanimal daily)28dpriortoslaughterimprovedaveragedailygain,efficiencyofgain,carcassadjusted averagedailygainandcarcassadjustedefficiencyofgain(Walkeretal.,2006).Therewereno largeeffectsofractopamineoncarcasscharacteristics.Inasimilarmanner,ractopamine(200 mgperanimaldaily)fedthelast28dofthefinishingperiodtofeedlotheifersresultedin increasedaveragedailygain,hotcarcassweight,andlongissimusmusclearea(Sissometal.,

2007).Bothfeedefficiencyandcarcassyieldgradewereimproved,and12 th ribfatdepthwas

decreasedwithractopamineadministration.

Therearefewstudiesinvestigatingtheeffectsofzilpaterolonanimalperformance becauseithasonlyrecentlybeenapprovedforuseintheUnitedStates;howeverthosethatare

availablesuggestzilpaterolisaneffectivetoolingrowthpromotionofcattle(Plascenciaetal.,

1999;AvendanoReyesetal.,2006).Infeedlotsteersadministered6mg/kgofthedietdailyof

zilpaterol,therewasanincreaseinaveragedailygainandimprovedfeedefficiency(Plascencia

etal.,1999).Zilpaterolsupplementationalsoincreasedcarcassweightby4.5%,dressing percentageby3.6%,andlongissimusmuscleareaby2.7%.Therewasnoeffectofzilpaterolon

fatthicknessormarblingscore.Bothzilpaterol(60mgperheaddaily)andractopamine(300mg perheaddaily)wereinvestigatedinfeedlotcattletocomparethetwoβagonistsusedincattle

(AvendanoReyesetal.,2006).Bothβagonistsimprovedaveragedailygain,feedefficiency,

hotcarcassweight,andcarcassyield.Additionally,zilpaterolincreasedlongissimusmuscle

area.Bothractopamineandzilpaterolincreasedshearforcevaluescomparedtocontrolsteers.

18 Theauthorscommentedthattheβagonistswereeffectiveinenhancingperformanceofthecattle withoutsubstantivelycompromisingmeatquality(AvendanoReyesetal.,2006).

Inconclusion,theeffectivenessofβagonistsinimprovinganimalperformanceis

overwhelminglysupportedbynumerouspublishedreports.Thesecompoundscanpositively

affectskeletalmusclegrowthanddevelopment,aswellasoverallperformancewhen

administeredattherecommendeddose.

19 LiteratureCited

Adeola,O.,R.O.Ball,andL.G.Young.1991.Porcineskeletalmusclemyofibrillarprotein

synthesisisstimulatedbyractopamine.J.Nutr.122:488495.

Allen,R.E.,R.A.Merkel,andR.B.Young.1979.Cellularaspectsofmusclegrowth:

myogeniccellproliferation.J.Anim.Sci.49:115127.

Allen,R.E.,andL.KBoxhorn.1989.Regulationofskeletalmusclesatellitecellproliferation

anddifferentiationbytransforminggrowthfactorbeta,insulinlikegrowthfactorI,and

fibroblastgrowthfactor.J.Cell.Physiol.138:311315.

Allen,R.E.,andL.L.Rankin.1990.Regulationofsatellitecellsduringskeletalmuscle2growth

anddevelopment.Proc.Soc.Exp.Biol.Med.194:8186.

Allen,R.E.,S.M.Sheehan,R.G.Taylor,T.L.Kendall,andG.M.Rice.1995.Hepatocyte

growthfactoractivatesquiescentskeletalmusclesatellitecellsinvitro.J.Cell.Physiol.

165:307312.

Anderson,P.T.,W.G.Helferich,L.C.Parkhill,R.A.Merkel,andW.G.Bergen.1990.

Ractopamineincreasestotalandmyofibrillarproteinsynthesisinculturedratmyotubes.

J.Nutr.120:16771683.

Anderson,D.B.,E.L.Veenhuizen,A.L.Schroeder,D.J.Jones,andD.L.Hancock.1991.

Theuseofphenethanolaminestoreducefatandincreaseleannessinmeatanimals.Page

43inProc.Symp.FatCholesterolReducedFoods–Adv.Appl.Biotechnol.Series.C.

HaberstrohandC.E.Morris,ed.PortfolioPublishingCompany,NewOrleans,LA.

AvendanoReyes,L.,V.TorresRodriguez,F.J.MerazMurillo,C.PerezLinares,F.Figueroa

Saavedra,andP.H.Robinson.2006.Effectsoftwoβadrenergicagonistsonfinishing

20 performance,carcasscharacteristics,andmeatqualityoffeedlotsteers.J.Anim.Sci.

84:35293265.

Awede,B.L.,J.Thissen,andJ.Lebacq.2002.RoleofIGFIandIGFBPsinthechangesofmass

andphenotypeinducedinratesoleusmusclebyclenbuterol.Am.J.Physiol.Endcorinol.

Metab.282:E31E37.

Balinsky,B.I.1981.IntroductiontoEmbryology .5thEd.Saunders,Philadelphia.

Bauman,D.E.1992.BovineSomatotropin:areviewofanemerginganimaltechnology.J.

DairySci.75:34323451.

Beermann,D.H.,D.E.Hogue,V.K.Fishell,R.H.Dalrymple,andC.A.Ricks.1986.Effectsof

cimaterolandfishmealonperformance,carcasscharacteristicsandskeletalmuscle

growthinlambs.J.Anim.Sci.62:370380.

Beermann,D.H.1987.Effectsofbetaadrenergicagonistsonendocrineinfluenceandcellular

aspectsofmusclegrowth.Proc.Recip.MeatConf.,St.Paul,MN40:5763

Beerman,D.H.,F.R.Dunshea,F.C.Buonomo,W.M.Knight,R.K.Miller,andA.P.

Moloney.2005.Metabolicmodifiersforuseinanimalproduction.AnimalAgriculture’s

FutureThroughBiotechnology,Part3.

Bergen,W.G.,S.E.Johnson,D.M.Skjaerlund,A.S.Babiker,N.K.Ames,R.A.Merkel,and

D.B.Anderson.1989.Muscleproteinmetabolisminfinishingpigsfedractopamine.J.

Anim.Sci.67:22552262.

Bischoff,R.1986.Asatellitecellmitogenfromcrushedadultmuscle.Dev.Biol.115

(1):140147.

Bohorov,O.,P.J.Buttery,J.H.R.D.Corriea,andJ.B.Soar.1987.Theeffectoftheβ2adrenergic

agonistclenbuterolorimplantationwithoestradialplustrenboloneacetateonprotein

metabolisminwetherlambs.Br.J.Nutr.57:99107.

21 Cardasis,C.A.,andG.W.Cooper.1975.Amethodforthechemicalisolationofindividual

musclefibersanditsapplicationtoastudyoftheeffectofdenervationonthenumberof

nucleipermusclefiber.J.Exp.Zool.191:333346.

Dalke,B.S.,R.A.Roeder,T.R.Kasser,J.J.Veenhuizen,C.W.Hunt,andG.T.Schelling.

1992.Doseresponseeffectsofrecombinantbovinesomatotropinimplantsonfeedlot performanceinsteers.J.Anim.Sci.70:21302137.

Early,R.J.,B.W.McBride,andR.O.Ball.1990.Growthandmetabolisminsomatotropin

treatedsteers:I.Growth,serumchemistryandcarcassweights.J.Anim.Sci.68:4144

4152.

Enright,W.J.,J.F.Quirke,P.D.Gluckman,B.H.Breier,L.G.Kennedy,I.C.Hart,J.F.

Roche,A.Coert,andP.Allen.1990.Effectsoflongtermadministrationofpituitary

derivedbovinegrowthhormoneandestradiolongrowthinsteers.J.Anim.Sci.68:2345

2356.

Kelly,J.A.,M.D.Tokach,S.S.Dritz.2003.Weeklygrowthandcarcassresponsetofeeding

ractopamine(Paylean®).Pages51–58inProc.Am.Assoc.SwineVet.,Perry,IA.

Gonzales,J.M.,J.N.Carter,D.D.Johnson,S.E.Luellette,andS.E.Johnson.2007.Effectof

ractopaminehydrochlorideandtrenboloneacetateonlongissimusmusclefiberarea,

diameter,andsatellitecellnumbersincullbeefcows.J.Anim.Sci.85:18931901.

Goodrich,R.D.,J.E.Garrett,D.R.Gast,M.A.Kirick,D.A.LarsonandJ.C.Meiske.1984.

Influenceofmonensinontheperformanceofcattle.J.Anim.Sci.58:14841498.

Grant,A.L.,D.M.Skjaerlund,W.G.Jelferich,andW.G.Bergen.1990.Effectsof

phenethanolaminesandpropanololontheproliferationofculturedchickbreastmuscle

satellitecells.J.Anim.Sci.68:652658.

22 Grant,A.L.,D.M.Skjaerlund,W.G.Jelferich,W.G.Bergen,andR.A.Merkel.1993.Skeletal

musclegrowthandexpressionofskeletalmuscleαactinmRNAandinsulinlikegrowth

factorImRNAinpigsduringfeedingandwithdrawalofractopamine.J.Anim.Sci.

71:33193326.

Gruber,S.L.,J.D.Tatum,T.E.Engle,M.A.Mitchell,S.B.Laudert,A.L.Schroeder,andW.

J.Platter.2007.Effectsofractopaminesupplementationongrowthperformanceand

carcasscharacteristicsoffeedlotsteersdifferinginbiologicaltype.J.Anim.Sci.

85:18091815.

Hausdorff,W.P.,M.G.Caron,andR.J.Lefkowitz.1990.Turningoffthesignal:

Desensitizationofbetaadrenergicreceptorfunction.FASEBJ.4:28812889.

Huang,H.C.Gazzola,G.G.Pegg,andM.N.Sillence.2000.Differentialeffectsof

dexamethasoneandclenbuterolonratgrowthonβ2adrenoceptorsinlungandskeletal

muscle.J.Anim.Sci.78:604608.

Johnson,S.E.,andAllen,R.E.1990.TheeffectsofbFGF,IGFI,andTGFbetaonRMo

skeletalmusclecellproliferationanddifferentiation.Exp.Cell.Res.187:250254.

Kim,Y.S.,Y.B.Lee,andR.H.Dalrymple.1987.Effectofrepartitioningagentcimaterolon

growth,carcassandskeletalmusclecharacteristicsinlambs.J.Anim.Sci.65:13921399.

Liggett,S.B.,andJ.R.Raymond.1993.Pharmacologyandmolecularbiologyofadrenergic

receptors.BaillieresClin.Endocrinol.Metab.7:279305.

Mauro,A.1969.Satellitecellofskeletalmusclefibers.JBiophysBiochemCytol,94935.

McMillan,D.N.,B.S.Noble,andC.A.Maltin.1992.Theeffectoftheβadrenergicagonist

clenbuterolongrowthandproteinmetabolisminratmusclecellculture.J.Anim.Sci.

70:30143023.

23 McNeel,R.L.,andH.J.Mersmann.1999.Distributionandquantificationofbeta1,beta2,and

beta3adrenergicreceptorsubtypetranscriptsinporcinetissues.J.Anim.Sci.77:611

621.

McPherron,A.C.,A.M.Lawler,andS.J.Lee.1997.Regulationofskeletalmusclemass

inmicebyanewTGFbetasuperfamilymember.Nature.387:8390.

McPherron,A.C.andLee,S.J.1997.Doublemusclingincattleduetomutationsinthe

myostatingene.Proc.Natl.Acad.Sci.USA.94:1245712461.

Mersmann,H.J.1998.Overviewoftheeffectsofβadrenergicreceptoragonistsonanimal

growthincludingmechanismsofaction.J.Anim.Sci.76:160172.

Mill,S.,andH.J.Mersmann.1995.Betaadrenergicagonists,theirreceptors,andgrowth:

specialreferencetothepeculiaritiesinpigs.Page1ofTheBiologyofFatinMeat

Animals:CurrentAdvances.S.B.SmithandD.R.Smith,ed.AmericanSocietyof

AnimalScience,Champaign,IL.

Mills,S.E.2002.Implicationsoffeedbackregulationofbetaadrenergicsignaling.J.Anim.Sci.

80(E.Suppl.1):E30E35.

Montgomery,T.H.,P.F.Dew,andM.S.Brown.2001.Optimizingcarcassvalueandtheuseof

anabolicimplantsinbeefcattle.J.Anim.Sci.(E.Suppl.):E296E306.

Moody,D.E.,D.L.Hancock,andD.B.Anderson.2000.Phenethanolaminerepartitioning

agents.Page65inFarmAnimalMetabolismandNutrition.J.P.F.D’Mello,ed.CABI

Publishing,Wallingford,UK.

Moss,F.P.,andLeblond,C.P.1970.Natureofdividingnucleiinskeletalmuscleof

growingrats.J.CellBiol.44:459462.

24 Moss,F.P.,andC.P.LeBlond.1971.Satellitecellsasthesourceofnucleiinmusclesof

growingrats.Anat.Rec.170:421435.

O’Connor,R.M.,W.R.Butler,K.D.Finnerty,D.E.Hogue,andD.H.Beermann,1991a.

Temporalpatternofskeletalmusclechangesinlambsfedcimaterol.Domest.Anim.

Endocrinol.8:549554.

O’Connor,R.M.,W.R.Butler,K.D.Finnerty,D.E.Hogue,andD.H.Beermann,1991b.

Acuteandchronichormoneandmetabolitechangesinlambsfedthebetaagonist

cimaterol.Domest.Anim.Endocrinol.8:549554.

Pecquery,R.,M.C.Leneveu,andY.Giudicelli.1984.Invivodesensitizationofthebeta,butnot

thealpha2adrenoreceptorcoupledadenylatecyclasesysteminhamsterwhite

adipocytesafteradministrationofepinephrine.Endocrinology123:528533.

Plascencia,A.,N.Torrentera,andR.A.Zinn.1999.Influenceoftheβagonistzilpaterolon

growthperformanceandcarcasscharacteristicsoffeedlotsteers.Proc.West.Sect.

AmericanSocietyofAnimalScience50:331334.

Raun,A.P,,andR.L.Preston.2002.Historyofdiethylstilbestroluseincattle.J.Anim.Sci.

Smith,D.J.1998.Thepharmacokinetics,metabolism,tissueresiduesofβadrenergic

receptoragonistsinlivestock.76:173194.

Rehfeldt,C.R.,R.Schadereit,R.Weikard,andK.Reichel.1997.Effectofclenbuterolon

growth,carcass,andskeletalmusclecharacteristicsinbroilerchickens.Br.Poult.Sci.

38(4):366373.

Scanes,C.G.Biologyofgrowthofdomesticanimals.1 st .Edition,IowaStatePress.

25 See,M.T.,T.A.Armstrong,andW.C.Weldon.2004.Effectofaractopaminefeedingprogram

ongrowthperformanceandcarcasscompositioninfinishingpigs.J.Anim.Sci.200482:

24742480.

Sillence,M.N.,andM.L.Matthews.1994.Classicalandatypicalbindingsitesforβ

adrenoreceptorligandsandactivationofadenylylcyclaseinbovineskeletalmuscleand

adiposetissuemembranes.Br.J.Pharmacol.111:866872.

Sissom,E.K.,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,R.S.Swingle,and

B.J.Johnson.2007.ResponsetoractopamineHClinheifersisalteredbyimplant

strategyacrossdaysonfeed.J.Anim.Sci.85:21252132.

Smith,D.J.1998.Thepharmacokinetics,metabolism,andtissueresiduesofβadrenergic

agonistsinlivestock.J.Anim.Sci.76:173194.

Spurlock,M.E.,J.C.Cusumano,S.Q.Ji,D.B.Anderson,C.K.SmithII,D.L.Hancock,andS.

E.Mills.1994.Theeffectofractopamineonβadrenoreceptordensityandaffinityin

porcineadiposeandskeletalmuscletissue.J.Anim.Sci.72:7580.

Strosberg,A.D.1992.Biotechnologyofβadrenergicreceptors.Mol.Neurobiol.4:211250.

Strosberg,A.D.1993.Structure,function,andregulationofadrenergicreceptors.

ProteinSci.2:11981209.

Strosberg,A.D.,L.Camoin,N.Blin,andB.Maigret.1993.InreceptorscoupledtoGTPbinding

proteins,ligandbindingandGproteinactivationisamultistepdynamicprocess.Drug

Des.Discov.9:199211.

Symonds,M.E.,J.A.Roe,C.M.Heywood,J.M.Harper,andP.J.Buttery.1990.β.

Adrenoceptorsandtheeffectofβagonistsonproteinmetabolisminovineprimary

musclecultures.Biochem.Pharmacol.40:22712276.

26 Tatsumi,R.,J.E.Anderson,C.J.Nevoret,O.Halevy,andR.W.Allen.1998.HGF/SFis

presentinnormaladultskeletalmuscleandiscapableofactivatingsatellitecells.Dev.

Biol.194:114128.

Trenkle,A.,DeWitt,D.L.andTopel,D.G.1978.Influenceofage,nutritionandgenotypeon

carcasstraitsandcellulardevelopmentofM.Longissimusofcattle.J.Anim.Sci.46;

15971603.

Walker,D.K.,E.C.Titgemeyer,J.S.Drouillard,E.R.Loe,B.E.Depenbusch,andA.S.Webb.

2006.Effectsofractopamineandproteinsourceongrowthperformanceandcarcass

characteristicsoffeedlotheifers.J.Anim.Sci.84:27952800.

Walker,D.K.,E.C.Titgemeyer,E.K.Sissom,K.R.Brown,J.J.Higgins,G.A.Andrews,and

B.J.Johnson.2007.EffectsofsteroidalimplantationandractopamineHClonnitrogen

retention,bloodmetabolitesandskeletalmusclegeneexpressioninholsteinsteers.J.

Anim.Physiol.Anim.Nutr.91:439447.

Watkins,L.E.,D.J.Jones,D.H.Mowrey,D.B.Anderson,andE.L.Veenhuizen.1990.

Theeffectofvariouslevelsofractopaminehydrochlorideontheperformanceandcarcass

characteristicsoffinishingswine.J.Anim.Sci.68:35883595.

Wheeler,T.L.,andM.Koohmaraie.1992.EffectsofβadrenergicagonistL644,969onmuscle

proteinturnover,endogenousproteinaseactivities,andmeattendernessinsteers.J.

Anim.Sci.70:30353043.

Winterholler,S.J.,G.L.Parsons,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,

R.S.Swingle,andB.J.Johnson.2007.Responsetoractopaminehydrogenchlorideis

similarinyearlingsteersacrossdaysonfeed.J.Anim.Sci.85:413419.

27 Young,O.A.,S.Watkins,J.M.Oldham,andJ.J.Bass.1995.Theroleofinsulinlikegrowth

factorIinclenbuterolstimulatedgrowthingrowinglambs.J.Anim.Sci.73:30693077.

28

CHAPTER2EffectsofZilpaterolonCulturedBovineSatellite Cells

29 Abstract

ZilpaterolHCl( ZIL )isaβadrenergicreceptor( AR )agonistrecentlyapprovedtoimprove productionefficienciesanddressingpercentageinfeedlotcattle.Thepurposeofthese

experimentswastodeterminetheeffectofvariouslevelsofZIL(0,0.0001,0.001,0.01,0.1,1.0,

and10 M)inculturemediaonbovinesatellitecellproliferationandgeneexpression.Bovine

satellitecellsisolatedfromthesemimembranosusmusclewereplatedontissuecultureplates

coatedwithreducedgrowthfactormatrigelorcollagen.TotalRNAwasisolatedfromcells

following48hZILexposurebothinproliferatingmyoblastculturesat96handinfused

myotubeculturesestablishedafter192hinculture.RealtimequantitativePCRwasperformed

toestimatemRNAabundance.TherewasnoeffectofZILdoseon[ 3H]thymidineincorporation

inproliferatingmyoblasts.Zilpaterol(1 M)additiontomyoblastsresultedinadecrease( P<

0.05)inβ1ARmRNA.Similarly,ZIL(0.01and1 M)decreased( P<0.05)β2ARandβ3AR

mRNA.TheexpressionofIGFImRNAtendedtoincrease( P = 0.07)withZIL(1 M) addition,andtherewasatendency( P=0.07)forZIL(0.001M)toincreasemyosinheavy

chain( MHC )IIAmRNA,whereas0.01Mand1 MZILreduced( P<0.05)MHCIIAmRNA

levels.Therewasnoeffect( P>0.05)ofZILdoseontheexpressionofgenesanalyzedinfused

myotubeculturesat192h,oronfusionpercentageinthosecultures.Theβ2ARantagonistICI

118,551(0.1M)blockedtheeffectof0.1MZILtoreduceexpressionofβ1andβ2AR

mRNA.ThecombinationofZIL(0.01M)andICI118,551(0.1M)resultedinanincrease( P

<0.05)inβ1ARmRNAexpression.TherewasnoeffectoftheantagonistorZILonβ3ARor

IGFImRNAintheantagonistspecificexperiment.Therewasanincrease( P<0.05)inMHC

IIAmRNAexpressionwithICI118,551(0.1M)andtheZIL(0.01M)+ICI118,551(0.01

M)combination.Zilpateroldidnotaffecttotalproteinaccumulationortotalproteinsynthesis

30 anddegradationpercent.SimilartochangesinmRNA,westernblotanalysisrevealedthatthe proteincontentofβ2ARinZILtreatedmyoblastculturesdecreased( P<0.05)relativeto control.Additionally,ZILincreased( P<0.05)β2ARproteinexpressioninmyotubeculturesas indicatedbywesternblotanalysis.Similartopreviousworkwithotherβagonists,ZILdidnot altersatellitecellproliferationbutreducedbothmRNAandproteinlevelsofthevarious subtypesofβARinthesecultures.TheresponsetoZILofIGFImRNAcouldbemediating changesinproteinsynthesisanddegradation.ThesedataindicatethatZILadditioncanalter mRNAandproteinconcentrationsofβARofmusclecellcultureswhichinturncouldimpact responsivenessofcellstoprolongedZILexposureinvivo.

Keywords:Betaadrenergicreceptor,bovine,satellitecell,zilpaterol.

31 Introduction

ZilpaterolHCl(ZIL )isanorallyactiveβadrenergicreceptor( βAR )agonistapproved

foruseinfeedlotcattleintheUnitedStates.AdministrationofZILtofeedlotsteersandheifers

thelast20to40donfeedincreasedADG,ribeyearea,dressingpercentage,andimprovedfeed

efficiencyandcarcassyieldgrade.ZilpaterolelicitsaresponsethroughbindingtoβARwhich

aremembraneboundreceptorslocatedonmostmammaliancells(MillsandMersmann,1995;

Strosberg,1993).ThebindingofZILtoitsreceptorresultsinenzymephosphorylationthatis

responsibleforchangesinproteinsynthesisanddegradation,particularlyinskeletalmuscle

(Mersmann,1998).

Satellitecellsaremononucleatedcellsthatareimportantinpostnatalskeletalmuscle growth(Mauro,1961;MossandLeblond,1971).Becauseofthepostmitoticnatureofthe musclefiber,thefusionofsatellitecellswithmusclefibersisnecessarytosupportpostnatal musclegrowth.ThesecellsaretheexternalsourceofDNArequiredforthemusclefiberto sustainmusclehypertrophy,andthisDNAaccumulationishighlycorrelatedtomusclegrowth rate(Trenkleetal.,1978).Becauseoftheirroleinpostnatalmusclegrowth,satellitecellsare usefultoolsininvestigatingthemodeofactionofdifferentmusclegrowthpromotingagents, suchasβARagonists.

Theeffectsofβagonistshavebeenextensivelystudied,buttoourknowledgethereis limitedinformationonthedirecteffectsofZILonbovineskeletalmusclegrowth.Thus,the purposeoftheseexperimentswastoinvestigatethedirecteffectsofZILoncellproliferation, proteinsynthesisanddegradationrates,proteinaccumulation,aswellastheexpressionof

mRNAfortheβARsubtypes,IGFI,andmyosinheavychain( MHC )IIAinbovinesatellite

cellcultures.

32 MaterialsandMethods

AllexperimentalprocedureswithanimalswereapprovedbytheKansasStateUniversity

InstitutionalAnimalCareandUseCommittee.

BovineSatelliteCellIsolation

Satellitecellisolationwasconductedasdescribedpreviously(Johnsonetal.,1998).

Cattleweresacrificedbyboltingfollowedbyexsanguination.Usingsteriletechniques,

approximately500gofthesemimembranosusmusclewasdissectedoutandtransportedtothe

cellculturelaboratory.Subsequentprocedureswereconductedinasterilefieldunderatissue

culturehood.Afterremovalofconnectivetissuethemusclewaspassedthroughasterilemeat

grinder.Thegroundmusclewasincubatedwith0.1%pronaseinEarl'sBalancedSaltSolution

(EBSS )for1hat37 °Cwithfrequentmixing.Followingincubation,themixturewas

centrifugedat1,500x gfor4min,thepelletwassuspendedinphosphatebufferedsaline( PBS :

140m MNaCl,1m MKH 2PO 4,3m MKCl,8m MNa 2HPO 4),andthesuspensionwascentrifuged at500x gfor10min.Thesupernatantwascentrifugedat1500x gfor10mintopelletthe

mononucleatedcells.ThePBSwashanddifferentialcentrifugationwererepeatedtwomore

times.Theresultingmononucleatedcellpreparationwassuspendedincold(4 °C)Dulbecco’s

ModifiedEagleMedium( DMEM )containing10%FBSand10%(v/v)dimethylsulfoxide

(DMSO )andfrozen.Cellswerestoredfrozeninliquidnitrogen.

[3H]ThymidineIncorporation

Satellitecellswereplatedon2cm 2 cultureplatesforthymidineincorporation.Culture plateswereprecoatedwithreducedgrowthfactorbasementmembranematrigeldiluted1:10

(v/v)withDMEM.CellswereplatedinDMEMcontaining10%fetalbovineserum( FBS )and incubatedat37 °C,95%CO 2inawatersaturatedenvironment.Platingdensityforcellswas

33 empiricallyestablishedsothatallcultureswere25to50%confluentaftertheincubationperiod.

Thisensuredthatcellproliferationratewasnotaffectedbycontactinhibition.Cultureswere rinsedthreetimeswithserumfreeDMEM24hafterplatingthebovinesatellitecellsin10%

FBS/DMEM,andtheappropriatelevelsofZIL(providedbyIntervetInc.,Millsboro,DE;0,

0.0001,0.001,0.01,0.1,1.0,and10 M)wereaddedin10%FBS/DMEM.At72h,cultures

wererinsedthreetimeswithserumfreeDMEMand1Ci/mLof[ 3H]thymidine(NENLife

Science,Boston,MA)wasaddedtoeachwell.Cellswith[ 3H]thymidinewereincubatedat

37 °C,5%CO 2inawatersaturatedenvironmentfor3h.Afterincubation,satellitecellswere rinsedthreetimeswithcoldserumfreeDMEMtoremovefree[ 3H]thymidine.Cold5%

trichloroaceticacid( TCA ;Sigma,St.Louis,MO)wasaddedtoeverywellandincubated

overnightat4ºC.Thefollowingday,cellswererinsedtwotimeswithcoldTCAtoremoveany

remainingunincorporated[ 3H]thymidine.Theprecipitatedcellmaterialwasdissolvedin0.5mL

of0.5 Msodiumhydroxide( NaOH ;Sigma,St.Louis,MO)inarockingincubatorfor30minat

37 °C.TheNaOHsuspensionsweretransferredquantitativelyintoscintillationvialscontaining

10mLofscintillationcocktail(FisherScientific,HanoverPark,IL).Thesampleswereallowed

tostandforafewhoursinlowlighttoreducechemiluminescencebeforebeingcountedina

scintillationcounter.Alltreatmentsweremeasuredintriplicate,withseventotalassaysincluded

inthefinalanalysis.

MarkersofDifferentiation

Satellitecellswereplatedaspreviouslydescribedon9.62cm 2 collagencoatedculture platesfordifferentiationstudies.At48h,cultureswererinsedthreetimeswithserumfree

DMEMand3%swineserum( SS )/DMEMwasadded.At96h,cellswererinsedthreetimes

withserumfreeDMEMand3%horseserum( HS )/1.5 g/mLBSALinoleicacid/DMEMfusion

34 mediawasadded.Zilpaterol(0,0.0001,0.001,0.01,0.1,and1 M)wasaddedtotheculturesat

144h.Afterapproximately216hinculture,cellsfusedintomultinucleatedmyotubesandwere stainedusingHoechst33342stain.Thestainednucleiwerevisibleunderbluefluorescentlight, atwhichtime,digitalphotosweretakenofrandomfieldsineachwelltodetermineextentof differentiation(fusionpercentage;definedasmyotubenuclei/totalnuclei).

RNAIsolationonProliferatingMyoblasts

Satellitecellswereplatedin10%FBS/DMEMaspreviouslydescribedon9.62cm 2

tissuecultureplates.After48h,cultureswere25to50%confluentandwererinsedthreetimes

withserumfreeDMEMandZIL(0,0.0001,0.001,0.01 ,and1 M)wasaddedtotheculturesin

10%FBS/DMEM.At96h,totalRNAwasisolatedusingtheAbsolutelyRNAMicroprepKit

(Stratagene,LaJolla,CA).TheconcentrationofRNAwasdeterminedbyabsorbanceat260 nm .

OnemicrogramoftotalRNAwasreversetranscribedtoproducefirststrandcomplementary

DNA(cDNA)usingTaqManReverseTranscriptionReagents,MultiScribe™Reverse

Transcriptase(AppliedBiosystems,FosterCity,CA),andtheprotocolrecommendedbythe manufacturer.RandomhexamerswereusedasprimersincDNAsynthesis.

Inaddition,satellitecellswereplatedasdescribedabovetoassesstheeffectsofzilpaterol alone,orincombinationwithaspecificβ2adrenergicreceptorantagonist,ICI118,551(Sigma,

St.Louis,MO).Treatmentsconsistedofthefollowing:1)Control,2)0.01MZIL,3)0.1M

ICI,4)0.01MZIL+0.1M ICI,5)0.01MZIL+0.01MICI.Theconcentrationof inhibitorchosentouseincombinationwithZILwassimilartothatinpreviousexperimentswe conductedinourlaboratorywithcomparableexperimentsinwhichreceptorantagonistswere usedtotryandinhibittheeffectofitsagonist(Sissometal.,2006).CultureconditionsandRNA isolationwereasdescribedabove.

35 RNAIsolationonMyotubes

Bovinesatellitecellswereplatedin10%FBS/DMEMaspreviouslydescribedon9.62 cm 2tissuecultureplates.After48h,cultureswererinsedthreetimeswithserumfreeDMEM

3%SS/DMEMwasadded.Followinga96hincubation,cellswererinsedthreetimeswith

DMEMand3%HS/1.5g/mLBSALinoleicAcid/DMEMwasadded.At120h,ZIL(0,0.0001,

0.001,0.01,and1 M)in3%HS/1.5g/mlBSALinoleicAcid/DMEMwasadded.At168h,

totalRNAwasisolatedusingtheAbsolutelyRNAMicroprepKit(Stratagene,LaJolla,CA).

TheconcentrationofRNAandcDNAsynthesiswasmeasuredaspreviouslydescribed.

RealTimeQuantitativePCR

RealtimequantitativePCR( RTQPCR )wasusedtomeasurethequantityofβ1AR,

β2AR,andβ3AR,IGFI,andMHCIIAgeneexpressionrelativetothequantityof18S ribosomalRNA( rRNA )intotalRNAisolatedfrombovinesatellitecellstreatedwithzilpaterol.

MeasurementoftherelativequantityofcDNAwasperformedusingTaqManUniversalPCR

MasterMix(AppliedBiosystems),900n Moftheappropriateforwardandreverseprimers,200 nMofappropriateTaqMandetectionprobe,and1LofthecDNAmixture.Thebovinespecific

β1AR,β2AR,andβ3AR,IGFI,andMHCIIAforwardandreverseprimersandTaqMan detectionprobes(Table2.1)weredesignedusingpublishedGenBanksequences.Commercially availableeukaryotic18SrRNAprimersandprobeswereusedasanendogenouscontrol(Applied

Biosystems;GenbankAccession#X03205).TheABIPrism7000detectionsystem(Applied

Biosystems)wasusedtoperformtheassayutilizingtherecommendedthermalcyclingvariables bythemanufacturer(50cyclesof15sat95ºCand1minat60ºC).The18SrRNAendogenous controlwasusedtonormalizetheexpressionofβ1AR,β2AR,andβ3AR,IGFIandMHC

IIA.

36 PreparationofProteinExtractsonProliferatingMyoblastsandMyotubes

TotalproteinwasisolatedusingtheMammalianProteinExtractionReagent( MPER ;

PierceBiotechnology,Rockford,IL).Bovinesatellitecellswereplatedaspreviouslydescribed

on9.62cm 2 collagencoatedplates.Formyoblastcultures,followinga48hincubation,cells

wererinsedthreetimeswithserumfreeDMEMandZIL(0,0.001,0.01,0.1,and1 M)in10%

FBS/DMEMwasadded.Formyotubecultures,following48hofincubation,cellswererinsed

threetimeswithserumfreeDMEMand3%SS/DMEMwasadded.At96h,cellswererinsed

threetimeswithDMEMand3%HS/1.5g/mLBSALinoleicAcid/DMEMwasadded.After24

h,ZIL(0,0.001,0.01,0.1,and1 M)in3%HS/1.5g/mLBSALinoleicAcid/DMEMwas

added.At96hformyoblastsand168hformyotubes,cellswererinsedwithwarmPBSand

extractionreagent(350L/well)wasadded.Theculturesweregentlyshakenfor5minto

ensurecompletecelllysis,thencentrifugedfor5minat14,000x g.Thesupernatantwas

collectedandproteinconcentrationwasdeterminedusingaND1000Spectrophotometer

(NanoDropTechnologies,Wilmington,DE).Averageproteinconcentrationcollectedwas8

mg/mL.

WesternBlotAnalysis

Proteinsamplesweredenaturedusingequalvolumeofsodiumdodecylsulfate(SDS)β

mercaptoethanolandboiledfor5min.Totalprotein(30g)wasthenseparatedbygel

electrophoresisusingPiercePreciseProteinGels(PierceBiotechnology,Rockford,IL).Gels

wererunfor45minat150Vand130mA.Theproteinwasthentransferredontoa

nitrocellulosemembrane(BioRad,Hercules,CA).Thenitrocellulosemembraneswereblocked

usingStartingBlock™Buffer(PierceBiotechnology,Rockford,IL)for15minat37 ºC.The primaryantibodyagainstβ2AR(sc569;SantaCruzBiotechnology,Inc.,SantaCruz,CA)in

37 blockingbufferwasaddedtothemembraneandincubatedovernightat4 ºC.Following

overnightincubation,themembranewaswashedthreetimeswithPBST.Thesecondary

antibody(sc3030;SantaCruzBiotechnology,Inc.,SantaCruz,CA)fortheβ2ARprimary

antibodywasaddedtothemembraneandincubatedfor1h.Detectionandquantificationof proteinswereanalyzedusingaFluorchem8800ImagingSystem(AlphaInnotech,SanLeandro,

CA).

MeasurementofTotalProteinSynthesisRate

Bovinesatellitecellcultureswereusedtoassesstherateoftotalproteinsynthesis.Cells wereplatedin10%FBS/DMEMaspreviouslydescribed.Followinga48hincubation,cultures wererinsedthreetimeswithserumfreeDMEMand3%SS/DMEMwasadded.At144h,cells wererinsedthreetimeswithDMEMand3%HS/1.5g/mLBSALinoleicAcid/DMEMwas added.At168hZIL(0,0.001,0.01,0.1,1, and 10 M)wasaddedtothefusedmyotube

cultures.CultureswereincubatedinZILmediaforeither2or48h.FollowingZILincubation,

2Ci/mLof[ 3H]wasaddedtothecellsfor2h.Cultureswerethenrinsedfivetimes

with2mLPBS.FollowingthePBSrinse,satellitecellswereincubatedin10%TCAovernight

at4°C,whichallowedforproteinstobeprecipitated.Followingtheovernightincubation, precipitatedproteinswereremovedfromtheplatesusingarubberpoliceman.Theplateswere

scrapedandrinsedwith10%TCAanadditional5times.TheTCAcollectedfromeachwellon

werethensentthroughaglassfiberfilter,whichallowedfortheprecipitatedproteinstobe

collectedonthefilter.Thefilterwasthenrinsedwith10%TCA,followedby95%ethanol.

Scintillationvialswereusedtoplacethefiberfilterswith0.5mLoftissuesolubilizer(NCS

tissuesolubilizer,Amersham,ArlingtonHeights,IL)tosolubilizetheprecipitatedproteins.

Scintillationcocktail(FisherScientific,HanoverPark,IL)wasaddedtothevials,inadditionto

38 0.1mLofconcentratedaceticacid.Therateofproteinsynthesiswasdeterminedbytherateof incorporationoflabelintoTCAprecipitableproteins(Hembreeetal.,1991).

MeasurementofTotalProteinDegradationRate

Therateofproteindegradationwasdeterminedbyevaluatingthereleaseofradioactivity

fromtotalproteininbovinesatellitecellculturesthatwereprelabeledwith[ 3H]tyrosine.

Satellitecellswerelabeledfor24hwith[ 3H]tyrosine(4Ci/mL)in1mLofconditionedmedia after168hinculture.At192h,mediacontainingthe[ 3H]tyrosinewasremovedandsatellite cellswereincubatedfor4hin1mLofmediacontaining0.2m Mtyrosine.Followingthe4h incubation,satellitecellcultureswererinsedwithDMEMand2mLofZIL(0,0.001,0.01,0.1, and1 M)testmediawasaddedforaperiodof2h.Followingthe2hZILdosingperiod,0.75

mLofthemediawasremovedfromthecellcultureplatesandaddedto0.094mLof90%TCA.

Themediain90%TCAwasthenincubatedfor30minat4°C.ThemediasolubilizedinTCA

wascentrifugedat10,000xgfor3min.Supernatant(0.5mL)wascollectedandaddedtoliquid

scintillationcocktail.ThiswasthenusedtomeasurethereleaseofTCAsolubleradioactivity

fromthecells.Testmedia(noTCAincubation)wascountedtodeterminethedpminthemedia

collectedfromthecells.Thedpm’sfromthecellularfractionwerealsoevaluatedby

solubilizingcellsin1mLofureabuffer(6 Murea,20m MTrisHCl,0.1%βmercaptoethanol, pH7.5at4°C).Thesolubilizedmaterialwasthenaddedtoscintillationcocktailandcounted.

Thepercentdegradationwasdeterminedbythefollowing:TCAsolubledpmreleasedintomedia

x100/(totalmediadpm+cellulardpm).

StatisticalAnalysis

DatawereanalyzedasacompletelyrandomizeddesignusingthePROCMIXEDinSAS

(SASInst.Inc.,Cary,NC)Thedifferencebetweencontrolandtreatmentwasevaluated(P<

39 0.05)usingtheleastsignificancedifferenceprocedureofSAS. Additionally,specificorthogonal contrastswereusedtotestforlineareffectsofZILdose.

ResultsandDiscussion EffectofZILonCellProliferation,Differentiation,andmRNAExpressionoftheβ

AdrenergicReceptors,IGFI,andMHCIIAmRNAinBovineSatelliteCells

TherewasnoeffectofZILonbovinesatellitecellrateofproliferationasmeasuredby

[3H]thymidineincorporation(Figure2.1).Additionally,ZILdidnotaltertheextentof

differentiationofbovinesatellitecellsasassessedbyfusionpercentage(datanotshown).The

lackofeffectofZILonsatellitecellproliferationanddifferentiationisinagreementwithother

datawhichinvestigatedotherβARagonist’sroleinsatellitecellproliferationanddifferentiation.

O’Connoretal.(1991a)reportedadecreaseinDNAconcentrationinskeletalmuscleofram

lambsthatwerefedcimaterol.TheDNAconcentrationofthehindlimbmuscleswasreducedby

42%duringthe3wkadministrationofcimaterolandremained25%lessafter6wkoftreatment.

Thetotalweightandproteincontentofthemusclesfromthehindlimbofthelambswas

increasedby30%duringthe3wkadministrationofcimaterol,suggestingthatanincreasein

satellitecellproliferationisnotnecessarytosupporttheβagonistinducedmusclehypertrophy.

Rehfeldtetal.(1997)observednoalterationintheDNAcontentofskeletalmusclesofbroiler

chicksadministeredclenbuterolfor3wk.Similarly,cullbeefcowsadministeredractopamine

for35dpriortoharvestshowednochangeinsatellitecellnumbersandmusclefiberassociated

nuclei(Gonzalesetal.,2007).Incontrasttoourdata,Grantetal.(1990)observedanincreasein

cellproliferationinmusclesatellitecellsisolatedfromchickbreastmusclewithractopamine

treatment;however,therewasnoeffectonthefusionofthosecellsintothemusclefiber,andthis

issimilartotheresultsfromourresearchwithZIL.Itisimportanttonotethelevelsof

ractopamineusedintheexperimentsthatresultedinincreasedcellproliferationwere

40 pharmacologicaldosesinsteadofthemorephysiologicaldosesusedinourexperiments.

Additionally,Shappelletal.(2000)observeda30%increaseincellnumberandDNA

concentrationinC 2C12 cellstreatedwithahighdose(10 M)ofractopamine.Theresultsinthat

studymaybeduetothehighlevelofractopamineusedorthesourceofthecellsusedbecause

therewasnoeffectofractopamineinthecellsutilizedafterlaterpassages.Theβ2agonist

clenbuterolwasreportedtostimulatefusionofneonatalmuscleculturesderivedfromratmuscle

(McMillanetal,1992).Inthosecultures,bothfractionalandabsoluteratesofproteinsynthesis

wereincreasedwithin24hoftreatmentwithclenbuterol.Incontrast,thesameauthorsreported

noeffectsofclenbuterolonsatellitecellsisolatedfrommaturerats,noranyeffectsonL 6

myoblastormyotubecultures.Thereissomevariabilityinthedatareportedwithregardtoβ

agonistsandskeletalmusclecellproliferationanddifferentiationinvitro;however,themajority

ofdatasuggestnoalterationinDNAcontentofmusclesfromanimalsadministeredaβagonist

invivo.Thelevelsusedinthisstudyspannedfromphysiologicaltopharmacologicalandwe

observednotrendsfordifferencesinrateofproliferationasmeasuredby[ 3H]thymidine

incorporation.Therefore,theincreasedmusclegrowthreportedinthemajorityofstudiesalong

withnoeffectonskeletalmuscleDNAcontentsupportthetheorythattheincreasedmuscle

hypertrophyreportedwithβagonistsinsupportedbyotherprocesses,andanalterationofthe

DNAcontentmaynotbenecessary.

ChangesinthemRNAlevelsoftheβARinskeletalmusclemaybeanimportantmethod

fortheenhancedmusclegrowthreportedwithβagonists.Weobservedchangesinthe

expressionofβARmRNAinbovinesatellitecellculturestreatedwithZIL.Zilpateroladdition

(1 M)toproliferatingmyoblastsresultedinadecrease( P<0.05)inβ1ARmRNA(Figure

2.2).Similarly,ZIL(0.01and1 M)decreased( P<0.05)β2ARandβ3ARmRNA(Figures

41 2.3and2.4).ThereductioninmRNAoftheβARissimilartothatofotherstudies demonstratingalterationsindensityofreceptornumberwithβagonisttreatment.

Administrationofclenbuteroltomaleratsfor10dresultedina35%reductioninβ2ARdensity inskeletalmuscle(Huangetal,2000).Thisreductioninreceptordensitywasalsoobservedin lungtissueoftherats.Walkeretal.(2007)observedreductionsinthemRNAexpressionofboth

β1ARandβ2ARmRNAinskeletalmusclefromHolsteinsteersadministeredractopamine.

Additionally,inpigsadministeredractopamine,thenumberofβ2ARinadiposetissuewas decreasedat1,8,and24dfollowingtreatment,whereastherewasnoeffectofractopamineon receptornumberinskeletalmuscle(Spurlocketal.,1994).Incontrast,Winterholleretal.(2007) observedatendencyforincreasedβ2ARmRNAinskeletalmuscleisolatedfromyearlingsteers administeredractopaminefor28dpriortoharvest.Additionally,wepreviouslyobserveda tendencyforractopamineadministrationtofeedlotheiferstoincreaseβ2ARmRNAin semimembranosousmusclecollectedatharvest(Sissometal.,2007).Itisevidentfromour currentresultsandpreviousresearchthatβagonistscanalterthemRNAexpressionanddensity ofβARinskeletalmuscleaswellasothertissues.Thesechangesmayplayanimportantrolein regulatingtheresponsetoβagonisttreatmentandwarrantfurtherinvestigation.

InadditiontothealterationofβARmRNAinproliferatingbovinesatellitecellcultures, therewasatendency( P=0.07)fortheexpressionofIGFImRNAtobeincreasedwithZIL(1

M)addition(Figure2.5);however,therewerenolineareffectsdetected.ThechangeinIGFI mRNAwithZILtreatmentisinterestingandmaybeanimportantfactorwhenconsideringthe modeofactionofZILinincreasingskeletalmusclegrowth.InsulinlikegrowthfactorIisa potentstimulatorofpostnatalskeletalmusclegrowth.Inculturedsatellitecells,IGFIisapotent stimulatorofbothcellproliferationanddifferentiation(JohnsonandAllen,1990;Allenand

42 Rankin,1990).ThereisalsoanimportantroleofIGFIinstimulatingproteinsynthesisand decreasingproteindegradationinmusclecellcultures(Hembreeetal.,1991;ForsbergandHong,

1994).BecauseofthetendencyforincreasedexpressionofIGFImRNA,wewouldexpectto seeincreasedcellproliferationordifferentiation.Wedidnotdetectdifferencesinproliferation anddifferentiation,butoneimportantfactortonoteisthepotentialroleofIGFBP3inthemedia used.KamangoSolloetal.(2004)reportedthatIGFBP3inmediacontainingswineorfetal bovineserumexhibitsantagonisticactiononIGFIbioavailabilitytoproliferatingmyogenic cells.Theyobservedthatutilizingmediacontainingswineserumorfetalbovineserumresulted innoeffecton[ 3H]thymidineincorporationfollowingsteroidtreatment.Theyreportedthatthe

IGFBP3wasmaskingthesteroideffectonproliferationandwasremovedtoeliminateany

interferenceitmaycause.ThissupportsthetheorythattheIGFBP3foundtheinthemediawe

usedmayhaveattenuatedthedifferencesinIGFIproductioncausedbyZILaddition.However,

themajorityofresearchwouldsuggestthereislittleeffectofIGFIinβagonistinducedskeletal

musclegrowth.O’Connoretal(1991b)observednochangeinIGFIconcentrationsfollowing

administrationofcimaterolfor3wk.Similarly,clenbuteroladministrationtogrowinglambs

resultedinnochangeinIGFIconcentrations(Youngetal.,1995).Grantetal.(1993)reported

nochangeinIGFImRNAexpressioninbothskeletalmuscleandliverinpigsfedractopamine.

InadditiontothedatasuggestingnoeffectofβagonistsonIGFI,thereissomedatasuggesting

IGFIcanbereducedinbothcirculationandmRNAexpressionbyβagonisttreatment.In

Holsteinsteersadministeredractopaminefor28dpriortoharvesttherewasadecreaseinserum

IGFI(Walkeretal.,2007).Additionally,therewasadecreaseinmRNAexpressionofIGFIin

thelongissimusmuscletissuecollectedatharvest.Ingrowinglambsfedcimaterolfor6wk,

therewasadecreaseinIGFIlevelincirculation(Beermannetal.,1987).Ourresultsarein

43 contrasttomuchoftheresearchavailable.However,ithasbeenreportedthatclenbuterol administrationtoratsincreasedIGFImRNAandIGFIcontentskeletalmusclewithoutany changeinserumIGFI(Awedeetal.,2002).ThisdatawouldsupporttheincreaseinIGFI mRNAweobserved;however,therearestillmanyquestionsastotheroleofIGFIinβagonist inducedmusclehypertrophybecauseofthevariabilityobservedbetweendifferentstudies.

Therewasatendency( P=0.07)for0.001 MZILtoincreasemyosinheavychain

mRNA,whereas0.01and1 MZILreduced( P<0.05)MHCIIAmRNAlevels(Figure2.6).

ThechangeinMHCIIAmRNAinthebovinesatellitecellculturesisintriguingbecauseofthe

observedincreasewiththelowerlevelofZILandadecreaseinthehigherlevelsofZIL.The

increaseinMHCIIAobservedmaybeanimportantfactorinZILstimulatedmusclegrowth.

Mysoinisthemostabundantproteininskeletalmuscle,anditiswidelyreportedthatβagonists

canalterproteinsynthesisanddegradation,thusalteringMHC.Andersonetal.(1990)reported

increasedproteinsynthesisratesofbothtotalandMHCinmyotubeculturesofELC 5cellswith

ractopaminetreatment.ThismaybethereasonfortheobservedincreaseinMHCIIAmRNA

withthelowerlevelofZIL.However,wespeculatethedecreaseinMHCIIAmRNAwiththe

higherlevelsofZILmaybearesultofashifttowardsproteindegradation.Areductionin proteindegradationcanresultinanoverallnetincreaseinskeletalmuscle,andthishasbeen

observedwithβagonisttreatment.WheelerandKoohmaraie(1992)reporteda27.1%reduction

infractionaldegradationrateofskeletalmusclemyofibrillarproteininsteersfedtheβagonistL

644,969after3wk.Additionally,Reedsetal.(1986)reportedadecreaseinproteindegradation

inskeletalmuscleofratsfedclenbuterol.Additionally,MHCisalsoimportantindetermining

musclefibertype.SlowtwitchfibersarepredominantlyMHCI,whereasfasttwitchfibersare predominantlyMHCIIAandIIX.Ithasbeenreportedthatβagonisttreatmentcanalterthe

44 expressionofMHCisoforms,whichcanresultinsubsequentchangesinmusclecomposition.

TheincreaseinMHCIIAmRNAwiththelowerlevelofZILandthedecreasewiththehigher levelsmaybearesultofmusclefiberconversion.Inchickensfedclenbuteroltherewasa decreaseinfasttwitchtypeIIAmusclefibersandanincreaseinthefasttwitchtypeIIBmuscle fibers(Rehfeldtetal,1997).Similarly,Depreuxetal.(2002)observedadecreaseinMHCIIA andIIXmRNAexpressionandanincreaseinMHCIIBmRNAinpigsfedractopamine.These datademonstratethepossibleroleforalterationofMHCIIAmRNAconcentrationobservedin thesatellitecellculturesfollowingtreatmentwithZIL.

Therewasnoeffect( P>0.05)ofZILdoseontheexpressionofgenesanalyzedinfused

myotubeculturesat192h(Figures2.72.11).Therehavebeendifferencesinresponsetoβ

agonistduetocultureconditionsreported,similartothatobservedinourstudy.Shappelletal.

(2000)reportedincreasedcellnumber,protein,andDNAconcentrationsinC 2C12 myoblasts

followingractopaminetreatment;however,nodifferenceswerereportedinfusedmyotube

culturestreatedwithractopamine.Unfortunately,thereislittleinformationonthedirecteffects

ofβagonistsonskeletalmusclecells in vitro,particularlythatofZIL.Thereforewecanonly

reportthatinourcultureconditions,ZILadministrationtobovinesatellitecellmyotubecultures

hadnoeffectontheexpressionoftheβAR,IGFI,andMHCIIAmRNA.

EffectofZILandtheβ2AdrenergicReceptorAntagonistICI118,551onthemRNA

ExpressionoftheβAdrenergicReceptors,IGFI,andMHCIIAmRNAinProliferating

BovineSatelliteCells

Weutilizedthespecificβ2ARantagonistICI118,551todetermineiftheeffectsofZIL

inmyoblastculturesweremediatedthroughtheβ2AR.Theβ2ARantagonistICI118,551was

abletoblockthereducedexpressionofβ1ARmRNAbyZIL(0.01M)whenusedatadoseof

45 0.1M (Figure2.12).Interestingly,thecombinationofZIL(0.01M)andIC118,551(0.1

M)resultedinanincrease(P<0.05)inβ1ARmRNAexpression.Fortheexpressionofβ2

AR,bothlevels(0.01 Mand0.1M)ofICI118,551wereabletoblockthereductionin mRNAasaresultofZIL(0.01M)treatment(Figure2.13).Therewasnoeffect(P>0.05)of theantagonistonβ3ARmRNA,norwasthereaneffectofZILinthedosesweusedforthis specificexperiment(Figure2.14).Inaddition,therewasnoeffect( P>0.05)ofICI118,551 aloneontheexpressionoftheβAR.Therewasnoeffect( P>0.05)ofICI118,551aloneorin combinationwithZILontheexpressionofIGFImRNA(Figure2.15).Therewasanincrease

(P<0.05)inMHCIIAmRNAexpressionwithICI118,551(0.1M)andtheZIL(0.01M)+

ICI118,551(0.01M)combination.Theuseoftheantagonistinthisculturesystemwasto determineiftheeffectsontheexpressionofthereceptors,IGFI,andMHCIIAmRNAwas mediatedthroughtheβ2ARbecauseitisreportedthatZILisaβ2ARagonist.Multiplestudies utilizingsimilarmethodshavebeenreportedlookingatβagonistsandantagonistsindifferent celltypes.Inonestudy,ICI118,551wasusedtoblocktheeffectofZILinlipopolysaccharide exposedu937macrophages(Verhoeckxetal,2005).TheeffectsofZILwereblockedbyICI

118,551,andtoalesserextentby,aβ1ARspecificantagonist.Inasimilarmanner, ractopaminestimulatedincreasesincellnumber,protein,andDNAconcentrationswereblocked bypropanolol,anantagonistforboththeβ1andβ2AR(Shappelletal.,2000).Thestimulation

oflipogenesisbyractopamineinratadipocyteswaspartiallyinhibitedbyaswell

(Hausmanetal.,1989).Thesestudiesdemonstratetheeffectivenessofspecificantagonistsin

determiningiftheβagonistinducedresponseismediatedthroughaspecificreceptor,orinsome

cases,multiplereceptors.Inourstudy,theresultsindicatethereductioninβARmRNAbyZIL

wasmediatedthroughtheβ2ARandICI118,551attenuatedtheeffectofZILthroughtheβ2

46 AR.However,wealsoobservedanincreaseinMHCIIAmRNAwithICI118,551treatment.

Thisresponsewasinterestingbecauseitwasalsoobservedinthecombination(0.01MZIL+

0.01MICI118,551)treatmentaswell.Unfortunately,thereisnoinformationavailableonthe

directeffectsofICI118,551onskeletalmusclecells,orotherβARantagonistsregardingMHC

IIAorothermusclespecificproteins.Therefore,wecanonlyconcludethatinourculture

system,ICI118,551hasastimulatoryeffectonMHCIIAmRNAatthelevelsused.

EffectofZILonBovineSatelliteCellTotalProteinAccumulation,ProteinSynthesisand

ProteinDegradation

Therewasnoeffect( P>0.10)ofZILontotalproteinaccumulationinbothproliferating myoblasts(Figure2.17)andfusedmyotubecultures(Figure2.18).Therewasnoeffect( P>

0.10)ofZILexposurefor2h(Figure2.19)or48h(Figure2.20)onproteinsynthesisinfused myotubecultures.Similarly,therewasnoeffect(P>0.10)ofZILonproliferatingmyoblast proteindegradationpercent(Figure2.21).Ourlackofresponseonproteinsynthesisand accumulationareincontrasttomuchofthedataavailablewhichsuggestalterationsintotal proteinaccumulationwhichresultfromeitherincreasedproteinsynthesis,decreasedprotein degradation,oracombinationofthetwo.Thesechangeshavebeenreportedboth in vitro and in vivo ,withmuchvariationbetweenstudies.Insatellitecellsisolatedfromlambs,cimaterol increasedproteinsynthesis,buthadnoeffectonproteindegradationinthecellcultures

(Symondsetal.,1990).InELC 5cells,ractopamineincreasedbothtotalandMHCprotein synthesisratesinmyotubecultures(Andersonetal.,1990).Theyalsoreportedthatractopamine hadnoeffectontherateofproteindegradation.Inclenbuterolfedrats,muscleproteinaccretion wasincreased,withnochangeinproteinsynthesis,thustheauthorsspeculatedtheresponsewas duetodecreasedproteindegradation(Reedsetal.,1986).Additionally,Wheelerand

47 Koohmaraie(1992)reporteda27.1%reductioninfractionaldegradationrateofskeletalmuscle

myofibrillarproteininsteersfedtheβagonistL644,969after3wk.Ithasbeenreportedthat

theagonistsspecificforβ2ARhavemoreofaneffectonproteindegradation,whichwouldbe

supportedbytheresearchreported(Reedsetal.,1986;WheelerandKoohmaraie,1992).

However,thereisnotanabundanceofresearchinvestigatingeffectsofβagonistsonprotein

degradationratebecauseofdifficultyassociatedwithitsmeasurement.However,thereissome

researchinsupportofourdatashowingnoeffectofβagonistsonproteinmetabolisminmuscle

cellcultures.McMillanetal.(1992)observednoeffectofclenbuterolonsatellitecellcultures

derivedfromrats.Therewasnoeffectonproteinaccretion,creatinekinaseactivity,orprotein

synthesisrates.Similarly,theyreportednoeffectofclenbuterolonproteinsynthesisand

accretioninL6myoblastormyotubecultures.Thelackofeffectonproteinsynthesisinour

experimentsmaybeduetoZILspecificityfortheβ2AR,thushavingmoreofaneffecton

proteindegradation.However,wewereunabletodetectdifferencesinproteindegradation

percent.FurtherinvestigationisneededtodetermineifZILadditiontofusedmyotubecultures

hasaneffectofproteindegradation.

EffectofZILonBovineSatelliteCellandβ2AdrenergicReceptorProteinExpression TheproteinisolatedfromthecellcultureswasusedtoassesstheeffectsofZILonβ2AR

proteincontentusingwesternblotanalysis.SimilartothechangesinmRNAexpression,

westernblotanalysisrevealedtheproteincontentofβ2ARinZILtreatedmyoblastcultures

decreased( P=0.05)relativetocontrol(Figure2.23).Additionally,ZILincreased( P<0.05)β2

ARproteinexpressioninmyotubecultures(Figure2.24).Thesechangesinreceptorprotein

expressionareimportantbecausetheysupporttheevidenceofthemRNAexpressionwith

regardstotheproliferatingmyoblasts.Interestingly,wewereunabletodetectdifferencesinthe

mRNAexpressionofβ2ARmRNAinmyotubecultures,buttherewasanincreaseinproteinin

48 thewesternblotanalysisforβ2AR.Thissuggeststhattheincreaseinβ2ARproteinexpression duetoZILtreatmentmaybeinresponsetoaposttranscriptionaleventduetothelackof differenceinβ2ARmRNA.Thereductioninproteinexpressionfrommyoblastssupportsmuch oftheresearchsuggestingβagonistsdecreasereceptordensity(Spurlocketal.,1994;Huanget al,2000;Walkeretal,2007).Incontrast,ractopamineadministrationhasledtoatendencyfor anincreaseinβ2ARmRNAinskeletalmuscleisolatedfromyearlingsteersandfeedlotheifers collectedatharvest(Sissometal.,2007;Winterholleretal.,2007).Thesedatasupportthe increaseinβ2ARproteinexpressionweobservedinthewesternblotanalysis.Thishasalso beenobservedinchickenskeletalmusclecellstreatedwithisoproterenol(aβagonist)thathad anincreaseinβARpopulationby40%betweendays7and10inculture(Youngetal.,2000).

Thesedatasuggestthattheexpressionofβ2ARmayincreaseinmorematuremuscle,as indicatedbyourmyotubeculturedata.Additionally,theywouldsupportpreviousresearch suggestingtheexpressionofβARinbovineskeletalmusclecellscanvaryduetovariablessuch astreatmentwithβagonists,aswellastimeinculture(Bridgeetal.,1998).Thesedatafurther supporttheimportantroletheβ2ARplaysinmodulatingthefunctionofZILonskeletalmuscle growth.Additionally,thesedataaidinourunderstandingofthedirecteffectsofβARagonists, andmayhelptobetterunderstandthemodeofactionofthesegrowthpromotingagents.

49 LiteratureCited

Allen,R.E.,andL.L.Rankin.1990.Regulationofsatellitecellsduringskeletalmuscle growth

anddevelopment.Proc.Soc.Exp.Biol.Med.194:8186.

Anderson,P.T.,W.G.Helferich,L.C.Parkhill,R.A.Merkel,andW.G.Bergen.1990.

Ractopamineincreasestotalandmyofibrillarproteinsynthesisinculturedratmyotubes.

J.Nutr.120:16771683.

Awede,B.L.,J.Thissen,andJ.Lebacq.2002.RoleofIGFIandIGFBPsinthechangesofmass

andphenotypeinducedinratesoleusmusclebyclenbuterol.Am.J.Physiol.Endcorinol.

Metab.282:E31E37.

Beermann,D.H.1987.Effectsofbetaadrenergicagonistsonendocrineinfluenceandcellular

aspectsofmusclegrowth.Proc.Recip.MeatConf.,St.Paul,MN40:5763.

Bridge,K.Y.,C.K.SmithII,andR.B.Young.1998.Betaadrenergicreceptorgeneexpression

inbovineskeletalmusclecellsinculture.J.Anim.Sci.76:23822391.

Depreux,F.F.S.,A.L.Grant,D.B.Anderson,andD.E.Gerrard.2002.Payleanaltersmyosin

heavychainisoformcontentinpigmuscle.J.Anim.Sci.80:18881894.

Forsberg,N.E.,andD.Hong.1994.EffectsofserumandinsulinlikegrowthfactorIonprotein

degradationandproteasegeneexpressioninratL8myotubes.J.Anim.Sci.72:2279

2288

Gonzales,J.M.,J.N.Carter,D.D.Johnson,S.E.Luellette,andS.E.Johnson.2007.Effectof

ractopaminehydrochlorideandtrenboloneacetateonlongissimusmusclefiberarea,

diameter,andsatellitecellnumbersincullbeefcows.J.Anim.Sci.85:18931901.

50 Grant,A.L.,D.M.Skjaerlund,W.G.Jelferich,andW.G.Bergen.1990.Effectsof

phenethanolaminesandpropanololontheproliferationofculturedchickbreastmuscle

satellitecells.J.Anim.Sci.68:652658.

Grant,A.L.,D.M.Skjaerlund,W.G.Helferich,W.G.Bergen,andR.A.Merkel.1993.Skeletal

musclegrowthandexpressionofskeletalmuscleαactinmRNAandinsulinlikegrowth

factorImRNAinpigsduringfeedingandwithdrawalofractopamine.J.Anim.Sci.

71:33193326.

Hausman,D.B.,R.J.Martin,E.L.Veenhuizen,andD.B.Anderson.1989.Effectof

ractopamineoninsulinsensitivityandresponseofisolatedratadipocytes.J.Anim.Sci.

67:14551464.

Hembree,J.R.,M.R.Hathaway,andW.R.Dayton.1991.Isolationandcultureoffetalporcine

myogeniccellsandtheeffectofinsulin,IGFI,andseraonproteinturnoverinporcine

myotubecultures.J.Anim.Sci.69:32413250.

Huang,H.C.Gazzola,G.G.Pegg,andM.N.Sillence.2000.Differentialeffectsof

dexamethasoneandclenbuterolonratgrowthonβ2adrenoceptorsinlungandskeletal

muscle.J.Anim.Sci.78:604608.

Johnson,S.E.,andR.E.Allen.1990.TheeffectsofbFGF,IGFI,andTGFbetaonRMo

skeletalmusclecellproliferationanddifferentiation.Exp.CellRes.187:250254.

Johnson,B.J.N.Halstead,M.E.White,M.R.Hathaway,A.DiCostanzo,andW.R.Dayton.

1998.Activationstateofmusclesatellitecellsisolatedfromsteersimplantedwitha

combinedtrenboloneacetateandestradiolimplant.J.Anim.Sci.76:27792786.

Mauro,A.1961.Satellitecellofskeletalmusclefibers.J.Biophys.Biochem.Cytol.9:493495.

51 McMillan,D.N.,B.S.Noble,andC.A.Maltin.1992.Theeffectoftheβadrenergicagonist

clenbuterolongrowthandproteinmetabolisminratmusclecellculture.J.Anim.Sci.

70:30143023.

Mill,S.,andH.J.Mersmann.1995.Betaadrenergicagonists,theirreceptors,andgrowth:

specialreferencetothepeculiaritiesinpigs.Page1ofTheBiologyofFatinMeat

Animals:CurrentAdvances.S.B.SmithandD.R.Smith,ed.AmericanSocietyof

AnimalScience,Champaign,IL.

Moss,F.P.,andC.P.Leblond.1971.Satellitecellsasthesourceofnucleiinmusclesofgrowing

rats.Anat.Rec.170:421435.

O’Connor,R.M.,W.R.Butler,K.D.Finnerty,D.E.Hogue,andD.H.Beermann,1991a.

Temporalpatternofskeletalmusclechangesinlambsfedcimaterol.Domest.Anim.

Endocrinol.8:549554.

O’Connor,R.M.,W.R.Butler,K.D.Finnerty,D.E.Hogue,andD.H.Beermann,1991b.

Acuteandchronichormoneandmetabolitechangesinlambsfedthebetaagonist

cimaterol.Domest.Anim.Endocrinol.8:549554.

Reeds,P.J.,S.M.Hay,P.M.Dorwood,andR.M.Palmer.1986.Stimulationofmusclegrowth

byclenbuterol:lackofeffectonmuscleproteinbiosynthesis.Br.J.Nutr.56:249258.

Rehfeldt,C.R.,R.Schadereit,R.Weikard,andK.Reichel.1997.Effectofclenbuterolon

growth,carcass,andskeletalmusclecharacteristicsinbroilerchickens.Br.Poult.Sci.

38:366373.

Shappell,N.W.,V.J.Feil,D.J.Smith,G.L.Larsen,andD.C.McFarland.2000.Responseof

C2C12mouseandturkeyskeletalmusclecellstotheβadrenergicagonistractopamine.J.

Anim.Sci.78:699708.

52 Sissom,E.K.,C.D.Reinhardt,andB.J.Johnson.2006.Melengestrolacetatealtersmusclecell

proliferationinheifersandsteers.J.Anim.Sci.84:29502958.

Sissom,E.K.,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,R.S.Swingle,and

B.J.Johnson.2007.ResponsetoractopamineHClinheifersisalteredbyimplant

strategyacrossdaysonfeed.J.Anim.Sci.85:21252132.

Spurlock,M.E.,J.C.Cusumano,S.Q.Ji,D.B.Anderson,C.K.SmithII,D.L.Hancock,andS.

E.Mills.1994.Theeffectofractopamineonβadrenoreceptordensityandaffinityin

porcineadiposeandskeletalmuscletissue.J.Anim.Sci.72:7580.

Strosberg,A.D.,L.Camoin,N.Blin,andB.Maigret.1993.InreceptorscoupledtoGTPbinding

proteins,ligandbindingandGproteinactivationisamultistepdynamicprocess.Drug

Des.Discov.9:199211.

Symonds,M.E.,J.A.Roe,C.M.Heywood,J.M.Harper,andP.J.Buttery.1990.β

Adrenoceptorsandtheeffectofβagonistsonproteinmetabolisminovineprimary

musclecultures.Biochem.Pharmacol.40:22712276.

Trenkle,A.D.,L.DeWitt,andD.G.Topel.1978.Influenceofage,nutritionandgenotypeon

carcasstraitsandcellulardevelopmentofM.Longissimusofcattle.J.Anim.Sci.

46:15971603.

Verhoeckx,K.C.M.,R.P.Doornbos,J.VanDerGreef,R.F.Witkamp,andR.J.T.Rodenburg.

2005.Inhibitoryeffectsoftheβ2adrenergicreceptoragonistzilpaterolontheLPS

inducedproductionofTNFα in vitro and in vivo .J.Vet.Pharmacol.Therap.28:531537.

Wheeler,T.L.,andM.Koohmaraie.1992.EffectsofβadrenergicagonistL644,969onmuscle

proteinturnover,endogenousproteinaseactivities,andmeattendernessinsteers.J.

Anim.Sci.70:30353043.

53 Walker,D.K.E.C.Titgemeyer,E.K.Sissom,K.R.Brown,J.J.Higgins,G.A.Andrews,and

B.J.Johnson.2007.EffectsofsteroidalimplantationandractopamineHClonnitrogen

retention,bloodmetabolitesandskeletalmusclegeneexpressioninHolsteinsteers.J.

Anim.Physiol.Anim.Nutr.91:439447.

Winterholler,S.J.,G.L.Parsons,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,

R.S.Swingle,andB.J.Johnson.2007.Responsetoractopaminehydrogenchlorideis

similarinyearlingsteersacrossdaysonfeed.J.Anim.Sci.85:413319.

Young,O.A.,S.Watkins,J.M.Oldham,andJ.J.Bass.1995.Theroleofinsulinlikegrowth

factorIinclenbuterolstimulatedgrowthingrowinglambs.J.Anim.Sci.73:30693077.

Young,R.B.,K.Y.Bridge,andJ.R.Vaughn.2000.Betaadrenergicreceptorpopulationisup

regulatedbyincreasedcyclicadenosinemonophosphateconcentrationinchickenskeletal

musclecellsinculture.InVitroCell.Dev.Biol.Anim.36:485492.

54

Table2.1.Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavy chainIIAspecificPCRprimersandTaqManprobes β1adrenergicreceptor(Accession#AF188187) Forward GTGGGACCGCTGGGAGTAT Reverse TGACACACAGGGTCTCAATGC TaqManprobe 6FAMCTCCTTCTTCTGCGAGCTCTGGACCTCTAMRA β2adrenergicreceptor(Accession#NM_174231) Forward CAGCTCCAGAAGATCGACAAATC Reverse CTGCTCCACTTGACTGACGTTT TaqManprobe 6FAMAGGGCCGCTTCCATGCCCTAMRA β3adrenergicreceptor(Accession#XF86961) Forward AGGCAACCTGCTGGTAATCG Reverse GTCACGAACACGTTGGTCATG TaqManprobe 6FAMCCCGGACGCCGAGACTCCAGTAMRA IGF1(Accession#X15726) Forward TGTGATTTCTTGAAGCAGGTGAA Reverse AGCACAGGGCCAGATAGAAGAG TaqManprobe 6FAMTGCCCATCACATCCTCCTCGCATAMRA MyosinheavychainIIA(Accession#AB059398) Forward CCCCGCCCCACATCTT Reverse TCTCCGGTGATCAGGATTGAC TaqManprobe 6FAMTCTCTGACAACGCCTATCAGTTCATTAMRA

55 25

20 15

control 10 % Difference from % Difference 5 0 0.0001 0.001 0.01 0.1 1.0 10 Zilpaterol Concentration, M Figure2.1 Effectofzilpaterolon[ 3H]thymidineincorporation,n=7.Bovinesatellitecellswere platedin10%FBS/DMEM.Zilpaterolwasaddedat48h,and[ 3H]thymidinewasaddedat96 h.Barsrepresentedaspercentdifferencefromcontrol±SEM.Alldatapointsinindividual assaysweretheaveragevaluesobtainedfrom3wellsoneachculturedish.Therewasnoeffect ofzilpaterolon[ 3H]thymidineincorporation.

56 1.5 a a a a 1.0 b control 0.5 1-AR mRNA, relative to relative mRNA, 1-AR β β β β 0.0 0 0.0001 0.001 0.01 1.0 Zilpaterol Concentration, M Figure2.2Zilpateroldecreasedmyoblastβ1ARmRNA( P=0.07,n=7).Bovinesatellitecells

wereplatedin10%FBS/DMEM.Zilpaterolwasaddedat48h.TotalRNAwasisolatedat96h

andrelativemRNAabundancewasdeterminedbyrealtimepolymerasechainreaction(RT

PCR).Datapointsrepresentedasrelativetocontrol.Barsnotbearingacommonletterdiffer(P

=0.07).Barsaremeanvaluesrelativetocontrol±SEM.

57 1.5 a ac 1.0 ab bc b

abundance 0.5

relative mRNA, 2-AR β β β β 0.0 0 0.0001 0.001 0.01 1.0 Zilpaterol Concentration, M Figure2.3Zilpateroldecreasedmyoblastβ2ARmRNA( P<0.05,n=7).Bovinesatellitecells

wereplatedin10%FBS/DMEM.Zilpaterolwasaddedat48h.TotalRNAwasisolatedat96h

andrelativemRNAabundancewasdeterminedbyRTPCR.Barsnotbearingacommonletter

differ( P<0.05).Datapointsrepresentedasrelativetocontrol.Barsaremeanvaluesrelativeto

control±SEM.

58 1.5 ab a ab 1.0 bc

control bc 0.5

to relative mRNA, 3-AR β β β β 0.0 0 0.0001 0.001 0.01 1.0 Zilpaterol Concentration, M Figure2.4Zilpateroldecreasedmyoblastβ3ARmRNA(0.01 M, P<0.01;1.0 M, P=0.06, n=7).Bovinesatellitecellswereplatedin10%FBS/DMEM.Zilpaterolwasaddedat48h.

TotalRNAwasisolatedat96handrelativemRNAabundancewasdeterminedbyRTPCR.

Datapointsrepresentedasrelativetocontrol.Barsnotbearingacommonletterdiffer( P<

0.05).Barsaremeanvaluesrelativetocontrol±SEM

59 3 bc ab ab ab 2 a control 1

to relative mRNA, IGF-I 0 0 0.0001 0.001 0.01 1.0 Zilpaterol Concentration, M Figure2.5ZilpaterolincreasedmyoblastIGFImRNA( P=0.07,n=7).Bovinesatellitecells

wereplatedin10%FBS/DMEM.Zilpaterolwasaddedat48h.TotalRNAwasisolatedat96h

andrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedasrelative

tocontrol.Barsnotbearingacommonletterdiffer( P=0.07).Barsaremeanvaluesrelativeto

control±SEM.

60 3 a a 2 control ab 1 b b

to relative mRNA,

IIA chain heavy Myosin 0 0 0.0001 0.001 0.01 1.0 Zilpaterol Concentration, M Figure2.6ZilpateroldecreasedmyoblastMHCIIAmRNA( P<0.05,n=7).Bovinesatellite

cellswereplatedin10%FBS/DMEM.Zilpaterolwasaddedat48h.TotalRNAwasisolatedat

96handrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedas

relativetocontrol.Barsnotbearingacommonletterdiffer( P<0.05).Barsaremeanvalues

relativetocontrol±SEM.

61 3 2 control 1 1-AR mRNA, relative to relative mRNA, 1-AR β β β β 0 0 0.0001 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.7Effectofzilpaterolonmyotubeβ1ARmRNA.Bovinesatellitecellswereplatedin

10%FBS/DMEM.After24h,3%swineserum/DMEMwasaddedand3%horseserum/DMEM wasaddedat144h.Zilpaterolwasaddedat168htofusedmyotubes.TotalRNAwasisolated at216h,andrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedas relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.Therewasnoeffect( P>

0.10)oftreatmentontheexpressionofβ1ARmRNA,n=5.

62

1.5 1.0

control 0.5

to relative mRNA, 2-AR β β β β 0.0 0 0.0001 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.8Effectofzilpaterolonmyotubeβ2ARmRNA.Bovinesatellitecellswereplatedin

10%FBS/DMEM.After24h,3%swineserum/DMEMwasaddedand3%horseserum/DMEM wasaddedat144h.Zilpaterolwasaddedat168htofusedmyotubes.TotalRNAwasisolatedat

216handrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedas relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.Therewasnoeffect( P>

0.10)oftreatmentontheexpressionofβ2ARmRNA,n=5 .

63 4 3 2

to control AR mRNA, relative mRNA, AR 1 β3− β3− β3− β3− 0 0 0.0001 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.9Effectofzilpaterolonmyotubeβ3ARmRNA.Bovinesatellitecellswereplatedin

10%FBS/DMEM.After24h,3%swineserum/DMEMwasaddedand3%horseserum/DMEM wasaddedat144h.Zilpaterolwasaddedat168htofusedmyotubes.TotalRNAwasisolatedat

216handrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedas relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.Therewasnoeffect( P>

0.10)oftreatmentontheexpressionofβ3ARmRNA,n=5.

64 4 3 2 control 1

to relative IGF-I mRNA, 0 0 0.0001 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.10EffectofzilpaterolonmyotubeIGFImRNA.Bovinesatellitecellswereplatedin

10%FBS/DMEM.After24h,3%swineserum/DMEMwasaddedand3%horseserum/DMEM

wasaddedat14h.Zilpaterolwasaddedat168htofusedmyotubes.TotalRNAwasisolatedat

216handrelativemRNAabundancewasdeterminedbyRTPCR.Datapointsrepresentedas

relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.Therewasnoeffect( P>

0.10)oftreatmentontheexpressionofIGFImRNA,n=5.

65 2

1

control mRNA, relative to relative mRNA, Myosin heavy chain IIA chain heavy Myosin 0 0 0.0001 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M

Figure2.11EffectofzilpaterolonmyotubeMHCIIAmRNA.Bovinesatellitecellswereplated

in10%FBS/DMEM.After24h,3%swineserum/DMEMwasaddedand3%horse

serum/DMEMwasaddedat144h.Zilpaterolwasaddedat168htofusedmyotubes.TotalRNA

wasisolatedat216handrelativemRNAabundancewasdeterminedbyRTPCR.Datapoints

representedasrelativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.Therewasno

effect( P>0.10)oftreatmentontheexpressionofmyosinheavychainmRNA,n=5.

66 2 c

ac

a ab 1

control b 1-AR mRNA, relative to relative mRNA, 1-AR β β β β

0 l ntrol ro o te M ICI M ICI M ICI C 1 1 .1 0 0 0 . . M Zilpa 0 0 Z + Z + 0.01 0.01 0.01 Treatment Figure2.12Zilpateroldecreasedandzilpaterol+ICI118,551combinationincreasedmyoblast

β1ARmRNA( P<0.05,n=4).Bovinesatellitecellswereplatedin10%FBS/DMEM.

Zilpaterolwasaddedat48h.TotalRNAwasisolatedat96handrelativemRNAabundance wasdeterminedbyRTPCR.Datapointsrepresentedasrelativetocontrol.Barsnotbearinga commonletterdiffer( P<0.05).Barsaremeanvaluesrelativetocontrol±SEM.

67 2

a a a ab 1 control b 2-AR mRNA, relative to relative mRNA, 2-AR β β β β 0 l o I tr rol ICI C n e o M M I M ICI C 1 0 0.1 . M Zilpat 0 1 0 .01 Z + 0.1 1 Z + 0. 0 .0 0 Treatament Figure2.13Zilpateroldecreasedmyoblastβ2ARmRNA,andICI118,551blockedthe reduction( P<0.05,n=4).Bovinesatellitecellswereplatedin10%FBS/DMEM.Zilpaterolwas addedat48h.TotalRNAwasisolatedat96h,andrelativemRNAabundancewasdetermined byRTPCR.Barsnotbearingacommonletterdiffer( P<0.05).Datapointsrepresentedas relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM.

68 3 2

abundance 1

relative mRNA, 3-AR β β β β 0 I rol IC e ICI M M M ICI Control ilpat 1 1 Z 0. M 0.0 01 Z + 0. 0.01 Z + 0.1 01 0. Treatment Figure2.14EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastβ3AR mRNA.Bovinesatellitecellswereplatedin10%FBS/DMEM.ZilpaterolandICI118,551was addedat48h.TotalRNAwasisolatedat96h,andrelativemRNAabundancewasdetermined byRTPCR.Datapointsrepresentedasrelativetocontrol.Barsaremeanvaluesrelativeto control±SEM,n=4.

69 3 2

abundance 1 IGF-I mRNA, relative mRNA, IGF-I 0 l o l ntr ro o te M ICI M ICI M ICI C 1 1 . 0 0.1 0 . M Zilpa 0 Z + Z + .01 0 0.01 0.01 Treatment Figure2.15EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastIGFI mRNA.Bovinesatellitecellswereplatedin10%FBS/DMEM.ZilpaterolandICI118,551was addedat48h.TotalRNAwasisolatedat96handrelativemRNAabundancewasdetermined byRTPCR.Datapointsrepresentedasrelativetocontrol.Barsaremeanvaluesrelativeto control±SEM,n=4.

70 3 b bc

2 a control 1 a a mRNA, relative to relative mRNA, Myosin heavy chain heavy Myosin 0 l o l tr ICI ICI ICI ero t M M M Con 0.1 M Zilpa

0.01 0.01 Z + 0.1 0.01 Z + 0.01 Treatment Figure2.16EffectofzilpaterolandICI118,551alone,orcombinationonmyoblastMHCIIA mRNA.Bovinesatellitecellswereplatedin10%FBS/DMEM.ZilpaterolandICI118,551was addedat48h.TotalRNAwasisolatedat96h,andrelativemRNAabundancewasdetermined byRTPCR.Barsnotbearingacommonletterdiffer( P<0.05).Datapointsrepresentedas relativetocontrol.Barsaremeanvaluesrelativetocontrol±SEM,n=4.

71 150 100 50 Protein/well g 0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.17Effectofzilpaterolontotalproteinaccumulationinproliferatingmyoblasts.Bovine

satellitecellswereplatedin10%FBS/DMEM.Zilpaterolwasaddedat24htoproliferating

myoblasts.Proteinwasisolatedafter96hinculture.Barsaremeanvalues±SEM.Therewas

noeffect( P>0.10)oftreatmentontotalproteinaccumulation,n=10.

72 200 100

Protein/well g 0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.18Effectofzilpaterolontotalproteinaccumulationinfusedmyotubecultures.Bovine

satellitecellswereplatedin10%FBS/DMEM.After24h,3%swineserum/DMEMwasadded

and3%horseserum/DMEMwasaddedat144h.Zilpaterolwasaddedat168htofused

myotubes.Proteinwasisolatedafter216hinculture.Barsaremeanvalues±SEM.Therewas

noeffect( P>0.10)oftreatmentonthetotalproteinaccumulation,n=6.

73

1.5 1.0 0.5

DPM, H-Tyrosine 3 Relative to Control Relative 0.0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.19 Effectof2hzilpateroltreatmentontotalproteinsynthesis,measuredby[ 3H] tyrosineincorporation.Bovinesatellitecellswereplatedin10%FBS/DMEM.After48h,3% swineserum/DMEMwasaddedand3%horseserum/DMEMwasaddedat144h.Zilpaterol wasaddedat168h.[ 3H]Tyrosineincorporationwasmeasuredat170hinculture.Barsare meanvalues±SEM.Therewasnoeffect( P>0.10)oftreatmentonthetotalproteinsynthesis, n=3.

74 1.5 1.0 0.5 H-Tyrosine DPM, H-Tyrosine 3

to Control Relative 0.0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.20Effectof2hzilpateroltreatmentontotalproteinsynthesis,measuredby[ 3H]

tyrosineincorporation.Bovinesatellitecellswereplatedin10%FBS/DMEM.After48h,3%

swineserum/DMEMwasadded,and3%horseserum/DMEMwasaddedat144h.Zilpaterol

wasaddedat168h.[3H]Tyrosineincorporationwasmeasuredat216hinculture.Barsare meanvalues±SEM.Therewasnoeffect( P>0.10)oftreatmentonthetotalproteinsynthesis, n=6.

75

30 20 10 Degradation, % Myoblast Protein Myoblast

0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.21Effectofzilpaterolonproteindegradation.Bovinesatellitecellswereplatedin

10%FBS/DMEM.After48h,3%swineserum/DMEMwasaddedand3%horseserum/DMEM wasaddedat144h.At168hinculture,cellswerelabeledfor24hwith[ 3H]tyrosinein1mLof

conditionedmedia.At192h,the[3H]tyrosinemediawasremovedandsatellitecellscultures wereincubatedfor4hin1mLofmediacontaining0.2m Mtyrosine.Followingthe4h

incubation,cultureswererinsedwithDMEMandzilpaterolwasadded.Degradationwas

expressedasapercentageoftotalradioactivityinprelabeledproteinsasfollows:TCAsoluble

dpmreleasedintomediax100/(totalmediadpm+cellulardpm).Barsaremeanvalues±SEM.

Therewasnoeffect( P>0.10)oftreatmentonthetotalproteindegradation,n=4.

76 A

0 0.001 0.01 0.1 1.0

B

1.5 a 1.0 b b b b

to Control 0.5 2-AR Protein, Relative Protein, 2-AR β β β β 0.0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.22(A)Westernblotimageofzilpaterolinduceddecreaseinβ2ARinmyoblast

cultures.(B)Zilpateroldecreasedβ2ARproteinexpressioninmyoblastcultures( P<0.05,

n=3).Bovinesatellitecellswereplatedin10%FBS/DMEM.Totalproteinwasisolatedat96h

andusedinwesternblotanalysis.Barsaremeanvalues±SEM.

77 A

0 0.001 0.01 0.1 1.0 B

3 c 2 b abc ab a

to Control 1 2-AR Protein, Relative Protein, 2-AR β β β β 0 0 0.001 0.01 0.1 1.0 Zilpaterol Concentration, M Figure2.23(A)Westernblotimageofzilpaterolinducedincreaseinβ2ARinmyotube

cultures.(B)Zilpaterolincreasedβ2ARproteinexpressioninmyotubecultures( P<0.05,n=3).

After24h,3%swineserum/DMEMwasaddedand3%horseserum/DMEMwasaddedat144h.

Zilpaterolwasaddedat168htofusedmyotubes.Totalproteinwasisolatedandusedfor

westernblotanalysis.Barsaremeanvalues±SEM.

78

CHAPTER3EffectofZilpaterolonFeedlotSteerPerformance, CarcassCharacteristics,andSkeletalMuscleGeneExpression

79 Abstract

TheobjectivesofthisexperimentweretodeterminetheeffectsofzilpaterolHCl( ZIL ) supplementationongrowthperformance,carcasscharacteristics,andskeletalmusclegene expressioninfeedlotsteers.BritishandBritishxContinentalsteerscalves(n=2,229)withan initialBWof330kgwereusedinarandomizedcompleteblockdesign.Steerswere administeredZILfor0,20,30,or40dpriortoslaughter.Duringzilpateroltreatmenttime,the dietfedfortheprescribeddurationcontained8.32mg/kgofdietDMofzilpaterolHCl,butno monensinortylosin.Additionally,therewasa3dwithdrawalperiodpriortoharvest.

Treatmentswererandomlyassignedto16pens.Atharvest,semimembranosusmuscletissue wascollected(2animalsperpen)forRNAisolationtodeterminetheexpressionofβ1,β2,and

β3adrenergicreceptor( AR ),IGFI,andmyosinheavychain( MHC )IIAmRNA.Therewasno

effect( P>0.05)ofZILadministrationonfeedintake,buttherewasanincrease( P<0.01)in

ADGandG:FinZILfedsteerscomparedtothecontrolanimals.Zilpaterolalsoincreased( P<

0.01)LMarea,HCW,anddressingpercentage.Zilpateroldecreased( P<0.01)marblingscore,

12 th ribfat,andimproved( P<0.05)yieldgrades.Therewasnoeffect( P>0.05)ofZIL

administrationonKPHfat.Therewasnoeffect( P>0.10)ofZILadministrationordurationof

ZILfeeding( P>0.10)ontheexpressionoftheβ1,β2,andβ3ARmRNAinsemimembranosus muscle.Additionally,therewasnoeffect( P>0.10)ofZILadministrationordurationofZIL feeding( P>0.10)ontheexpressionofIGFImRNAinsemimembranosusmuscle.Zilpaterol administrationdiddecrease( P<0.05)theexpressionofmyosinheavychainMHCIIAmRNAin semimembranosusmuscletissue.ThesedatasuggestthatadministrationofZILtosteerscan improveanimalperformance.ZilpateroladministrationalsoreducedtheexpressionofMHCIIA mRNAinskeletalmuscle,whichmaybearesultofreducedproteindegradationorofup

80 regulationofothermyosinheavychainmRNAisoforms.Thesedataaidinourunderstandingof theeffectsofZILadministrationtofeedlotsteers.Furthermore,theyincreaseourknowledge andunderstandingofthemechanismofactionofZIL,aswellasotherβagonistsusedto promotegrowthandefficiencyinfeedlotanimals.

Keywords:βAdrenergicreceptor,carcass,heifer,myosin,steer,zilpaterol

81 Introduction

Inrecentyears,therehasbeenaconsiderableamountofresearchinvestigatingtheeffects

ofcompoundsthatcanaltertherateofgrowthinlivestockanimals.Onegroupofgrowth promotersusedtodayistheβadrenergicreceptor(AR )agonists.Therearetwoβagonists

approvedforuseintheUnitedStatesinfeedlotcattle,ractopamineHClandzilpaterolHCl

(ZIL ).Ractopaminehasbeenapprovedforover4yr,whereasZILhasonlybeenapprovedfor

usesince2006.

ZilpaterolHCladministrationthelast20to40donfeedresultsinincreasedADG,ribeye

area,dressingpercentage,andimprovedfeedefficiencyandcarcassyieldgrade(Plascenciaet

al.,1999;AvendanoReyesetal.,2007).Itisthoughtthatzilpaterolelicitsaresponsethrough bindingtooneoftheβARwhicharemembraneboundreceptorslocatedinmostmammalian

cells(Strosberg,1993;MillsandMersmann,1995).ThebindingofZILtoβARresultsin

enzymephosphorylationthatisresponsibleforchangesinproteinsynthesisanddegradation, particularlyinskeletalmuscle.Thesechangesresultinincreasedanimalperformanceandlean

tissuedepositionasdemonstratedbyimprovedcarcasscharacteristics.

Theβ2ARisthemostabundantsubtypeofβARinbovineskeletalmuscle,anditis believedthatZILmediatesitsgrowthpromotingresponsethroughtheβ2AR.Thereceptor

mediatedresponsecanbealteredbythenumberofreceptorsinspecifictissues,andβagonist

administrationcanalterthenumberofreceptorsindifferenttissues(Spurlocketal.,1994;

Sissometal.,2007;Winterholleretal.,2007).

ThepurposeoftheseexperimentswastoinvestigatetheeffectsofZILadministrationto

feedlotsteersonanimalperformanceandcarcasscharacteristics.Additionally,weevaluatedthe

82 effectsofZILadministrationinsteersontheexpressionofβ1,β2,andβ3AR,aswellasIGFI, andmyosinheavychain( MHC )IIAmRNAinskeletalmuscle.

MaterialsandMethods

ThefollowingexperimentswereacollaborationbetweenIntervet,Inc.(Millsboro,DE),

CactusResearch,LTD(Amarillo,TX)andKansasStateUniversity.Researchconductedat commercialresearchfacilitiesfollowedtheguidelinesstatedintheGuidefortheCareandUse ofAgriculturalAnimalsinAgriculturalResearchandTeaching(FASS,1999,Savoy,IL).

Animals

BritishandBritishxContinentalsteerscalves(n=2,229)withaninitialBWof330kg wereusedinarandomizedcompleteblockdesignwith4treatments.Treatmentsconsistedof feeding8.32mg/kgofzilpaterolHClfor0,20,30,or40dpriortoslaughter.Treatmentswere randomlyassignedtoeachpen(n=24)withapproximately93animalsperpen.Atarrival, steerswereimplantedwithRevalorIS(80mgtrenboloneacetateand16mgestradiol),and reimplantedwithRevalorISapproximately73dpriortoharvest.Animalswerefed3times dailyduringthetransitionperiodand2timesdailyfortheremainderofthestudy,andtheywere allowedadlibitumaccesstofeed.Thefinishingdietwasbasedonsteamflakedcorn(Table

3.1).Feedadditives(Rumensin,Tylan,ZilmaxandvitaminsA,DandE)wereaddedusinga microweighmachine(MicroBeefTechnologies,Amarillo,TX).Duringthezilpaterol treatmenttimeforeachgroup,thedietfedfortheprescribeddurationcontained8.32mg/kgof

ZilpaterolHCl,butnoRumensinorTylan.

Fordetermination offinalBW,penswereweighedandtheindustrystandard4% pencilshrink wasapplied,followinga3dwithdrawalperiod.Animalsweretransported 96kmtoa

83 commercialslaughterfacility(TysonFreshMeatsInc.,Amarillo,TX).Carcasscharacteristics wereobtainedfromchilledcarcasses 36hafterslaughter.

SamplePreparationandRNAIsolation

Within10minofslaughter,amusclesamplewascollectedfromthesemimembranosous muscleof2randomlyselectedanimalsperpen.Thesamplesweresnapfrozeninliquidnitrogen anddeliveredtoKansasStateUniversityforanalysis.TotalRNAwasisolatedfrommuscle samplesusingTRIReagent(Sigma,St.Louis,MO).Semimembranosousmuscletissue(100 mg)wastransferredtoasteelmortarbowlcooledbyliquidnitrogen.Thesampleswere homogenizedusingasterilepestalinliquidnitrogen.TRIReagent(3mL)wasthenaddedtothe groundtissuesample.OnemLofmuscletissueinTriReagentwasincubatedatroom temperaturefor5min.Followingincubation,chloroform(Sigma,St.Louis,MO)wasaddedand sampleswerecentrifugedfor15minat12,000xgatroomtemperature.Following centrifugation,thetoplayerwasremovedandtransferredtoanewmicrocentrifugetube.

Isopropanol(Sigma,St.Louis,MO)wasaddedandsampleswerecentrifugedfor10minat

12,000xgtoisolatetheRNApellet.TheRNApelletwasthentreatedtoremoveany contaminatinggenomicDNAusingtheDNAfree kit(Ambion,Austin,TX).TheRNA concentrationwasdeterminedbyabsorbanceat260 nm. TheintegrityoftheRNAwasdetermined bygelelectrophoresis.TotalRNAwithethidiumbromidewasloadedontoa1%agarosegelto

separateandvisualizethe28Sand18SrRNA.

RealtimequantitativePCR

RealtimequantitativePCRwasusedtomeasurethequantityofβ1AR,β2AR,β3AR,

IGFI,andMHCIIAgeneexpressionrelativetothequantityof18SribosomalRNA( rRNA )in totalRNAisolatedfrommuscletissue.MeasurementoftherelativequantityofcDNAwas

84 performedusingTaqManUniversalPCRMasterMix(AppliedBiosystems,FosterCity,CA),

900n Moftheappropriateforwardandreverseprimers,200n MofappropriateTaqMan

detectionprobe,and1LofthecDNAmixture.Thebovinespecificβ1AR,β2AR,andβ3

AR,IGFI,andMHCIIAforwardandreverseprimersandTaqMandetectionprobes(Table3.1)

weresynthesizedusingpublishedGenBanksequences.Commerciallyavailableeukaryotic18S

rRNAprimersandprobeswereusedasanendogenouscontrol(AppliedBiosystems;Genbank

Accession#X03205).TheABIPrism7000detectionsystem(AppliedBiosystems,FosterCity,

CA)wasusedtoperformtheassayutilizingtherecommendedthermalcyclingvariablesbythe

manufacturer(50cyclesof15sat95ºCand1minat60ºC).The18SrRNAendogenouscontrol

wasusedtonormalizetheexpressionofβ1AR,β2AR,β3AR,IGFI,andMHCIIA.

StatisticalAnalysis

DatawereanalyzedasarandomizedcompleteblockdesignwithPROCMIXED(SAS

Inst.Inc.,Cary,NC).Penservedastheexperimentalunitforallfeedlotandcarcass

characteristics.Forallanalysis,specificorthogonalcontrastswereusedtotest1)controlvs.the

averageofthe3durationofZILfeedinggroupsand2)linearandquadraticeffectsofdurationof

ZILfeeding.

ResultsandDiscussion

EffectofZILAdministrationonPerformanceandCarcassCharacteristicsin

FinishingSteers

Thedataforperformanceovertheentirefinishingperiodandcarcasscharacteristicsare showninTable3.3.Therewasnoeffect( P>0.05)ofZILadministrationonfeedintakein steers.RegardlessofthedurationofZILfeeding,therewasanincrease( P<0.01)inADGand

G:FinZILfedanimalscomparedtothecontrols.Additionally,ZILincreased( P<0.01)LM

85 area,dressingpercentage,HCW,andimproved( P<0.05)yieldgradesregardlessofZIL duration.Additionally,ZILadministrationdecreased( P<0.01)marblingscoreand12 th ribfat andimproved( P<0.05)yieldgradesregardlessofZILduration.Therewasnoeffect( P>0.05) ofZILadministrationonKPHfat.ThesedataareconsistentwithotherstudiesutilizingβAR agonistssuchasractopamineandZILasgrowthpromoters.Infeedlotsteersadministered6 mg/kgofzilpaterolinthedietdaily,therewasanincreaseinaveragedailygainandimproved gainefficiency(Plascenciaetal.,1999;Vasconcelosetal.,2008).Zilpaterolsupplementation alsoincreasedcarcassweightby4.5%,dressingpercentageby3.6%,andlongissimusmuscle areaby2.7%comparedtocontrolsteers.Therewasnoeffectofzilpaterolonfatthicknessor marblingscore(Vasconcelosetal.,2008).Bothzilpaterol(60mg/d)andractopamine(300 mg/d)wereinvestigatedinfeedlotcattleinastudytocomparethetwoβagonists(Avendano

Reyesetal.,2006).BothractopamineandZILimprovedADG,feedefficiency,andHCW.

Additionally,ZILincreasedlongissimusmusclearea;however,bothractopamineandZIL increasedshearforcevaluescomparedtocontrolsteers.Theauthorscommentedthattheβ agonistswereeffectiveinenhancingperformanceofthecattlewithouthavingasubstantialeffect onmeatquality(AvendanoReyesetal.,2006;Vasconcelosetal.,2008).Similarimprovements inanimalperformancehavebeenreportedwithractopamineadministration.Infeedlotsteers, ractopaminefedthefinal28dofthefinishingperiodat200mg/dresultedinimprovedADG, feedefficiency,HCW,andlargerLMarea(Gruberetal.,2007).Winterholleretal.(2007) reportedsimilarfindingsinyearlingsteersfed200mg/dofractopaminethefinal28dofthe feedingperiod.SteersfedractopaminehadincreasedADGandimprovedgainefficiency,as wellasincreasedHCWandLMarea.

86 EffectofZILAdministrationonSemimembranosusMuscleβ1,β2,andβ3ARmRNA

ConcentrationsinFinishingSteers

TotalRNAwasisolatedfromsemimembranosusmuscletissuecollectedfromsteersto evaluatetheeffectsofZILontheexpressionofmuscleβ1,β2,andβ3ARmRNA.Therewasno effect( P>0.10)ofZILadministrationordurationofZILfeeding( P>0.10)ontheexpression oftheβ1,β2,andβ3ARmRNAinsemimembranosusmuscletissue(Figures3.1to3.3).The administrationofotherβagonistshasresultedinalteredmRNAexpressionofβAR,aswellas receptornumberanddensity.Administrationofclenbuteroltomaleratsfor10dresultedina

35%reductioninβ2ARdensityinskeletalmuscle(Huangetal.,2000).Thisreductionin receptordensitywasalsoobservedinlungtissueoftherats.Walkeretal.(2007)observed reductionsinthemRNAexpressionofbothβ1ARandβ2ARinskeletalmusclefromHolstein steersadministeredractopamine.Additionally,inpigsadministeredractopamine,thenumberof

β2ARinadiposetissuewasdecreasedat1,8,and24dfollowingtreatment,whereastherewas noeffectofractopamineonreceptornumberinskeletalmuscle(Spurlocketal.,1994).In contrast,wepreviouslyobservedtendencyforincreasedβ2ARmRNAinskeletalmuscle isolatedfromyearlingsteersadministeredractopaminefor28dpriortoharvest(Winterholleret al.,2007).Similarly,weobservedatendencyforractopamineadministrationtofeedlotheifers toincreaseβ2ARmRNAinsemimembranosusmusclecollectedatharvest(Sissometal.,2007).

ItisevidentthatβagonistscanalterthemRNAexpressionanddensityofβARinskeletal muscleaswellasothertissues;however,wewereunabletodetectdifferencesinthecurrent study.Thesechangesmayplayanimportantroleinregulatingtheresponsetoβagonist treatmentandwarrantfurtherinvestigation.

87 EffectofZILAdministrationonSemimembranosusMuscleIGFI,andMHCIIA mRNAConcentrationsinFinishingSteers

TheexpressionofIGFImRNAinsemimembranosusmuscletissuecollectedfromsteers

(Figure3.4)wasnotaltered( P>0.10)byZILadministrationorduration( P>0.10)ofZIL feeding.ThelackofeffectofZILadministrationontheexpressionofIGFImRNAin semimembranosusmuscletissueissimilartothatofotherstudies.Themajorityofresearch wouldsuggestthereisnoroleforIGFIinβagonistinducedskeletalmusclegrowth.O’Connor etal.(1991)observednochangeinIGFIconcentrationsfollowingadministrationofcimaterol for3wk.Similarly,clenbuteroladministrationtogrowinglambsresultedinnochangeinIGFI concentrations(Youngetal.,1995).Grantetal.(1993)reportednochangeinIGFImRNA expressioninbothskeletalmuscleandliverinpigsfedractopamine.Inadditiontothedata suggestingnoeffectofβagonistsonIGFI,thereissomedatasuggestingIGFIcanbereduced inbothcirculationandmRNAexpressionbyβagonisttreatment.InHolsteinsteers administeredractopaminefor28dpriortoharvesttherewasadecreaseinserumIGFI(Walker etal.,2007).Additionally,therewasadecreaseinmRNAexpressionofIGFIinthe longissimusmuscletissuecollectedatharvest.Ingrowinglambsfedcimaterolfor6wk,there wasadecreaseinIGFIlevelincirculation(Beermannetal.,1987).Incontrast,ithasbeen reportedthatclenbuteroladministrationtoratsincreasedIGFImRNAandIGFIcontentin skeletalmusclewithoutanychangeinserumIGFI(Awedeetal.,2002).Thereisalotof variabilityintheinformationregardingtheroleofIGFIinβagonistinducedmuscle hypertrophy.MuchofthedataavailablesuggestnoeffectofβagonistsonIGFIinbothmuscle tissueandincirculation,andourresultsareinagreementwiththedatathatiscurrentlyavailable.

88 TheexpressionofMHCIIAwasdecreased( P<0.05)byZILadministrationinsteers

(Figure3.5).Myosinheavychainisamajorproteininskeletalmusclethataccountsforaround

30%ofallproteininskeletalmuscle.TherearedifferentisoformsofMHCthatareimportantin determiningmusclefibertype.SlowtwitchfibersarepredominantlyMHCI,whereasfasttwitch fibersarepredominantlyMHCIIAandIIX.Ithasbeenreportedthatβagonisttreatmentcan altertheexpressionofMHCisoforms,whichcanresultinsubsequentchangesinmuscle composition(Rehfeldtetal.,1997;Depreuxetal.,2002).WeobservedadecreaseinMHCIIA mRNAwiththeadministrationofZILsteers.Inchickensfedclenbuteroltherewasadecreasein fasttwitchtypeIIAmusclefibersandanincreaseinthefasttwitchtypeIIBmusclefibers

(Rehfeldtetal.,1997).Similarly,Depreuxetal.(2002)observedadecreaseinMHCIIAand

IIXmRNAexpressionandanincreaseinMHCIIBmRNAinpigsfedractopamine.These findingsaresimilartoourdata.However,wedidnotmeasureotherisoformsofMHCsowecan onlyreportontheeffectsofZILonthereductioninMHCIIA.Itisalsoimportanttonotethat

MHCIIBmRNAisnotdetectedinbovineskeletalmuscletissue(Chikunietal.,2004).The reductioninMHCIIAinskeletalmusclemayalsobeanindirectresponsetodecreasesinprotein degradationduetoZILadministration.βAgonists,especiallythosespecificfortheβ2ARhave beenshowntodecreaseproteindegradationinskeletalmuscle.WheelerandKoohmaraie(1992) reporteda27.1%reductioninfractionaldegradationrateofskeletalmusclemyofibrillarprotein insteersfedtheβagonistL644,969after3wk.Additionally,calpastatinactivitywashigherin musclefromtreatedsteers.Itwassuggestedthattheβagonistinducedmusclehypertrophy observedintheirstudywasaresultofthereducedproteolyticcapacityduetoincreased calpastatinwhichinturnreducedproteindegradation.Additionally,Parretal.(1992)observed anincreaseinbothmcalpainandcalpastatinactivityinFriesiansteersfedtheβagonist

89 cimaterol.TherewasalsoanincreaseinmRNAforbothmcalpainandcalpastatin.Wedidnot measuretheexpressionofeithermcalpainorcalpastatininthepresentstudy.However,these dataprovideapossibleexplanationforthereductioninMHCIIAmRNAconcentrationobserved inthesemimembranosusmuscletissuecollectedfromthesteersfedZIL.

Overall,thedatafromourstudysuggestthattheβARagonistZILcanbeaneffective toolusedtoimproveanimalgrowthandefficiency.Zilpateroladministrationimprovedfeedlot steerperformanceandcarcasscharacteristics.Additionally,ZILreducedtheexpressionofMHC

IIAinsemimembranosusmuscletissue.Thesedataaidinourunderstandingofthemechanism throughwhichZILimprovesanimalperformance,andenhanceouroverallknowledgeofβ agonists.

90 LiteratureCited

AvendanoReyes,L.,V.TorresRodriguez,F.J.MerazMurillo,C.PerezLinares,F.Figueroa

Saavedra,andP.H.Robinson.2006.Effectsoftwoβadrenergicagonistsonfinishing

performance,carcasscharacteristics,andmeatqualityoffeedlotsteers.J.Anim.Sci.

84:35293265.

Awede,B.L.,J.Thissen,andJ.Lebacq.2002.RoleofIGFIandIGFBPsinthechangesofmass

andphenotypeinducedinratesoleusmusclebyclenbuterol.Am.J.Physiol.Endcorinol.

Metab.282:E31E37.

Beermann,D.H.1987.Effectsofbetaadrenergicagonistsonendocrineinfluenceandcellular

aspectsofmusclegrowth.Proc.Recip.MeatConf.,St.Paul,MN40:5763.

Chikuni,K.S.Muroya,andI.Nakajima.2004.Myosinheavychainisoformsexpressedin

bovineskeletalmuscles.MeatSci.67:8794.

Depreux,F.F.S.,A.L.Grant,D.B.Anderson,andD.E.Gerrard.2002.Payleanaltersmyosin

heavychainisoformcontentinpigmuscle.J.Anim.Sci.80:18881894.

FASS.1999.GuidefortheCareandUseofAgriculturalAnimalsinAgriculturalResearchand

Teaching.1sted.Fed.Anim.Sci.Soc.,Savoy,IL.

Grant,A.L.,D.M.Skjaerlund,W.G.Helferich,W.G.Bergen,andR.A.Merkel.1993.Skeletal

musclegrowthandexpressionofskeletalmuscleαactinmRNAandinsulinlikegrowth

factorImRNAinpigsduringfeedingandwithdrawalofractopamine.J.Anim.Sci.

71:33193326.

Gruber,S.L.,J.D.Tatum,T.E.Engle,M.A.Mitchell,S.B.Laudert,A.L.Schroeder,andW.

J.Platter.2007.Effectsofractopaminesupplementationongrowthperformanceand

91 carcasscharacteristicsoffeedlotsteersdifferinginbiologicaltype.J.Anim.Sci.

85:18091815.

Huang,H.C.Gazzola,G.G.Pegg,andM.N.Sillence.2000.Differentialeffectsof

dexamethasoneandclenbuterolonratgrowthonβ2adrenoceptorsinlungandskeletal

muscle.J.Anim.Sci.78:604608.

Mill,S.,andH.J.Mersmann.1995.Betaadrenergicagonists,theirreceptors,andgrowth:

specialreferencetothepeculiaritiesinpigs.Page1ofTheBiologyofFatinMeat

Animals:CurrentAdvances.S.B.SmithandD.R.Smith,ed.AmericanSocietyof

AnimalScience,Champaign,IL.

O’Connor,R.M.,W.R.Butler,K.D.Finnerty,D.E.Hogue,andD.H.Beermann,1991.

Acuteandchronichormoneandmetabolitechangesinlambsfedthebetaagonist

cimaterol.Domest.Anim.Endocrinol.8:549554.

Parr,T.,R.G.Bardsley,R.S.Gilmour,andP.J.Butery.1992.Changesincalpainand

calpastatinmRNAinducedbyβadrenergicstimulationofbovineskeletalmuscle.Eur.J.

Biochem.208:333339.

Plascencia,A.,N.Torrentera,andR.A.Zinn.1999.Influenceoftheβagonistzilpaterolon

growthperformanceandcarcasscharacteristicsoffeedlotsteers.Proc.West.Sect.

AmericanSocietyofAnimalScience50:331334.

Rehfeldt,C.R.,R.Schadereit,R.Weikard,andK.Reichel.1997.Effectofclenbuterolon

growth,carcass,andskeletalmusclecharacteristicsinbroilerchickens.Br.Poult.Sci.

38:366373.

92 Sissom,E.K.,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,R.S.Swingle,and

B.J.Johnson.2007.ResponsetoractopamineHClinheifersisalteredbyimplant

strategyacrossdaysonfeed.J.Anim.Sci.85:21252132.

Spurlock,M.E.,J.C.Cusumano,S.Q.Ji,D.B.Anderson,C.K.SmithII,D.L.Hancock,andS.

E.Mills.1994.Theeffectofractopamineonβadrenoreceptordensityandaffinityin

porcineadiposeandskeletalmuscletissue.J.Anim.Sci.72:7580.

Strosberg,A.D.,L.Camoin,N.Blin,andB.Maigret.1993.InreceptorscoupledtoGTPbinding

proteins,ligandbindingandGproteinactivationisamultistepdynamicprocess.Drug

Des.Discov.9:199211.

Vasconcelos,J.T.,R.J.Rathmann,R.R.Reuter,J.Leibovich,J.P.McMeniman,K.E.Hales,

T.L.Covey,M.F.Miller,W.T.Nichols,andM.L.Galyean.2006.Effectsofduration

ofzilpaterolhydrochloridefeedinganddaysonthefinishingdietonfeedlotcattle

performanceandcarcasstraits.J.Anim.Sci.86:20052015.

Walker,D.K.E.C.Titgemeyer,E.K.Sissom,K.R.Brown,J.J.Higgins,G.A.Andrews,and

B.J.Johnson.2007.EffectsofsteroidalimplantationandractopamineHClonnitrogen

retention,bloodmetabolitesandskeletalmusclegeneexpressioninHolsteinsteers.J.

Anim.Physiol.Anim.Nutr.91:439447.

Wheeler,T.L.,andM.Koohmaraie.1992.EffectsofβadrenergicagonistL644,969onmuscle

proteinturnover,endogenousproteinaseactivities,andmeattendernessinsteers.J.

Anim.Sci.70:30353043.

Winterholler,S.J.,G.L.Parsons,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,

R.S.Swingle,andB.J.Johnson.2007.Responsetoractopaminehydrogenchlorideis

similarinyearlingsteersacrossdaysonfeed.J.Anim.Sci.85:413419.

93 Young,O.A.,S.Watkins,J.M.Oldham,andJ.J.Bass.1995.Theroleofinsulinlikegrowth

factorIinclenbuterolstimulatedgrowthingrowinglambs.J.Anim.Sci.73:30693077.

94 Table3.1Compositionofthedietfedtosteers 1

Amount,%ofDM

Item Control Zilpaterol 2 Corn,steamflaked 72.9 72.9 CornDDGS 3 9.9 9.9 Cornsilage 10.1 10.1 Tallow 3.0 3.0 Supplement 4.0 4.0 Micro-ingredients 4 Rumensin,mg/kg 37.2 Tylan,mg/kg 10.8 Zilmax,mg/kg 8.32 VitaminA,IU/kg 3,080 3,080 VitaminD,IU/kg 208 208 VitaminE,IU/kg 11 11 1Fedthroughtheendofthetrial,includingthe3d withdrawalfollowingzilpaterolfeeding. 2Fedtozilpateroltreatmentsfor20,30or40d. 3Corndrieddistillersgrainswithsolubles. 4Addedusingamicroweighmachine(MicroBeef Technologies,Amarillo,TX).

95 Table3.2.Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavy chainIIAspecificPCRprimersandTaqManprobes β1adrenergicreceptor(Accession#AF188187) Forward GTGGGACCGCTGGGAGTAT Reverse TGACACACAGGGTCTCAATGC TaqManprobe 6FAMCTCCTTCTTCTGCGAGCTCTGGACCTCTAMRA β2adrenergicreceptor(Accession#NM_174231) Forward CAGCTCCAGAAGATCGACAAATC Reverse CTGCTCCACTTGACTGACGTTT TaqManprobe 6FAMAGGGCCGCTTCCATGCCCTAMRA β3adrenergicreceptor(Accession#XF86961) Forward AGGCAACCTGCTGGTAATCG Reverse GTCACGAACACGTTGGTCATG TaqManprobe 6FAMCCCGGACGCCGAGACTCCAGTAMRA IGF1(Accession#X15726) Forward TGTGATTTCTTGAAGCAGGTGAA Reverse AGCACAGGGCCAGATAGAAGAG TaqManprobe 6FAMTGCCCATCACATCCTCCTCGCATAMRA MyosinheavychainIIA(Accession#AB059398) Forward CCCCGCCCCACATCTT Reverse TCTCCGGTGATCAGGATTGAC TaqManprobe 6FAMTCTCTGACAACGCCTATCAGTTCATTAMRA

96 Table3.3Effectsofzilpaterol(Z)administrationonperformanceoffeedlotsteers Zilpaterol 1 Pvalues 2 Item 0 20 30 40 SEM 0vs.Z L Q Pens 6 6 6 6 Startingweight,kg 330 333 328 331 4 .2 0.74 0.4 0.77 DMI,kg/d 9.44 9.45 9.49 9.36 0.32 0.94 0.70 0.86 ADG,kg 1.66 1.73 1.76 1.75 0.08 0.03 0.03 0.89 G:F 0.178 0.182 0.186 0.187 0.003 <0.01 <0.01 0.74 Hotcarcassweight,kg 390 406 409 410 4.1 <0.01 <0.01 0.27 LMarea,cm 2 87.95 96.65 99.01 98.98 1.376 0.01 <0.01 0.08 12thribfat,cm 1.60 1.53 1.52 1.51 0.035 0.05 0.11 0.48 Marblingscore 3 464 444 436 434 7 .1 <0.01 <0.01 0.48 Dressingpercentage 64.05 65.58 65.99 66.09 0.399 <0.01 <0.01 0.01 KPH,% 1.97 1.97 1.97 1.97 0.013 0.21 0.43 0.86 Calculatedfinalyieldgrade 3.43 3.07 2.99 2.97 0.078 0.03 <0.01 0.14 1TreatmentsdietswereformulatedtoprovidenoZ(0d)orZ(8.32mg/kg,DMbasis)forthelast20,30,or40dofthe finishingperiod 2Observedsignificancelevelsfororthogonalcontrasts:0vs.Z=controlvs.Zfedsteers;L=lineareffectsofZtreatment; Q=quadraticeffectsofZtreatment. 3300=Slight 00 ;400=Small 00 .

97 300

200

Billions 100 1- 1-Adrenergic mRNA Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment

Figure3.1 β1Adrenergicreceptor(AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotsteers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.33)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ1ARmRNAabundance.

98 150000

100000

Billions 50000 2-Adrenergic Receptor 2-Adrenergic

Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment Figure3.2β2Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotsteers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.46)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ1ARmRNAabundance.

99 200

100

Billions 3-Adrenergic Receptor 3-Adrenergic

Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment Figure3.3β3Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotsteers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.47)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ1ARmRNAabundance.

100 7500

5000 2500 Units, Billions Units, IGF-I mRNA Arbitrary IGF-I mRNA 0 Control 20 d 30 d 40 d Treatment Figure3.4RelativeabundanceofIGFImRNAinbovinesemimembranosusmusclecollected

fromfeedlotsteers10minpostslaughter.Twoanimalsperpenwereusedintheanalysis(6 pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20dZIL,3)30d

ZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.23)northedurationofZILfeeding

(P>0.10)affectedtheexpressionofβ1ARmRNAabundance.

101 300

200 100 Thousand Ten Myosin Heavy Chain Heavy Myosin

Units, Arbitrary mRNA 0 Control 20 d 30 d 40 d Treatment Figure3.5 Relativeabundanceofmyosinheavychain( MHC )IIAmRNAinbovine

semimembranosusmusclecollectedfromfeedlotsteers10minpostslaughter.Twoanimalsper penwereusedintheanalysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol

(ZIL ;control),2)20dZIL,3)30dZIL,or4)40dZIL.Zilpateroladministrationdecreased( P

<0.05)theexpressionofmyosinmRNAabundance.

102

CHAPTER4EffectofZilpaterolandMelengestrolAcetateon Performance,CarcassCharacteristics,andSkeletalMuscleGene ExpressioninFeedlotHeifersandCulturedBovineSatelliteCells

103 Abstract Twoexperimentswereperformedtodeterminetheeffectsofzilpaterol( ZIL )and

melengestrolacetate( MGA )onfeedlotheiferperformance,skeletalmusclegrowth,andmuscle geneexpression,onein vivo andonein vitro .BritishandBritishxContinentalheifercalves(n=

2,660)withaninitialBWof317kg,wereusedinarandomizedcompleteblockdesignwith5 treatments.Treatmentsconsistedofcontrol(noMGAorZIL),ZILthelast20,30,or40d,or feedingMGA(0.4mg/hd)withnoZIL.Atslaughter,semimembranosusmuscletissuewas excised(2heifersperpen)forRNAisolation.Realtimepolymerasechainreactionwasusedto determinetheexpressionoftheβ1,β2,β3adrenergicreceptor( AR ),IGFI,andmyosinheavy chain( MHC )IIAmRNAconcentrations.Therewasnoeffect( P>0.05)ofZILadministration onfeedintakeorADG.RegardlessofthedurationofZILfeeding,therewasanincrease( P<

0.01)inG:FandLMareainZILfedheiferscomparedtothecontrols.Zilpaterolincreased( P=

0.03)HCW,dressingpercentage,anddecreased( P<0.01)marblingscore.Zilpaterolalso improved( P<0.01)yieldgradesanddecreased( P<0.01)12 th ribfat.Therewasnoeffect( P>

0.05)ofZILadministrationonKPHfat.Melengestrolacetateadministrationtoheifershadno effectonDMI,ADG,G:F,HCW,dressingpercentage,andKPHfat;however,MGAdecreased

(P<0.01)LMarea,increased( P<0.01)12 th ribfatandcalculatedyieldgrade,andincreased( P

=0.03)marblingscore.Melengestrolacetate,ZIL,ordurationofZILfeedinghadnoeffecton

theexpressionofβ1,β2,andβ3ARmRNA.Similarly,theyhadnoeffectontheexpressionof

IGFImRNA.MelengestrolacetatehadnoeffectofMHCIIAmRNA,butZILdecreased( P<

0.05)theexpressionofMHCIIAmRNA.Bovinesatellitecellswereusedtoassesstheeffects

ofMGA(0and10n M)onβ1,β2,andβ3ARmRNAlevels.CellswereplatedinDulbecco’s

ModifiedEagleMediumcontaining10%fetalbovineserumontissuecultureplatescoatedwith

reducedgrowthfactormatrigel.TheMGAwasaddeddirectlyontocellculturesat0and48h

104 afterplating.At72h,totalRNAwasisolatedfromthecellsandreversetranscribedfor complimentaryDNA( cDNA )synthesis.RealtimequantitativePCRwasperformedonthe cDNAtomeasureβARmRNAabundance.Melengestrolacetateaddition(10n M)increased

(3.1fold, P =0.01)β1ARmRNAabundance.Therewasalsoatendency(3.2fold, P=0.06) forMGAadditiontoincreaseβ2ARmRNA;however,therewasnosignificanteffect( P >0.10) onthelevelofβ3ARmRNA.TheseresultsindicatethatZILcanimproveheiferperformance, anddecreaseexpressionofMHCIIAmRNA.Also,MGAcanincreasetheexpressionofβ1AR mRNAinbovinemusclesatellitecellcultures.TherewasalsoatendencyforMGAtoincrease

β2ARlevelsincellcultures.Thesedatamayaidinourunderstandingofpotentialeffectsof

MGAinbovineskeletalmusclegrowthanddevelopment,aswellasprovidesomeinsightinto somepossibleresponseswhenutilizingZILincombinationwithMGAinfeedlotheifers.

Keywords:βadrenergicreceptor,bovine,melengestrolacetate,satellitecell

105 Introduction

Melengestrolacetate( MGA )isasyntheticprogestinadministeredtofeedlotheifersto inhibittheestrouscycle.IthasbeenusedintheUnitedStatesforover35yrtoimprovefeed efficiency,averagedailygain,andsuppressestruswhenadministeredattherecommendeddose rangeof0.25to0.50mg/d.Itisaneffectivetoolininhibitingestrusinfeedlotheifers;however, therehasbeenunclearevidenceastotheeffectsofMGAonheiferperformanceandcarcass characteristics(Lauderdale,1983;Adamsetal.,1990;Hutchesonetal.,1993;Sissometal.,

2006).

Researchsuggests,suchasprogestins,canaffectthelevelsandsensitivityofβ adrenergicreceptor( βAR )indifferenttissuetypes(Engstrometal.,2001;Kametal.,2001).In ratstreatedwithestradiolbenzoate,desensitizationoftheβ2ARfunctionintheratmyometrium wasobserved(Engrstometal.,2001).Additionally,estrogenadministrationtoventricular myocyteswasaccompaniedbyreducedproteinexpressionoftheβ1AR(Kametal.,2001).The potentialforalterationsinβARexpressionduetosteroidscanhavesignificancetothelivestock industry.TherearecurrentlytwoβARagonistsusedtopromotegrowthandefficiencyin feedlotcattle,zilpaterolHClandractopamineHCl.Potentialeffects,ifany,oftheuseofMGA inconjunctionwiththesecompoundshavenotbeeninvestigated.Duetothepotentialfor steroidstoaltertheβARindifferenttissues,itisimportanttodetermineifMGAcanhavean effectontheexpressionoftheβARinbovineskeletalmuscle.

ThepurposeoftheseexperimentswastoinvestigatetheeffectsofZILandMGA administrationtofeedlotheifersonperformance,carcasscharacteristics,andβ1,β2,β3AR,

IGFI,andmyosinheavychain( MHC )IIAmRNAconcentrationsinsemimembranosusmuscle

106 tissue.Additionally,weevaluatedtheeffectofMGAonβ1,β2,andβ3ARmRNAincultured proliferatingbovinemusclesatellitecells.

MaterialsandMethods

ThefollowingexperimentswereacollaborationbetweenIntervet,Inc.(Millsboro,DE),

CactusResearch,LTD(Amarillo,TX)andKansasStateUniversity.Researchconductedat commercialresearchfacilitiesfollowedtheguidelinesstatedintheGuidefortheCareandUse ofAgriculturalAnimalsinAgriculturalResearchandTeaching(FASS,1999,Savoy,IL).

Animals

BritishandBritishxContinentalheifercalves(n=2,660)withaninitialBWof317kg, wereusedinarandomizedcompleteblockdesignwith5treatments.Treatmentsconsistedof control(noMGAorZIL),ZILthelast20,30,or40d,orfeedingMGA(noZIL,0.4mg/hd).

Treatmentswererandomlyassignedtoeachpen(n=30)withapproximately88heifersperpen.

Atarrival,heifercalveswereimplantedatwithRevalorIH(80mgtrenboloneacetateand8mg estradiol)andreimplantedwithRevalorH(140mgtrenboloneacetateand14mgestradiol)81d priortoharvest.Heiferswerefed3timesdailyduringthetransitionperiodand2timesdailyfor theremainderofthestudy,andallowedadlibitumaccesstofeed.Thefinishingdietwasbased onsteamflakedcorn(Table4.1).Feedadditives(Rumensin,Tylan,MGA,andvitaminsA,D andE)wereaddedusingamicroweighmachine(MicroBeefTechnologies,Amarillo,TX).In theMGAration,0.4mg/hdwasadministered.Duringthezilpateroltreatmenttimeforeach group,thedietfedfortheprescribeddurationcontained8.32mg/kgofZilpaterolHCl,butno

RumensinorTylan.Fordetermination offinalBW,penswereweighedandtheindustry standard4% pencilshrinkwasapplied.Animalsweretransported96kmtoacommercial

107 slaughterfacility(TysonFreshMeatsInc.,Amarillo,TX).Carcasscharacteristicswereobtained

fromchilledcarcasses 36hafterslaughter.

SamplePreparationandRNAIsolation

Within10minofslaughterattheabattoir,amusclesamplewascollectedfromthe semimembranosusmuscleof2randomlyselectedheifersperpen.Thesamplesweresnapfrozen inliquidnitrogenanddeliveredtoKansasStateUniversityforanalysis.TotalRNAwasisolated frommusclesamplesusingTRIReagent(Sigma,St.Louis,MO).Semimembranosusmuscle tissue(100mg)wastransferredtoasteelmortarbowlcooledbyliquidnitrogen.Thesamples werehomogenizedusingasterilepestalinliquidnitrogen.TRIReagent(3mL)wasthenadded tothegroundtissuesample.OnemLofmuscletissueinTriReagentwasincubatedatroom temperaturefor5min.Followingincubation,chloroform(Sigma,St.Louis,MO)wasaddedand sampleswerecentrifugedfor15minat12,000xgatroomtemperature.Following centrifugation,thetoplayerwasremovedandtransferredtoanewmicrocentrifugetube.

Isopropanol(Sigma,St.Louis,MO)wasaddedandsampleswerecentrifugedfor10minat

12,000xgtoisolatetheRNApellet.TheRNApelletwasthentreatedtoremoveany contaminatinggenomicDNAusingtheDNAfree kit(Ambion,Austin,TX).TheRNA concentrationwasdeterminedbyabsorbanceat260 nm. TheintegrityoftheRNAwasdetermined bygelelectrophoresis.TotalRNAwithethidiumbromidewasloadedontoa1%agarosegelto

separateandvisualizethe28Sand18SrRNA.

BovineSatelliteCellIsolation

Satellitecellisolationwasconductedasdescribedpreviously(Johnsonetal.,1998).

Cattleweresacrificedbyboltingfollowedbyexsanguination.Usingsteriletechniques, approximately500gofthesemimembranosusmusclewasdissectedoutandtransportedtothe

108 cellculturelaboratory.Subsequentprocedureswereconductedinasterilefieldunderatissue

culturehood.Afterremovalofconnectivetissuethemusclewaspassedthroughasterilemeat

grinder.Thegroundmusclewasincubatedwith0.1%pronaseinEarl'sBalancedSaltSolution

(EBSS )for1hourat37 °Cwithfrequentmixing.Followingincubation,themixturewas centrifugedat1500x gfor4min,thepelletwassuspendedinphosphatebufferedsaline( PBS :

140m MNaCl,1m MKH 2PO 4,3m MKCl,8m MNa 2HPO 4),andthesuspensionwascentrifuged at500x gfor10min.Thesupernatantwascentrifugedat1500x gfor10mintopelletthe

mononucleatedcells.ThePBSwashanddifferentialcentrifugationwererepeatedtwomore

times.Theresultingmononucleatedcellpreparationwassuspendedincold(4 °C)Dulbecco’s

ModifiedEagleMedium( DMEM )containing10%fetalbovineserum( FBS )and10%(v/v) dimethylsulfoxide( DMSO )andfrozen.Cellswerestoredfrozeninliquidnitrogen.

RNAIsolationfromSatelliteCells

Bovinesatellitecellswereplatedin10%FBS/DMEM.MGA(0,and10n M)wasadded totheculturesimmediatelyfollowingplating.Previousworkinourlaboratoryshowedthat10 nMMGAwasthelowestleveltoelicitaresponseoncellproliferationandwasusedin subsequentexperiments.Wefurthershowedthatlevelslowerthan10n M werealsoeffectivein reducingcellproliferation,butwechosetocontinuewith10n Minthepresentstudyduetothe resultsreportedinearlierwork(Sissometal.,2006).At48h,cultureswererinsedthreetimes withserumfreeDMEMandfresh10%FBS/DMEM.At72h,totalRNAwasisolatedusingthe

AbsolutelyRNAMicroprepKit(Stratagene,LaJolla,CA).TheconcentrationofRNAwas determinedbyabsorbanceat260 nm .OnemicrogramoftotalRNAwasreversetranscribedto producefirststrandcomplementaryDNA( cDNA )usingTaqManReverseTranscription

Reagents,MultiScribe™ReverseTranscriptase(AppliedBiosystems,FosterCity,CA),andthe

109 protocolrecommendedbythemanufacturer.RandomhexamerswereusedasprimersincDNA

synthesis.

RealtimequantitativePCR

RealtimequantitativePCRwasusedtomeasurethequantityofβ1AR,β2AR,β3AR,

IGFI,andMHCIIAgeneexpressionrelativetothequantityof18SribosomalRNA( rRNA )in totalRNAisolatedfrommuscletissueandsatellitecells.Measurementoftherelativequantity ofcDNAwasperformedusingTaqManUniversalPCRMasterMix(AppliedBiosystems,Foster

City,CA),900n Moftheappropriateforwardandreverseprimers,200n Mofappropriate

TaqMandetectionprobe,and1LofthecDNAmixture.Thebovinespecificβ1AR,β2AR, andβ3AR,IGFI,andMHCIIAforwardandreverseprimersandTaqMandetectionprobes

(Table4.2)weresynthesizedusingpublishedGenBanksequences.Commerciallyavailable eukaryotic18SrRNAprimersandprobeswereusedasanendogenouscontrol(Applied

Biosystems;GenbankAccession#X03205).TheABIPrism7000detectionsystem(Applied

Biosystems,FosterCity,CA)wasusedtoperformtheassayutilizingtherecommendedthermal cyclingvariablesbythemanufacturer(50cyclesof15sat95ºCand1minat60ºC).The18S rRNAendogenouscontrolwasusedtonormalizetheexpressionofβ1AR,β2AR,β3AR,IGF

I,andMHCIIA.

StatisticalAnalysis

TheheiferdatawereanalyzedasarandomizedcompleteblockdesignwithPROC

MIXED(SASInst.,Cary,NC).FortheMGAdata,penservedastheexperimentalunit,and meanswereseparated( P<0.05)withtheleastsignificancedifferenceprocedureofSAS.For allZILanalysis,specificorthogonalcontrastswereusedtotest1)controlvs.theaverageofthe3 durationofZILfeedinggroupsand2)linearandquadraticeffectsofdurationofZILfeeding.

110 CellculturedatawereanalyzedasacompletelyrandomizeddesignusingtheMIXEDmodel

(SASInst.,Cary,NC).Forthe in vitro experiment,thedifferencebetweencontrolandMGA

treatmentwasdeterminedusingtheleastsignificancedifferenceprocedure.Meanswere

determinedtobesignificantlydifferentat P<0.05.

ResultsandDiscussion

EffectofMGAAdministrationtoFeedlotHeifersonPerformanceandCarcass

Characteristics

ThedataforperformanceandcarcasscharacteristicsareshowninTables4.3and4.4.

MelengestrolacetateadministrationtoheifershadnoeffectonDMI,ADG,G:F,HCW,dressing percentage,andKPHfat;however,MGAdecreased( P<0.01)LMarea,increased( P<0.01)

12 th ribfatandcalculatedyieldgrade,andincreased( P=0.03)marblingscore.Melengestrol acetateisaneffectivetoolininhibitingestrusinfeedlotheifers;however,therehasbeenunclear evidenceastotheeffectsofMGAonheiferperformanceandcarcasscharacteristics(Blossetal.,

1966;Lauderdale,1983;Hutchesonetal.,1993;Sissometal.,2006).Someoftheearliestwork donewithMGAinfeedlotheifersshowedanimprovementinweightgainandfeedefficiencyin intactheiferswithdosesrangingfrom0.35to0.50mg/d(Blossetal.,1966).Thisstudyalso reportednosignificanteffectoncarcassweights,gradesordressingpercentage.Inareviewof numerousstudieswithdatafromaround10,000heifers,MGAshowedtobeeffectivein improvingADGby10%andfeedefficiencyby6.5%(Lauderdale,1983).Ontheotherhand, carcassqualityinthesestudieswasnotalteredbytheadministrationofMGAinthediet

(Lauderdale,1983).TherehavebeenstudiesthatsuggestMGAalterscarcasscharacteristicsas weobservedinthecurrentstudy(Hutchesonetal.,1993).Inareviewofvarioustrials,MGA wasnoteffectiveinimprovinggainorfeedefficiency;however,fatthicknessandthepercentage

111 ofheiferswithyieldgrades4&5increased(Hutcheson,1993).Thisdataisinagreementwith

ourresultsthatsuggestMGAmayberesponsibleforearliermaturingheifers,thusresultingin

increasedfatthickness,smallerribeyearea,andincreasedyieldgrade.

Onepossiblemechanismthroughwhichearlymaturitymayoccuristhroughearly

satellitecellwithdrawalformthecellcyclepossiblythroughregulationofgrowthfactors

importantinthisprocess.Satellitecellsarenecessaryforsupportingpostnatalmuscle

hypertrophy;however,asananimalages,thenumberofthesatellitecellspresentisgreatly

reduced,causingagrowthplateau.Ifthesecellsarepushedintothedifferentiationpathway

early,thiswillreducethenumberavailableforcontinuedmusclegrowth,possiblecausingearly

maturityinanimals.Oncethesatellitecellsavailablehavefusedandmusclegrowthhasceased,

thisshiftscaloriestoadiposetissuethuscausingagreateraccumulationoffat,possibleleading

totheincreasedfatthicknessoftenobservedinMGAheifers.WepreviouslyreportedthatMGA

additiontoculturedbovinesatellitecellsandC 2C12 cellsreducestherateofcellproliferation

(Sissometal.,2006).TheadditionofMGAalsoincreasedIGFImRNAandtheadditionof progesteronetobovinesatellitecellsincreasedmyogeninmRNA.Thesedatasuggestedthat

MGAmayhavebeencausingthecellstowithdrawalfromthecellcycleearlyandterminally differentiatewithmusclefibers.Thatdatawouldsupporttheearlymaturityphenomenon reportedwiththedecreasedLMarea,increased12 th ribfat,andincreasedcalculatedyieldgrade

weobserved.

EffectofZILAdministrationtoFeedlotHeifersonPerformanceandCarcassCharacteristics

Thedataforperformanceovertheentirefinishingperiodandcarcasscharacteristics showingtheeffectofZILisshowninTable4.4.Therewasnoeffect( P>0.05)ofZIL administrationonfeedintakeorADG.RegardlessofthedurationofZILfeeding,therewasan

112 increase( P<0.01)inG:F,HCW,LMarea,anddressingpercentageinZILfedanimals

comparedtothecontrols.Zilpateroladministrationdecreased( P<0.01)marblingscore,12 th rib fat,andimproved( P<0.01)yieldgradesregardlessofZILduration.Therewasnoeffect( P>

0.05)ofZILadministrationonKPHfat.Thesedataareconsistentwithotherstudiesutilizingβ

ARagonistssuchasractopamineandZILasgrowthpromoters.Infeedlotsteersadministered6 mg/kgofzilpaterolinthedietdaily,therewasanincreaseinaveragedailygainandimproved gainefficiency(Plascenciaetal.,1999;Vasconcelosetal.,2008).Zilpaterolsupplementation alsoincreasedcarcassweightby4.5%,dressingpercentageby3.6%,andlongissimusmuscle areaby2.7%comparedtocontrolsteers.Therewasnoeffectofzilpaterolonfatthicknessor marblingscore(Vasconcelosetal.,2008).Bothzilpaterol(60mg/d)andractopamine(300 mg/d)wereinvestigatedinfeedlotcattleinastudytocomparethetwoβagonists(Avendano

Reyesetal.,2006).BothractopamineandZILimprovedADG,feedefficiency,andHCW.

Additionally,ZILincreasedlongissimusmusclearea;however,bothractopamineandZIL increasedshearforcevaluescomparedtocontrolsteers.Theauthorscommentedthattheβ agonistswereeffectiveinenhancingperformanceofthecattlewithouthavingasubstantialeffect onmeatquality(AvendanoReyesetal.,2006;Vasconcelosetal.,2008).Similarimprovements inanimalperformancehavebeenreportedwithractopamineadministration.Infeedlotsteers, ractopaminefedthefinal28dofthefinishingperiodat200mg/dresultedinimprovedADG, feedefficiency,HCW,andlargerLMarea(Gruberetal.,2007).Winterholleretal.(2007) reportedsimilarfindingsinyearlingsteersfed200mg/dofractopaminethefinal28dofthe feedingperiod.SteersfedractopaminehadincreasedADGandimprovedgainefficiency,as wellasincreasedHCWandLMarea.

113 EffectofMGAandZILAdministrationtoFeedlotHeifersonSemimembranosusMuscleβ1,

β2,andβ3ARmRNAConcentrations

Therewasnoeffect( P>0.05)ofMGAorZILadministration,ordurationofZILfeeding

(P>0.10)onsemimembranosusmuscleβ1,β2,andβ3ARmRNAconcentrations(Figures4.1

to4.6).TheexpressionofβARinbovineskeletalmuscleisofimportancebecauseofthe

utilizationofβARagonistssuchasZILinthefeedlotindustrytoday.Thenumberofreceptors

canimpacttheresponsetosuchcompounds,thereforehavinganeffectonanimalperformance.

Itisimportanttounderstandanypotentialinteractionsorsynergisticeffectssteroidsmayhaveon

βARnumberorexpressionifMGAorsteroidimplantsareusedinconjunctionwithβagonists.

SteroidhormoneshavebeenshowntoaffectthesensitivityandnumberofβARinnumerous

tissues(Engstrometal.,2001;MaloandPuerta,2001).Intheratmyometrium,estradiol benzoatetreatmentresultedindesensitizationofβ2ARfunction,whileprogesteronehadno

effectontheβ2AR(Engstrometal.,2001).Additionally,thetreatmentofventricularmyocytes

withestrogenresultedinreducedproteinexpressionoftheβ1AR(Kametal.,2004).Ina

similarmanner,estradiolandprogesteroneadministrationreducedthedensityofβ3ARin

interscapularbrownadipocytesofmaleWistarrats(MaloandPuerta,2001).Additionally,the bindingaffinityfortheβ3ARinthebrownadipocyteswasincreasedwithestradioland progesteroneadministration(MaloandPuerta,2001).InmaleSpragueDawleyrats,castration

resultedinadecreaseinβARnumbers,andthisreductionwasreturnedtonormallevelswith

testosteronetreatment(Xuetal.,1991).Thesedatademonstratethatsteroidhormonescan

differentiallyaffectβAR;however,wewereunabletodetectanychangesinsemimembranosus

muscleβARmRNAexpressionduetoMGAadministration.

114 EffectofMGAandZILAdministrationtoFeedlotHeifersonSemimembranosusMuscleIGF

IandMHCIIAmRNAConcentrations

Therewasnoeffect( P>0.05)ofMGAorZILadministration,ordurationofZILfeeding

(P>0.10)onsemimembranosusmuscleIGFImRNAconcentrations(Figures4.7and4.8).

Thereisanabundantamountofinformationastotheeffectsofestrogensandandrogenson

skeletalmusclegrowthinanimals.Conversely,thereislittleinformationontheeffectsof progestins,orspecificallyMGA,onskeletalmusclegrowth.WepreviouslyreportedthatMGA

additiontoculturedbovinesatellitecellsandC 2C12 cellsreducestherateofcellproliferation

(Sissometal.,2006).TheadditionofMGAalsoincreasedIGFImRNAandtheadditionof progesteronetobovinesatellitecellsincreasedmyogeninmRNA.Themajorityofresearch suggestsestrogensandandrogensincreaseskeletalmusclegrowththroughupregulationofIGF

Iinbothcirculationandlocalskeletalmuscleproduction(Dunnetal.,2003;Pampuschetal.,

2003).Dunnetal.(2003)observedincreasedmuscleIGFImRNAinsteersimplantedwitha combinedtrenboloneacetate( TBA )/estradiol( E2)implant.Theimplantedsteersalsohad greatercirculatingIGFIbyd14.Pampuschetal.(2003)observedsimilarincreasesinIGFIof boththeliverandskeletalmuscleinsteersimplantedwithTBA/E 2.Insteersimplantedwith

TBA/E 2,circulatingIGFIconcentrationswereincreasedcomparedtocontrol(Johnsonetal.,

1996).TheeffectsofMGAappeartobedifferentthanthatofestrogensandandrogens.In heifersadministeredMGA,circulatingIGFIwasnotdifferentcomparedtoheifersnotreceiving

MGA(MaderandKreikmeier,2006).Asmentionedpreviously,wehaveshownthatMGA increasedIGFImRNAinbovinesatellitecellcultures(Sissometal.,2006).Wedidnot, however,detectanydifferencesinsemimembranosusmuscletissuefromMGAfedheiferson

IGFImRNAinthecurrentstudy.ThelackofeffectofZILadministrationontheexpressionof

115 IGFImRNAinsemimembranosusmuscletissueissimilartothatofotherstudies.Themajority

ofresearchwouldsuggestthereisnoroleforIGFIinβagonistinducedskeletalmusclegrowth.

Grantetal.(1993)reportednochangeinIGFImRNAexpressioninbothskeletalmuscleand

liverinpigsfedractopamine.Additionally,O’Connoretal.(1991)observednochangeinIGFI

concentrationsfollowingadministrationofcimaterolfor3wk.Similarly,clenbuterol

administrationtogrowinglambsresultedinnochangeinIGFIconcentrations(Youngetal.,

1995).Additionally,therewasadecreaseinmRNAexpressionofIGFIinthelongissimus

muscletissuecollectedatharvest.Ingrowinglambsfedcimaterolfor6wk,therewasa

decreaseinIGFIlevelincirculation(Beermannetal.,1987).

Therewasnoeffect( P>0.05)ofMGAadministrationonsemimembranosusmuscle

MHCIIA(Figure4.9)mRNAconcentrations.Thereisverylittleinformationontheeffectsof steroidsonMHCexpressioninskeletalmuscle,andthereisnoinformationavailableonthe directeffectsofMGAonMHCinskeletalmuscle.Othersteroidshavebeenshowntohave effectsonproteinsynthesisanddegradation(Roederetal.,1986;Desleretal.,1996),thereforeit wouldbesuggestedthattheywouldaffectMHCduetoitbeingthemostabundantskeletal muscleprotein.However,inyoungmaleWistarrats,(nortestosteronedecanoate) treatmentfor25dhadnoeffectonthelevelofMHCinthesoleusandextensordigitorumlongus muscles(NoirezandFerry,2000).ThereisnoinformationsuggestingMGAhasdirectgrowth promotingeffectsonskeletalmusclegrowthlikeothersteroidhormones;thereforewewerenot surprisedwewereunabletodetectchangesinMHCexpressioninskeletalmusclefromMGA fedheifersinthepresentstudy.

TheexpressionofMHCIIAwasdecreased( P<0.05)byZILadministration,butasthe durationofZILfeedingincreased,MHCIIAmRNAincreased( P=0.05)inheifers(Figure

116 4.10).Myosinheavychainisamajorproteininskeletalmusclethataccountsforaround30%of

allproteininskeletalmuscle.TherearedifferentisoformsofMHCthatareimportantin

determiningmusclefibertype.SlowtwitchfibersarepredominantlyMHCI,whereasfasttwitch

fibersarepredominantlyMHCIIAandIIX.Ithasbeenreportedthatβagonisttreatmentcan

altertheexpressionofMHCisoforms,whichcanresultinsubsequentchangesinmuscle

composition(Rehfeldtetal.,1997;Depreuxetal.,2002).Depreuxetal.(2002)observeda

decreaseinMHCIIAandIIXmRNAexpressionandanincreaseinMHCIIBmRNAinpigsfed

ractopamine.Thesefindingsaresimilartoourdata.However,wedidnotmeasureother

isoformsofMHCsowecanonlyreportontheeffectsofZILonthereductioninMHCIIA.Itis

alsoimportanttonotethatMHCIIBmRNAisnotdetectedinbovineskeletalmuscletissue

(Chikunietal.,2004).ThereductioninMHCIIAinskeletalmusclemayalsobeanindirect

responsetodecreasesinproteindegradationduetoZILadministration.βAgonists,especially

thosespecificfortheβ2ARhavebeenshowntodecreaseproteindegradationinskeletalmuscle.

WheelerandKoohmaraie(1992)reporteda27.1%reductioninfractionaldegradationrateof

skeletalmusclemyofibrillarproteininsteersfedtheβagonistL644,969after3wk.Thesedata provideapossibleexplanationforthereductioninMHCIIAmRNAconcentrationobservedin

thesemimembranosusmuscletissuecollectedfromtheheifersfedZIL.

EffectofMGAonBovineSatelliteCellβ1,β2,andβ3ARmRNAConcentrations

Melengestrolacetateaddition(10n M)increased(3.1fold, P =0.01)β1ARmRNA abundanceinbovinesatellitecellcultures(Figure4.11).Therewasalsoatendency(3.2fold, P

=0.06)forMGAadditiontoincreaseβ2ARmRNA(Figure4.12);however,therewasno significanteffect( P >0.10)onthelevelofβ3ARmRNA(Figure4.13).Aspreviously mentioned,steroidhormonescanalterboththesensitivityandnumberofβARindifferent

117 speciesandspecifictissues(Engstrometal.,2001;MaloandPuerta,2001).Thishasbeen

shownwithestrogen,progesterone,andtestosterone.MGAisasyntheticprogestinthatismore potentthanprogesterone.WepreviouslyreportedthatMGAincreasedIGFImRNAinbovine

satellitecells2.2timesthatofcontrolcultures,whereasprogesteronehadnoeffectofIGFI

mRNA.Additionally,MGAreducedcellproliferationinadosedependentmanner,whileonly

onelevelofprogesteronedecreasedcellproliferation.WedidnotobserveaneffectofMGAon

βARinsemimembranosusmuscletissueinthecurrentstudy.ThislackofeffectofMGA in

vivo maybearesultofamultitudeofdifferentfactors.TheheifershadbeenonMGAforalong

durationbeforethemuscletissuewascollectedforanalysis,whilethe in vitro experimentswere

onlyexposedtoMGAforaperiodof72h.ThechangeinexpressionofβARmayoccuratan

earliertimepointanddecreaseoveralongerperiodoftime.Thistheoryisalsosupportedbythe

IGFIdata.WedidnotobserveanychangesinIGFImRNAfromsemimembranosusmuscle

tissueofheifersfedMGA.However,wepreviouslyreportedincreasedIGFImRNAinbovine

satellitecellcultureswith48hMGAexposure(Sissometal.,2006).Thepreviousincreaseof

IGFImRNAreportedfrom in vitro experimentsliketheonesobservedinthepresentstudywith

theβARsupportthetheorythattheshorterexposuretoMGAmayberesponsibleforthe

changesobserved in vitro withalackofchangesinthecorresponding in vivo study.However,

theincreasedβ1ARandβ2ARmRNA in vitro accompaniedbyotherdatastillsuggesta possibilityforsteroidssuchasMGAtoaltertheexpressionofthesereceptorsinskeletalmuscle,

eventhoughwedidnotdetectanydifferencesinthecurrentheiferexperiment.

Furtherinvestigationisneededtodetermineifsteroidsusedinfeedlotcattlesuchas

MGA,TBA,orE 2haveaneffectontheβARnumberorexpressionbecauseoftheuseofβAR agonistsastoolsforincreasedanimalperformanceandefficiency.SteroidsandβARagonists

118 havedifferentmodesofaction;thereforeitispossiblethatifthesetwodifferentclassesof

compoundsareusedtogether,theremaybeinteractionsorsynergisticresponses.Oneofthe

importantfactorsisdurationoffeedingofMGAandimplantation.Melengestrolacetateis

administeredthroughouttheentirefinishingperiodwhereasβARagonistssuchasZILarefedat

theendofthefinishingperiod.Steroidcontainingimplantsareusedatdifferenttimepoints

duringthefinishingperiodandtheimplantreleasepatternsandpayouttimesaredifferent betweenimplanttypes(Preston,1999).Thesedifferencescanimpactanimalperformanceand

canmakeitmoredifficulttodiscerninteractionsorsynergisticresponsesbetweendifferent

classesofcompounds.Thereishowevermorerecentevidenceofsteroidhormonesworking

throughsecondmessengersystemssuchascyclicadenosinemonophosphateandintracellular

calcium,similartothatoftheβARagonistsmodeofaction(Falkensteinetal.,2000).These

responsesarecallednongenomicactions,andwehavepreviouslyreportedthiswithMGAin bovinesatellitecells(Sissometal.,2006).Thisrecentinformationsuggestsapotentialpointfor

interactionwithsteroidhormonesandβARagonists.Additionally,wehaveobservedthatthe

responsetoractopamine,aβ1ARagonist,isalteredbydifferentimplantstrategiesinheifers

(Sissometal.,2007).Unfortunately,allheifersinthepreviousstudyreceivedMGA;therefore

wewereunabletoascertainanyeffectsofMGAontheexpressionofβARmRNAinthatstudy.

WedidnotseeanyeffectsofMGAinthepresentstudyonβARexpression;howeverwiththe

vastuseofsteroidimplantstodaytopromotegrowthandefficiency,moreinvestigationwith

othersteroidhormonesiswarrantedatthepresenttime.

Overall,theresultsfromourstudysuggestthatMGAcandecreaseLMareawhile

increasing12 th ribfatleadingtoincreasedcalculatedyieldgrades.However,zilpaterol administrationcanpositivelyaffectheiferperformanceandcarcasscharacteristics.Additionally,

119 MGAcanaltertheexpressionofβARin vitro ,buttherearenoeffectsofMGAorZILon skeletalmusclegeneexpressionofβ1,β2,β3AR,andIGFImRNAconcentrationsin semimembranosusmuscletissuecollectedfromfeedlotheifersfedMGA.However,ZIL decreasedtheexpressionofMHCIIAwhichmaybeanindicatorofdecreasedprotein degradation.ThesedatasuggestthatMGAdoesnothavetheeffectsthatothersteroidssuchas

TBAandE 2haveonskeletalmusclegrowthanddevelopmentinheifers.Thisinformationaids inourunderstandingoftheeffectsofMGAandZILonheifergrowthskeletalmuscleand development.

120 LiteratureCited

Adams,T.E.,J.R.Dunbar,S.L.Berry,W.N.Garrett,T.R.Famula,andY.B.Lee.1990.

FeedlotperformanceofbeefheifersimplantedwithSynovexH:Effectofmelengestrol

acetate,ovariectomy,oractiveimmunizationagainstGnRH.J.Anim.Sci.68:30793085.

AvendanoReyes,L.,V.TorresRodriguez,F.J.MerazMurillo,C.PerezLinares,F.Figueroa

Saavedra,andP.H.Robinson.2006.Effectsoftwoβadrenergicagonistsonfinishing

performance,carcasscharacteristics,andmeatqualityoffeedlotsteers.J.Anim.Sci.

84:35293265.

Bloss,R.E.,J.I.Northam,L.W.Smith,andR.G.Zimbelman.1966.Effectsoforal

melengestrolacetateontheperformanceoffeedlotcattle.J.Anim.Sci.25:10481053.

Chikuni,K.S.Muroya,andI.Nakajima.2004.Myosinheavychainisoformsexpressedin

bovineskeletalmuscles.MeatSci.67:8794.

Depreux,F.F.S.,A.L.Grant,D.B.Anderson,andD.E.Gerrard.2002.Payleanaltersmyosin

heavychainisoformcontentinpigmuscle.J.Anim.Sci.80:18881894.

Desler,M.M.,S.J.Jones,C.W.Smith,andT.L.Woods.1996.Effectsofdexamethasoneand

anabolicagentsonproliferationandproteinsynthesisanddegradationinC 2C12 myogenic

cells.J.Anim.Sci.74:12651273.

Dunn,J.D.,B.J.Johnson,J.P.Kayser,A.T.Waylan,E.K.Sissom,andJ.S.Drouillard.2003.

Effectsofflaxsupplementationandacombinedtrenboloneacetateandestradiolimplant

oncirculatinginsulinlikegrowthfactorIandmuscleinsulinlikegrowthfactorI

messengerRNAlevelsinbeefcattle.J.Anim.Sci.81:30283034.

121 Engstrom,T.,H.Vilhardt,P.Bratholm,andN.J.Christensen.2001.Desensitizationofβ2

adrenoceptorfunctioninnonpregnantratmyometriumismodulatedbysexsteroids.J.

Endocrinol.170:147155.

Falkenstein,E.,J.C.Tillmann,M.Christ,M.Feuring,andM.Wehling.2000.Multipleactions

ofsteroidhormonesAfocusonrapid,nongenomiceffects.Pharmacol.Rev.52:513556.

FASS.1999.GuidefortheCareandUseofAgriculturalAnimalsinAgriculturalResearchand

Teaching.1sted.Fed.Anim.Sci.Soc.,Savoy,IL.

Gruber,S.L.,J.D.Tatum,T.E.Engle,M.A.Mitchell,S.B.Laudert,A.L.Schroeder,andW.

J.Platter.2007.Effectsofractopaminesupplementationongrowthperformanceand

carcasscharacteristicsoffeedlotsteersdifferinginbiologicaltype.J.Anim.Sci.

85:18091815.

Hutcheson,J.P.,J.R.Rains,andJ.W.Paul.1993.Theeffectsofdifferentimplantandfeed

additivestrategiesonperformanceandcarcasscharacteristicsinfinishingheifers.A

review.Prof.Anim.Sci.9:132137.

Johnson,B.J.,M.R.Hathaway,P.T.Anderson,J.C.MeiskeandW.R.Dayton.1996.

StimulationofcirculatinginsulinlikegrowthfactorI(IGFI)andinsulinlikegrowth

factorbindingproteins(IGFBP)duetoadministrationofacombinedtrenboloneacetate

andestradiolimplantinfeedlotcattle.J.Anim.Sci.74:372379.

Johnson,B.J.,N.Halstead,M.E.White,M.R.Hathaway,A.DiCostanzo,andW.R.Dayton.

1998.Activationstateofmusclesatellitecellsisolatedfromsteersimplantedwitha

combinedtrenboloneacetateandestradiolimplant.J.Anim.Sci.76:27792786.

122 Kam,W.L.,J.S.Qi,M.Chen,andT.M.Wong.2004.Estrogenreducescardiacinjuryand

expressionofβ 1adrenoceptoruponischemicinsultintheratheart.J.Pharm.andExp.

Therap.209:815.

Lauderdale,J.W.1983.UseofMGA(melengestrolacetate)inanimalproduction.Pages193

232inAnabolicsinAnimalProduction.E.Meissonnier,ed.OfficeInternationaldes

Epizooties,Paris.France.

Malo,A.,andM.Puerta.2001.Oestradiolandprogesteronechangeβ3adrenergicreceptor

affinityanddensityinbrownadipocytes.EuropeanJ.Endocrinol. 145:8791.

Noirez,P.,andA.Ferry.2000.Effectofanabolic/androgenicsteroidsonmyosinheavychain

expressioninhindlimbmusclesofmalerats.Euro.J.Appl.Physiol.81:155158.

Pampusch,M.S.,B.J.Johnson,M.E.White,M.R.Hathaway,J.D.Dunn,A.T.Waylan,and

W.R.Dayton.2003.TimecoursechangesingrowthfactormRNAlevelsinmuscle

ofsteroidimplantedandnonimplantedsteers.J.Anim.Sci.81:27332740.

Plascencia,A.,N.Torrentera,andR.A.Zinn.1999.Influenceoftheβagonistzilpaterolon

growthperformanceandcarcasscharacteristicsoffeedlotsteers.Proc.West.Sect.

AmericanSocietyofAnimalScience50:331334.

Preston,R.L.1999.Hormonecontaininggrowthpromotingimplantsinfarmedlivestock.Adv.

DrugDel.Rev.38:123128.

Rehfeldt,C.R.,R.Schadereit,R.Weikard,andK.Reichel.1997.Effectofclenbuterolon

growth,carcass,andskeletalmusclecharacteristicsinbroilerchickens.Br.Poult.Sci.

38:366373.

123 Roeder,R.A.,S.D.Thorpe,F.M.Byers,G.T.Schelling,andJ.M.Gunn.1986.Influenceof

anabolicagentsonproteinsynthesisanddegradationinmusclecellsgrowninculture.

Growth50:485495.

Sissom,E.K.,C.D.Reinhardt,andB.J.Johnson.2006.Melengestrolacetatealtersmusclecell

proliferationinheifersandsteers.J.Anim.Sci.84:29502958.

Sissom,E.K.,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,R.S.Swingle,and

B.J.Johnson.2007.ResponsetoractopamineHClinheifersisalteredbyimplant

strategyacrossdaysonfeed.J.Anim.Sci.85:21252132.

Vasconcelos,J.T.,R.J.Rathmann,R.R.Reuter,J.Leibovich,J.P.McMeniman,K.E.Hales,

T.L.Covey,M.F.Miller,W.T.Nichols,andM.L.Galyean.2006.Effectsofduration

ofzilpaterolhydrochloridefeedinganddaysonthefinishingdietonfeedlotcattle

performanceandcarcasstraits.J.Anim.Sci.86:20052015.

Wheeler,T.L.,andM.Koohmaraie.1992.EffectsofβadrenergicagonistL644,969onmuscle

proteinturnover,endogenousproteinaseactivities,andmeattendernessinsteers.J.

Anim.Sci.70:30353043.

Winterholler,S.J.,G.L.Parsons,C.D.Reinhardt,J.P.Hutcheson,W.T.Nichols,D.A.Yates,

R.S.Swingle,andB.J.Johnson.2007.Responsetoractopaminehydrogenchlorideis

similarinyearlingsteersacrossdaysonfeed.J.Anim.Sci.85:413419.

Xu,X.,G.DePergola,andP.Bjorntorp.1991.Testosteroneincreaseslipolysisandthenumber

ofβadrenoceptorsinmaleratadipocytes.Endocrinol.128:379382.

124

Table4.1Compositionofthedietfedtoheifers 1 Amount,%ofDM Item Control MGA Zilpaterol 2 Corn,steamflaked 72.9 72.9 72.9 CornDDGS 3 9.9 9.9 9.9 Silage,Corn 10.1 10.1 10.1 Tallow 3.0 3.0 3.0 Supplement 4.0 4.0 4.0 Micro-ingredients 4 Rumensin,mg/kg 37.2 37.2 Tylan,mg/kg 10.8 10.8 Zilmax,mg/kg 8.32 MGA,mg/hd/d 0.4 VitaminA,IU/kg 3,080 3,080 3,080 VitaminD,IU/kg 208 208 208 VitaminE,IU/kg 11 11 11 1Fedthroughtheendofthetrial,includingthe3dwithdrawal followingzilpaterolfeeding. 2Fedtozilpateroltreatmentsfor20,30or40d. 3Corndrieddistillersgrainswithsolubles. 4Addedusingamicroweighmachine(MicroBeefTechnologies, Amarillo,TX).

125 Table4.2.Sequencesforβ1,β2,andβ3adrenergicreceptors,IGFI,andmyosinheavy chainIIAspecificPCRprimersandTaqManprobes β1adrenergicreceptor(Accession#AF188187) Forward GTGGGACCGCTGGGAGTAT Reverse TGACACACAGGGTCTCAATGC TaqManprobe 6FAMCTCCTTCTTCTGCGAGCTCTGGACCTCTAMRA β2adrenergicreceptor(Accession#NM_174231) Forward CAGCTCCAGAAGATCGACAAATC Reverse CTGCTCCACTTGACTGACGTTT TaqManprobe 6FAMAGGGCCGCTTCCATGCCCTAMRA β3adrenergicreceptor(Accession#XF86961) Forward AGGCAACCTGCTGGTAATCG Reverse GTCACGAACACGTTGGTCATG TaqManprobe 6FAMCCCGGACGCCGAGACTCCAGTAMRA IGF1(Accession#X15726) Forward TGTGATTTCTTGAAGCAGGTGAA Reverse AGCACAGGGCCAGATAGAAGAG TaqManprobe 6FAMTGCCCATCACATCCTCCTCGCATAMRA MyosinheavychainIIA(Accession#AB059398) Forward CCCCGCCCCACATCTT Reverse TCTCCGGTGATCAGGATTGAC TaqManprobe 6FAMTCTCTGACAACGCCTATCAGTTCATTAMRA

126 Table4.3EffectsofMGAadministrationonperformanceoffeedlotheifers Treatment Item Control MGA SEM Pvalue Pens 6 6 Startingweight,kg 318 316 11 0.62 DMI,kg/d 7.85 7.96 0.12 0.49 ADG,kg 1.31 1.34 0.03 0.43 G:F 0.167 0.168 0.002 0.61 Hotcarcassweight,kg 341 344 1.2 0.22 LMarea,cm 2 92.09 87.87 0.502 <0.0001 12thribfat,cm 1.34 1.46 0.026 <0.001 Marblingscore 429 440 3.5 0.03 Dressingpercentage 64.53 64.70 0.162 0.40 KPH,% 1.98 1.98 0.005 0.89 Calculatedfinalyieldgrade 2.52 2.86 0.034 <0.0001

127 Table4.4Effectsofzilpaterol(Z)administrationonperformanceoffeedlotheifers Zilpaterol 1 Pvalues 2 Item 0 20 30 40 SEM 0vs.Z L Q Pens 6 6 6 6 Startingweight,kg 318 316 317 315 12 0.61 0.81 0.71 DMI,kg/d 7.85 7.81 7.87 7.69 0.11 0.64 0.89 0.70 ADG,kg 1.31 1.33 1.36 1.36 0.04 0.23 0.24 0.88 G:F 0.167 0.171 0.173 0.177 0.003 <0.01 0.06 0.88 Hotcarcassweight,kg 341 349 354 355 3.8 0.03 0.04 0.85 LMarea,cm 2 92.1 99.9 100.5 102.1 1.043 <0.01 <0.01 <0.01 12thribfat,cm 1.34 1.22 1.28 1.22 0.033 <0.01 0.14 0.01 Marblingscore 429 417 406 405 3.6 <0.01 <0.01 0.81 Dressingpercentage 64.53 65.71 65.99 66.17 0.235 <0.01 <0.01 0.05 KPH,% 1.971 1.974 1.977 1.983 0.014 0.12 0.18 0.42 Calculatedfinalyieldgrade 2.52 2.06 2.14 2.05 0.037 <0.01 <0.01 <0.01 1TreatmentsdietswereformulatedtoprovidenoZ(0d)orZ(8.32mg/kg,DMbasis)forthelast20,30,or40dofthe finishingperiod 2Observedsignificancelevelsfororthogonalcontrasts:0vs.Z=controlvs.Zfedheifers;L=lineareffectsofZtreatment; Q=quadraticeffectsofZtreatment. 3300=Slight 00 ;400=Small 00 .

128

500

400

300

Billions 200 100 1-Adrenergic Receptor 1-Adrenergic

Units, Arbitrary mRNA β β β β 0 Control MGA Treatment

Figure4.1β1Adrenergicreceptor(AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Barsaremeans±SEMrelativetocontrol.Therewasnoeffect( P

>0.05)ofMGAonβ1ARmRNA.

129

75000 50000

Billions 25000

Receptor 2-Adrenergic mRNA Arbitrary Units, Arbitrary mRNA β β β β 0 Control MGA Treatment

Figure4.2 β2Adrenergicreceptor(AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Barsaremeans±SEMrelativetocontrol.Therewasnoeffect( P

>0.05)ofMGAonβ2ARmRNA.

130 2000 1000 Billions 3-Adrenergic Receptor 3-Adrenergic mRNA Arbitrary Arbitrary Units, mRNA β β β β 0 Control MGA Treatment Figure4.3 β3Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Barsaremeans±SEMrelativetocontrol.Therewasnoeffect( P

>0.05)ofMGAonβ3ARmRNA.

131 1000

750

500

Billions

250

Receptor 1-Adrenergic mRNA Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment Figure4.4 β1Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.73)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ1ARmRNAabundance.

132 50000 40000 30000

Billions 20000

10000 2-Adrenergic Receptor 2-Adrenergic mRNA Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment Figure4.5β2Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.77)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ2ARmRNAabundance.

133 1500 1000

Billions 500

Receptor 3-Adrenergic mRNA Units, Arbitrary mRNA β β β β 0 Control 20 d 30 d 40 d Treatment Figure4.6 β3Adrenergicreceptor( AR )mRNAabundanceinbovinesemimembranosusmuscle collectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedinthe analysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20d

ZIL,3)30dZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.93)northedurationof

ZILfeeding( P>0.10)affectedtheexpressionofβ3ARmRNAabundance.

134 4000 3000 2000 Units, Billions Units, 1000 Arbitrary IGF-I mRNA 0 Control MGA Treatment Figure4.7InsulinlikegrowthfactorI( IGFI)mRNAabundanceinbovinesemimembranosus musclecollectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedin theanalysis(6pens/treatment).Barsaremeans±SEMrelativetocontrol.Therewasnoeffect

(P>0.05)ofMGAonIGFImRNA.

135 5000 4000 3000 2000 Units, Billions Units, 1000 Arbitrary IGF-I mRNA 0 Control 20 d 30 d 40 d Treatment Figure4.8 RelativeabundanceofIGFImRNAinbovinesemimembranosusmusclecollected

fromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedintheanalysis(6 pens/treatment).Treatmentsconsistedof:1)nozilpaterol( ZIL ;control),2)20dZIL,3)30d

ZIL,or4)40dZIL.NeithertheeffectofaddingZIL( P=0.46)northedurationofZILfeeding

(P>0.10)affectedtheexpressionofIGFImRNAabundance.

136 200 100 Ten Thousand Ten Myosin Heavy Chain Heavy Myosin Units, Arbitrary mRNA 0 Control MGA Treatment

Figure4.9Myosinheavychain(MHC )IIAmRNAabundanceinbovinesemimembranosus musclecollectedfromfeedlotheifers10minpostslaughter.Twoanimalsperpenwereusedin theanalysis(6pens/treatment).Barsaremeans±SEMrelativetocontrol.Therewasnoeffect

(P>0.05)ofMGAonMHCIIAmRNA.

137 200 100 Ten Thousand Ten Myosin Heavy Chain Heavy Myosin

Units, Arbitrary mRNA 0 Control 20 d 30 d 40 d Treatment Figure4.10 Relativeabundanceofmyosinheavychain( MHC )IIAmRNAinbovine

semimembranosusmusclecollectedfromfeedlotheifers10minpostslaughter.Twoanimalsper penwereusedintheanalysis(6pens/treatment).Treatmentsconsistedof:1)nozilpaterol

(ZIL ;control),2)20dZIL,3)30dZIL,or4)40dZIL.TheexpressionofMHCIIAwas

decreased( P<0.05)byZILadministration,butasthedurationofZILfeedingincreased,MHC

IIAmRNAincreased( P=0.05)inheifers.

138

500 b 400 300

billions 200 a 100

Receptor 1-Adrenergic mRNA Arbitrary units, Arbitrary mRNA β β β β 0 Control MGA Treatment Figure4.11EffectofMGAonproliferatingbovinesatellitecellβ1adrenergicreceptor( AR ) mRNAabundance.Bovinesatellitecellswereplatedin10%FBS/DMEM.After24h,MGA(0 or10n M)wasadded.After48hexposure,totalRNAwasisolatedfromthecells,andrelative mRNAabundancewasdeterminedusingrealtimequantitativePCR.Barsaremeans±SEM relativetocontrol.Barswithdifferentlettersdiffer( P<0.05).Valuesaremeansfrom11 culturedishesderivedfrom6animals.

139 1500 b 1000

billions a 500 2-Adrenergic Receptor 2-Adrenergic mRNA Arbitrary units, Arbitrary mRNA β β β β 0 Control MGA Treatment Figure4.12 EffectofMGAonproliferatingbovinesatellitecellβ2adrenergicreceptor( AR ) mRNAabundance.Bovinesatellitecellswereplatedin10%FBS/DMEM.After24h,MGA(0 or10n M)wasadded.After48hexposure,totalRNAwasisolatedfromthecells,andrelative mRNAabundancewasdeterminedusingrealtimequantitativePCR.Barsaremeans±SEM relativetocontrol.Barswithdifferentlettersdiffer( P<0.05).Valuesaremeansfrom11 culturedishesderivedfrom6animals.

140 75 50

billions 25 3-Adrenergic Receptor 3-Adrenergic mRNA Arbitrary units, Arbitrary mRNA β β β β 0 Control MGA Treatment Figure4.13EffectofMGAonproliferatingbovinesatellitecellβ3adrenergicreceptor( AR ) mRNAabundance.Bovinesatellitecellswereplatedin10%FBS/DMEM.After24h,MGA(0 or10n M)wasadded.After48hexposure,totalRNAwasisolatedfromthecells,andrelative mRNAabundancewasdeterminedusingrealtimequantitativePCR.Barsaremeans±SEM relativetocontrol.Valuesaremeansfrom11culturedishesderivedfrom6animals.

141 DissertationSummary

ThedatareportedinthisdissertationdemonstratetheabilityofZILtoimprovefeedlot animalperformanceandcarcasscharacteristics,aswellasimpactgeneexpressioninbovine satellitecellsandsemimenbranosusmuscletissue.Inchapter1,itwasreportedthattheβ2AR playsanimportantroleinmodulatingthefunctionofZILonskeletalmusclegrowth.The expressionofβ2ARwasdecreasedinproliferatingmyoblasts,andincreasedinfused multinucleatedmyotubes.ThisdatashouldbeconsideredwhenutilizingZILinfeedlotanimals.

Itisunderstoodthatadministrationofβagonistsleadstoadecreaseinreceptornumber,whichin turncanimpacttheeffectoftheβagonistonanimalperformanceandmusclegrowth.The numberofreceptorsavailableforZILmayhaveanimpactontheabilityofZILtoimpactanimal performance.

Inchapter3and4,itwasestablishedthatZILcanbeaneffectivetoolwhenutilizedto

improveanimalgrowthandefficiency.Zilpateroladministrationimprovedfeedlotsteerand

heiferperformanceandcarcasscharacteristics.Additionally,ZILreducedtheexpressionof

MHCIIAinsemimembranosusmuscletissue.ThisreductioninMHCIIAmRNAmaybean

indicatorofdecreasedproteindegradation.Thisdecreaseinproteindegradationmaybeoneof

thefactorsinvolvedintheincreasedmusclegrowthobservedintheseanimals.Aspreviously

mentioned,growthofmuscletissuecancomeaboutfromeitheranincreaseinproteinsynthesis,

adecreaseinproteindegradation,oracombinationofthetwothatresultsinanetincreasein proteinaccretion.Thesefactorsareimperativewhendeterminingthespecificmodeofactionof

metabolicmodifierssuchasZIL.ItisevidentfromthisresearchthatZILaffectsmusclegrowth;

however,furtherresearchisneededtodeterminethespecificmodeofactionofthisgrowth process.UnderstandingtheeffectofZILasconfirmedbyourdata,shouldaidinbetter

142 utilizationofZILinacommercialsetting.OurdatasuggeststhatZILcanbeausefultoolin

improvinganimalperformanceandcarcasscharacteristics.However,moreinformationis

neededinordertounderstandthedoseanddurationrequiredtoachievetheoptimumlevelof performanceinfeedlotanimals.

AdditionalresearchwasreportedontheeffectsofMGAonheiferperformanceand

skeletalmusclegrowth.MGAdecreasedskeletalmusclegrowthwhileincreasing12th ribfatin heifers.Thisleadstoanoverallincreaseincalculatedyieldgrades.Additionally,MGAaltered theexpressionofβAR in vitro ,buttherewerenoeffects in vivo .Duetothewidespreaduseof

MGAinfeedlotheifers,thisinformationmaybeavaluabletooltothosewhoarelookingto

improvefeedlotheifercarcasscharacteristics.BecauseoftheutilizationofMGAinconjunction

withZILinfeedlotheifers,thepotentialabilityofMGAtoaltertheexpressionofβARshould beconsideredbecauseofthepotentialforinteractionsorsynergisticeffectsthesetwo

compoundsmayhave.ThesedatasuggestthatMGAdoesnothavetheeffectsthatothersteroids

suchasTBAandE 2haveonskeletalmusclegrowthanddevelopmentinheifers.

Inconclusion,ourresultsdemonstratetheabilityofMGAadministrationtoresultin smallerlongissimusmuscleareawithincreasedfatthickness,whichmaybedueinparttoearly cellcyclewithdrawalofsatellitecells.Thisinformationcanbeusefulduetothehighutilization ofMGAinfeedlotheiferstoday.Additionally,wedemonstratedtheabilityofZILtoimprove overallanimalperformanceandefficiency.Thispositiveresponsetomusclegrowthand efficiencycanleadtoincreasedprofitabilitywhenZILisadministeredtofeedlotcattlethelast

20to40d.

143