Deep-Space Cubesats: Thinking Inside the Box

Total Page:16

File Type:pdf, Size:1020Kb

Deep-Space Cubesats: Thinking Inside the Box CUBESATS Deep-space CubeSats: thinking inside the box Roger Walker and colleagues CubeSats: small but perfectly formed consider the potential for sending Downloaded from https://academic.oup.com/astrogeo/article-abstract/59/5/5.24/5099069 by guest on 22 September 2018 nanospacecraft into deep space. CubeSats are modular spacecraft, using multiple standard-sized units of 10 x 10 x 10 cm ince the introduction of the CubeSat (figure 1); the size of the resulting spacecraft standard in the early 2000s, there has is measured by the number of units, e.g. 3U Sbeen a proliferation of nano-/small or 6U. The capabilities of these satellites have microsatellites in low Earth orbit, with increased significantly in recent years, notably 100–300 or more launched annually and at in pointing, propulsion and communications a growing rate (according to reports from as well as the availability of compact optical/ SpaceWorks and Euroconsult). CubeSats radio frequency/environment payloads. have reduced entry-level costs for space CubeSats are launched inside a standard missions in low Earth orbit (LEO) by container which simplifies launcher more than an order of magnitude (see box accommodation while ensuring safety for “CubeSats: small but perfectly formed”). the primary passenger, thus facilitating 1 Example of a 1U CubeSat shell. There is a This has brought new players into the widespread low-cost piggyback launch weight standard too – the finished launch unit space sector and launch opportunities for opportunities on many different launch must not exceed 1.33 kg. (ESA/G Porter) CubeSats have increased significantly in vehicles worldwide. At the same time, the the last decade to address the associated extensive use of miniaturized electronics, entry-level costs mean that the true power of demand. With more piggy back oppor- sensors/actuators and a stacked integration CubeSat-based nano- or small microsatellites tunities, platform capabilities and small approach has cut spacecraft production and lies in their operation as distributed systems, payloads have rapidly advanced to a level integration costs. The dramatically lower such as constellations or swarm formations. that are suitable for real operational mis- sions. Niche commercial applications are emerging based on operating multiple within the frame of the ESA General Stud- escape or Earth escape trajectories. For the CubeSats together in distributed systems, ies Programme on lunar and interplanetary time being, piggyback flight opportunities e.g. constellations and swarms. CubeSat mission concepts. must be found, either on a launcher upper How far can this new paradigm be These studies have involved either stage carrying a primary spacecraft, or on extended from the safety of LEO out to mother–daughter system architectures, the primary spacecraft itself as part of its cis-lunar and deep space, and what unique where the CubeSats are carried to a target mission. However, these opportunities are new missions can be performed? Piggy- destination such as lunar rare, and the constraints on back opportunities for CubeSats to lunar orbit or to a near-Earth object “The first inter planetary nanospacecraft deployment orbit and interplanetary space are already (NEO) on a larger spacecraft nanospacecraft can significantly influence becoming available, and innovative minia- and deployed at the target in mission was launched the Dv (velocity impulse) and turized technologies are being developed order to fulfil their mission, in May, to Mars” transfer window needed to overcome the severe technical challenges or a completely stand-alone to reach the final mission des- of deep-space missions. Performance system executing its own mission. The tination – and hence the feasibility of such a has reached a level where the first inter- mother–daughter architecture alleviates mission. Table 1 shows our assessment of a planetary nanospacecraft mission (NASA’s the technical challenges of propulsion, range of missions that could be performed Mars Cube One – MarCO) was launched long-range communication and deep-space beyond Earth orbit for a given set of piggy- in May 2018 as part of the InSight mission environment survivability, because the host back flight opportunities. (Klesh & Krajewski 2018). And, as was the spacecraft provides resources and accom- case for LEO, it is expected that there will modation during the cruise, as well as Asteroid Impact Mission be an order of magnitude reduction in the communications to Earth ground stations, Within the ESA General Studies Pro- entry-level cost of interplanetary mis- in conjunction with local inter-satellite gramme, the third edition of the Sysnova sions, thus paving the way to new mission links with the deployed CubeSats. For a technical challenge focused on Cubesat applications and architectures based on stand-alone deep-space CubeSat (i.e. where Opportunity Payload of Intersatellite distributed systems of deep-space nano- there is no mothercraft), these challenges Networking Sensors (COPINS). The overall spacecraft. This article addresses some of have to be tackled and suitable technology objective of the challenge was to investigate the missions that may be performed with solutions identified and/or developed. new mission concepts involving a number such distributed systems, their system There are presently no dedicated small of CubeSats operating together in inter- architectures and enabling technologies, launchers that can cost-effectively inject planetary space in support of the objec- based on a number of studies completely nanospacecraft onto specific near-Earth tives of the proposed ESA Asteroid Impact 5.24 A&G • October 2018 • Vol. 59 • aandg.org CUBESATS 1 Mission scenarios with respect to different piggyback flight opportunities piggyback launcher primary CubeSat CubeSat final propulsion feasibility (≤12U) on spacecraft deployment destination type spacecraft PSLV/Ariane 6 Lunar Pathfinder highly eccentric low lunar orbit/ chemical mono- yes lunar orbit Earth–Moon L2 propellant spacecraft Soyuz/Ariane 6 HERA Didymos binary NEO Didymos binary NEO cold gas yes launcher Ariane 5 JUICE Venus-bound Venus high-altitude chemical mono- yes (4 × 3U CubeSat trajectory atmosphere swing-by propellant entry probes with microcarrier) launcher Soyuz/Ariane 6/ various telecom geostationary lunar orbit/ electric no (excessive Δv, time Falcon 9/Atlas V transfer orbit NEO rendezvous and radiation dose) Downloaded from https://academic.oup.com/astrogeo/article-abstract/59/5/5.24/5099069 by guest on 22 September 2018 launcher Ariane 6 various transfer to NEO rendezvous/ electric yes (use of L2 halo orbit astronomy Sun–Earth L2 Sun–Earth L5/ for waiting until transfer heliocentric (<1 au) to target) launcher Space Launch System Orion lunar transfer lunar orbit/ electric yes trajectory NEO rendezvous launcher Space Launch System Orion lunar transfer lunar orbit/ chemical no (excessive Δv) trajectory NEO rendezvous launcher Proton/Atlas V ExoMars/ Mars transfer Mars orbit electric yes (but excessive Mars 2020 trajectory duration for spiral down) launcher Proton/Atlas V ExoMars/ Mars transfer Mars orbit chemical no (excessive Δv) Mars 2020 trajectory 2 Illustration of the AIM spacecraft and deployed CubeSats at asteroid Didymos during the DART hypervelocity impact. (ESA) Mission (AIM). AIM had three different the smaller component of the Didymos the main spacecraft would then retreat to objectives relating to technology flight binary asteroid (nicknamed Didymoon) at a distance of 100 km, ready for the impact demonstration in interplanetary space, very high velocity; AIM was envisaged as a up to a month later. The CubeSats would investigation of NEO mitigation techniques means to rendezvous with the target aster- perform their mission up until two months and acquiring new scientific knowledge for oid in advance, in April 2022, and charac- after the impact date, i.e. for three months understanding solar system evolution. The terize the binary system before, during and in total, using a 1 Mbps S-band inter- proposed COPINS payload consisted of two after the impact event. The launch of the satellite link (ISL) with the main space- or more CubeSats carried on the main AIM AIM spacecraft was proposed for 2020 on craft’s communications system (and each spacecraft in their deployment systems (two the Soyuz/Fregat launcher from Kourou other) for telecommand, housekeeping and 3U deployers), and released in the vicinity into a direct escape trajectory, with arrival payload telemetry transfer. Five different of the target asteroid Didymos, where the at the asteroid after about 22 months. Dur- CubeSat concepts were selected by ESA main AIM spacecraft acted as a commu- ing the rendezvous phase, the distance to for parallel studies via an open competi- nications data relay between the CubeSats the Sun and Earth is close to 1 au and from tive announcement of opportunity (AO) and Earth ground stations (figure 2). 0.5 to 0.1 au respectively. process, as described in table 2. The ESA AIM mission (ESA AIM Team After an initial measurement phase, the The AIM mission did not receive the 2015) was proposed as part of the AIDA AIM spacecraft would be manoeuvred to required funding for implementation, but international cooperation, together with a within 10 km of the binary asteroid. Before the objectives and concept remain valid. US spacecraft, Double Asteroid Redirection DART’s impact, the COPINS CubeSats Therefore a new mission proposal called Test (DART). DART is planned to impact (Walker et al. 2016) would be released and HERA has since been formulated based A&G • October 2018 • Vol. 59 • aandg.org 5.25 CUBESATS 2 Overview of the five AIM COPINS CubeSat mission concepts name organization system mission payload ASPECT: VTT, single 3U CubeSat with spectral imaging of Didymoon before/ imaging spectrometer in VIS/ Asteroid Spectral Uni. Helsinki, <1° pointing, cold gas after impact from 4 km orbit NIR: 1–2 m GSD; Imaging Aalto Uni. propulsion 1 m s–1 Δv SWIR spectrometer DustCube Uni. Vigo, single 3U CubeSat with characterize ejected dust plume after in situ nephelometer, Uni. Bologna, cold gas propulsion impact from 3–5 km orbit, transfer to remote nephelometer MICOS 2 m s–1 Δv, optical IR rel.
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Tailoring of the Controlling and Monitoring Tools for Operations in Shallow Coastal Waters
    Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Ref.: D6.1_V1.1 Date: 08/01/2021 Euro-Argo Research Infrastructure Sustainability and Enhancement Project (EA RISE Project) - 824131 Under EC_review This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 824131. Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures Disclaimer: This Deliverable reflects only the author’s views and the European Commission is not responsible for any use that may be made of the information contained therein. 2 Project Euro-Argo RISE - 824131 Deliverable number D6.1 Deliverable title Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Description Report that details the existing Euro-Argo controlling and monitoring tools implemented, developed, tested and tailored for Argo float operations in shallow coastal areas of the Mediterranean, Black and Baltic Seas. Work Package number 6 Work Package title Extension to Marginal Seas Lead Institute OGS Lead authors Giulio Notarstefano Contributors Massimo Pacciaroni, Dimitris Kassis, Atanas Palazov, Violeta Slabakova, Laura Tuomi, Siiriä Simo-Matti, Waldemar Walczowski, Małgorzata Merchel, John Allen, Inmaculada Ruiz, Lara Diaz, Vincent Taillandier, Luca Arduini Plaisant, Romain Cancouët Submission date 08/01/2021 Due date [M18] 30 June 2020 Comments This deliverable was postponed due to Covid-19 pandemic (Article
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • Interstellar Extinction in Orion. Variation of the Strength of the UV
    MNRAS 000, 1–9 (2017) Preprint 9 July 2018 Compiled using MNRAS LATEX style file v3.0 Interstellar extinction in Orion. Variation of the strength of the UV bump across the complex. Leire Beitia-Antero,1⋆ Ana I. G´omez de Castro,1† 1AEGORA Research Group, Universidad Complutense de Madrid, Facultad de CC. Matem´aticas, Plaza de Ciencias 3, E-28040 Madrid Accepted XXX. Received YYY; in original form ZZZ ABSTRACT There is growing observational evidence of dust coagulation in the dense filaments within molecular clouds. Infrared observations show that the dust grains size distri- bution gets shallower and the relative fraction of small to large dust grains decreases as the local density increases. Ultraviolet (UV) observations show that the strength of the 2175 A˚ feature, the so-called UV bump, also decreases with cloud density. In this work, we apply the technique developed for the Taurus study to the Orion molecular cloud and confirm that the UV bump decreases over the densest cores of the cloud as well as in the heavily UV irradiated λ Orionis shell. The study has been extended to the Rosette cloud with uncertain results given the distance (1.3 kpc). Key words: ISM: dust, extinction 1 INTRODUCTION feature of the extinction curve, the so-called UV bump. The UV bump is, by far, the strongest spectral feature in the ex- The Interstellar Medium (ISM) is a complex ensemble of tinction curve but its source remains uncertain (see e.g. the gas, large molecules and dust coupled through the action of review by Draine (2003)).
    [Show full text]
  • Aas 11-509 Artemis Lunar Orbit Insertion and Science Orbit Design Through 2013
    AAS 11-509 ARTEMIS LUNAR ORBIT INSERTION AND SCIENCE ORBIT DESIGN THROUGH 2013 Stephen B. Broschart,∗ Theodore H. Sweetser,y Vassilis Angelopoulos,z David C. Folta,x and Mark A. Woodard{ As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit in- sertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth’s gravity and restrictive spacecraft capabili- ties to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future eccentric orbiter missions at planetary moons. INTRODUCTION The Acceleration, Reconnection, Turbulence and Electrodynamics of the Moons Interaction with the Sun (ARTEMIS) mission is currently operating two spacecraft in lunar orbit under funding from the Heliophysics and Planetary Science Divisions with NASA’s Science Missions Directorate. ARTEMIS is an extension to the successful Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission [1] that has relocated two of the THEMIS spacecraft from Earth orbit to the Moon [2, 3, 4]. ARTEMIS plans to conduct a variety of scientific studies at the Moon using the on-board particle and fields instrument package [5, 6]. The final portion of the ARTEMIS transfers involves moving the two ARTEMIS spacecraft, known as P1 and P2, from Lissajous orbits around the Earth-Moon Lagrange Point #1 (EML1) to long-lived, eccentric lunar science orbits with periods of roughly 28 hr.
    [Show full text]
  • Cassiopeia a January2008
    CASSIOPEIA A JANUARY2008 Cassiopeia A is the youngest (about 300 years old) known supernova Su Mo Tu We Th Fr Sa remnant in the Milky Way. Astronomers have used Chandra’s long ob - 01 02 03 04 05 servations of this remnant to make a map of the acceleration of elec - trons in this supernova remnant. The analysis shows that the electrons 06 07 08 09 10 11 12 are being accelerated to almost the maximum theoretical limit in some 13 14 15 16 17 18 19 parts of Cassiopeia A (Cas A) in what can be thought of as a “relativistic pinball machine.” Protons and ions, which make up the bulk of cosmic 20 21 22 23 24 25 26 rays, are expected to be accelerated in a similar way to the electrons. The Cas A observations thus provide strong evidence that supernova 27 28 29 30 31 remnants are key sites for energizing cosmic rays. 3C442A FEBRUARY2008 X -ray data from NASA’s Chandra X -ray Observatory and radio obser - Su Mo Tu We Th Fr Sa vations from the NSF’s Very Large Array show that a role reversal is 01 02 taking place in the middle of 3C442A - a system with two merging gal - 03 04 05 06 07 08 09 axies in the center. Chandra detects hot gas (blue) that has been push - ing aside the radio -bright gas (orange). This is the opposite of what 10 11 12 13 14 15 16 is typically found in these systems when jets from the supermassive black hole in the center create cavities in the hot gas surrounding the 17 18 19 20 21 22 23 galaxy.
    [Show full text]
  • CRATER MORPHOMETRY on VENUS. C. G. Cochrane, Imperial College, London ([email protected])
    Lunar and Planetary Science XXXIV (2003) 1173.pdf CRATER MORPHOMETRY ON VENUS. C. G. Cochrane, Imperial College, London ([email protected]). Introduction: Most impact craters on Venus are propagating east and north/south. Can be minimised if pristine, and provide probably the best available ana- framelets have good texture on the left-hand side. logs for craters on Earth soon after impact; hence the Prominence extension – features extend down value of measuring their 3-D shape to known accuracy. range into a ridge, eg central peak linked to the rim. The USGS list 967 craters: from the largest, Mead at Probably due to radar shadowing differences, these are 270 km diameter, to the smallest, unnamed at 1.3 km. easily recognised and avoided during analysis. Initially, research focussed on the larger craters. Araration (from Latin: Arare to plough) consists of Schaber et al [1] (11 craters >50 km) and Ivanov et al parallel furrows some 50 pixels apart, oriented north- [2] (31 craters >70 km) took crater depth from Magel- south, and at least tens of metres deep. Fig 2, a lan altimetry. Sharpton [3] (94 craters >18 km) used floor-offsets in Synthetic Aperture Radar (SAR) F- MIDR pairs, as did Herrick & Phillips [4]. They list many parameters but not depth for 891 craters. The LPI database1 now numbers 941. Herrick & Sharpton [5] made Digital Elevation Models (DEMs) of all cra- ters at least partially imaged twice down to 12 km, and 20 smaller craters down to 3.6 km. Using FMAP im- ages and the Magellan Stereo Toolkit (MST) v.1, they automated matches every 900m but then manually ed- ited the resultant data.
    [Show full text]
  • Chapter 2: Earth in Space
    Chapter 2: Earth in Space 1. Old Ideas, New Ideas 2. Origin of the Universe 3. Stars and Planets 4. Our Solar System 5. Earth, the Sun, and the Seasons 6. The Unique Composition of Earth Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Earth in Space Concept Survey Explain how we are influenced by Earth’s position in space on a daily basis. The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas • Why is Earth the only planet known to support life? • How have our views of Earth’s position in space changed over time? • Why is it warmer in summer and colder in winter? (or, How does Earth’s position relative to the sun control the “Earthrise” taken by astronauts aboard Apollo 8, December 1968 climate?) The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System sun • Geocentric orbit hypothesis - Ancient civilizations interpreted rising of sun in east and setting in west to indicate the sun (and other planets) revolved around Earth Earth pictured at the center of a – Remained dominant geocentric planetary system idea for more than 2,000 years The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Heliocentric orbit hypothesis –16th century idea suggested by Copernicus • Confirmed by Galileo’s early 17th century observations of the phases of Venus – Changes in the size and shape of Venus as observed from Earth The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Galileo used early telescopes to observe changes in the size and shape of Venus as it revolved around the sun The Good Earth, Chapter 2: Earth in Space Earth in Space Conceptest The moon has what type of orbit? A.
    [Show full text]
  • An Assessment of Aerocapture and Applications to Future Missions
    Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • Charon Tectonics
    Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]